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A metastable homogeneous state exists down to zero temperature in systems of repelling vortices. A zero-
“fluctuation-temperature” liquid state therefore serves as a(pseudo) “fixed point” controlling the properties of
vortex liquid below and even around melting point. Based on this picture for the vortex phase we apply the
Borel-Pade resummation technique to develop a quantitative theory of the vortex liquid for the lowest-Landau-
level Ginzburg-Landau model in type-II superconductors. While on the solid phase, there exists a superheat
solid phase which ends at the spinodal line. The picture for the vortex phase is supported by an exactly solvable
largeN Ginzburg-Landau model in a magnetic field and has been recently confirmed by the experiments. The
applicability of the lowest-Landau-level model is discussed and corrections due to higher levels are calculated.
The melting line is located based on the quantitative theory for the description of the vortex solid and the
vortex liquid. Magnetization, entropy, and specific heat jumps along the melting line are calculated. The
theoretical results explain quantitatively very well the experimental data on the high-Tc cuprates YBa2Cu3O7,
DyBCO, low-Tc material(K, Ba) BiO3, and also Monte Carlo simulation results.
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I. INTRODUCTION

Abrikosov flux lines(vortices) created by magnetic field
in type-II superconductors strongly interact with each other,
creating highly correlated configurations like the vortex lat-
tice. In high-Tc cuprates thermal fluctuations at relatively
large temperatures are strong enough to melt the lattice. Sev-
eral remarkable experiments demonstrated that the vortex
lattice melting in high-Tc superconductors is first order with
magnetization jumps1 and spikes in specific heat.2 Magneti-
zation and entropy jumps were measured using local Hall
probes,1 superconducting quantum interference device,3,4

(SQUID), torque magnetometry,5,6 and integrating the spe-
cific heat spike.2,7 It was found that in addition to the spike
there is also a jump in specific heat in YBa2Cu3O7 (YBCO)
which was measured as well.2,7,8 These precise measure-
ments pose the question of an accurate quantitative theoreti-
cal description of thermal fluctuations in vortex matter.

The melting line in high-Tc cuprates has been studied
mainly not very far fromTc. In this part of the phase diagram
the Ginzburg-Landau(GL) approach is generally appropriate
to describe thermal fluctuations nearTc.

9,10The GL model is,
however, highly nontrivial even within the lowest-Landau-
level (LLL ) approximation valid at relatively high fields.
This simplified model has only one parameter: the dimen-
sionless LLL scaled temperatureaT,fT−TmfsHdg / sTHd2/3

[defined precisely in Eq.(13) below]. Over the last 20 years
a great variety of theoretical methods were applied to study
this model. Brezin, Nelson, and Thiaville11 applied the renor-
malization group(RG) method to the one-loop-level descrip-
tion of the vortex liquid. No nontrivial fixed points of the
(functional) RG equations were found and they concluded
therefore that the transition from liquid to solid is first

order.12 Another often-used approach applicable also beyond
the range of validity of the GL model is to use an elasticity
theory description of the vortex lattice and Lindermann cri-
terion to determine the location of melting line.13 However,
all those approaches do not provide a quantitative theory of
melting since these are one-phase theories and in order, for
example, to calculate discontinuities at first-order transitions
an accurate description of both phases is necessary.

Two perturbative approaches were developed and greatly
improved recently to describe both the solid and liquid
phases in the LLL GL model. The perturbative approach on
the liquid side was pioneered long ago by Ruggeri and
Thouless.14 They developed a perturbative expansion around
a homogeneous(liquid) state in which all the “bubble” dia-
grams are resumed. Unfortunately they found that the series
are asymptotic, and although a first few terms provide accu-
rate results at very high temperatures, the series becomes
inapplicable foraT less than −2, which is quite far above the
melting line (believed to be located aroundaT,−10). We
recently obtained an optimized Gaussian series15 which is
convergent rather than asymptotic with radius of conver-
gence ofaT=−5, but it is still unfortunately above the melt-
ing point.

For the vortex solid in the LLL GL mode, Eilenberger16

and Maki and Takayama16 calculated the fluctuations spec-
trum around Abrikosov’s mean-field solution. They noticed
that the vortex lattice phonon modes are softer than that of
the acoustic phonons in atomic crystals and this leads to
infrared (IR) divergences in certain quantities. This was ini-
tially interpreted as the “destruction of the vortex solid by
thermal fluctuations” and the perturbation theory was aban-
doned. However, the divergences look suspiciously similar to
“spurious” IR divergences in the critical phenomenon theory
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and recently it was shown that all these IR divergences can-
cel in the perturbative series for physical quantities, in par-
ticular the effective free energy.17 The perturbative series
therefore is reliable and was extended to two loops for the
free energy. The free energy calculated to two loops on the
solid side is now precise enough even around the melting
point.

Therefore the missing part is a theory in the region
−10,aT,−5 for the liquid phase. Moreover, this theory
should be very precise since free energies of solid and liquid
happen to differ only by a few percent around melting.
Closely related to melting is the problem of the nature of the
metastable phases of the theory. While it is clear that the
overheated solid becomes unstable at some finite tempera-
ture, it is not generally clear whether the overcooled liquid in
the LLL GL model becomes unstable at some finite tempera-
ture (like water and other molecular liquids, which, however,
have a crucial attractive component of the intermolecular
force) or exists all the way down toT=0 as a metastable
state. The Gaussian(Hartree-Fock) variational calculation,
although perhaps of a limited precision, is usually a very
good guide as far as the qualitative features of the phase
diagram are concerned. Such a calculation in the liquid was
performed long ago,14 while a significantly more compli-
cated one sampling also inhomogeneous states(vortex lat-
tice) was obtained recently.18,19 The Gaussian results are as
follows. The free energy of the solid state is lower than that
of the liquid for all temperatures lower than melting tempera-
ture aT

m. The solid state is therefore the stable one belowaT
m,

becomes metastable at somewhat higher temperatures, and is
destabilized ataT=−5.5. The liquid state becomes metastable
below the melting temperature, but unlike the solid, does not
lose metastability all the way down toaT

m=−` sT=0d. The
excitation energy of the supercooled liquid approaches zero
as a power«,1/aT

2. This general picture is supported in Sec.
III by an exactly solvable largeN Ginzburg-Landau model of
vortex matter in type-II superconductors.

In the meantime similar qualitative results were obtained
in different area of physics. It was shown by variety of ana-
lytical and numerical methods that liquid(gas) phase of the
classical one component Coulomb plasma exists as a meta-
stable state down to very low temperature, possiblyT=0.20

The quantum one-component plasma-electron gas also
shows similar features.21 It seems plausible to speculate that
the same phenomenon would happen in any system of point-
like or linelike objects interacting via purely repulsive forces.
In fact the vortices in the London approximation are a sort of
repelling lines with the force even more long range than
Coulombic. This was an additional strong motivation to con-
sider the above scenario in vortex matter. In addition to the
above-mentioned theoretical evidence for the validity of the
scenario, very recently, the supercooled vortex liquid at very
low temperature and the superheat vortex solid which van-
ishes at spinodal line have been observed in a beautiful ex-
periment on 2H-NbSe2 by Xiao et al.22 Previous
experiments23 showed that the observed effect is not due to
surface pinning or geometrical barriers.

Assuming the absence of singularities on the liquid
branch allows us develop an essentially precise theory of the
LLL GL model for vortex liquid(even including supercooled

liquid) using methods of theory of critical phenomena.24,25

The generally effective mathematical tool to approach a non-
trivial fixed point (in our case at zero temperature) is the
Borel-Pade(BP) transformation.25 Before embarking on this
program in the following sections, we address several subtle-
ties which prevented the use and acceptance of the BP
method in the past. Very early on Ruggeri and Thouless14

tried to use BP(unfortunately a “constrained” one, so that it
interpolates smoothly with the solid, an assumption we be-
lieve is incorrect) to calculate the specific heat without much
success. It was shown by Wilkin and Moore26 that the con-
strained BP does not converge, while the results for uncon-
strained BP were inconclusive. They attributed this to the
limited order of expansion known at that time. The BP liquid
theory combining with the recently developed LLL theory of
solids could be used to calculate the melting line and the
magnetization and the specific heat jumps across the line.27

The attempts to use BP for the calculation of the melting line
using a longer series also ran into problems. Hikami, Fujita,
and Larkin27 tried to find the melting point by comparing the
BP liquid free energy with the one-loop solid free energy and
obtainedaT=−7. However, their one-loop solid energy was
incorrect and, in any case, it was not precise enough(as will
become clear in the following discussions that the two-loop
contribution cannot be neglected).

The LLL GL model has been studied by various methods.
For example, it was also studied numerically in both the
Lawrence-Doniach model[a good approximation of the
three-dimensional(3D) GL for large number of layers] (Refs.
28 and 29) and in 2D(Ref. 30) and by a variety of nonper-
turbative analytical methods, among them the density
functional,31 1/N,32–34 dislocation theory of melting,35 and
others.36 However, most of those theories in the literature are
qualitative and have not given us a quantitative description
(locations of melting lines, magnetization jumps, entropy
jumps, etc.) for the melting of vortex lattice. The theory we
will describe in this article can face the experimental test and
we found that the predication and results from the theory is
in good quantitative agreement with experiments.

As we show in this paper, the BP liquid free energy com-
bined with the correct two-loop solid energy computed re-
cently gives scaled melting temperatureaT

m=−9.5 and in ad-
dition predicts other characteristics of the model. The
magnetization of liquid is larger than that of solid by ap-
proximate 1.8% irrespective of the melting temperature(the
specific heat jump is about 6% and decreases slowly with
temperature in YBCO). A brief account of these results was
published.18

In addition to the theory of melting, we considered over-
cooled liquid and calculated magnetization and specific heat
curves. Since the metastable overcooled liquid state exists all
the way down to zero temperature in the model, we can
define the liquid Madelung energy. Looking at the melting
process from the low-temperature side for both the liquid and
solid we find that the Madelung energy of the liquid is larger
than that of the solid approximately by the latent heat of
melting. Our magnetization curves agree quite well with
Monte Carlo simulations of the LLL GL(Ref. 28) and almost
perfectly for the specific heat in 2D by Kato and Nagaosa in
Ref. 30.
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We study also in this paper several “phenomenological”
issues, some matter of significant disagreement. First is the
range of applicability of the LLL model. We find that in
order to describe the experimental reversible magnetization
of YBCO at lower fields, higher-Landau-levels(HLL ) cor-
rections should be incorporated. We therefore clarify in Sec.
V the role of the HLL modes. Experimentally it was claimed
that one can establish the LLL scaling for fields above 3T.37

A glance at the data, however, shows that in normal state
(aboveTc) the LLL scaling for magnetization curves is gen-
erally very bad. Most of the HLL effects can be taken into
account by just renormalizing the parameters of the LLL
model. Therefore one should use the “effective LLL” in
which HLL were “integrated out.” To clarify this often-
salient feature we explicitly perform this integration within a
self-consistent approach in Sec. V. It was noted by
Koshelev38 and others that, to calculate magnetization, one
has to carefully account for renormalization of the free en-
ergy since it is field dependent. Then we calculated the lead-
ing correction to the effective LLL and compare it with ex-
periments. It is found that although the LLL contribution to
magnetization is much larger that the experimentally ob-
served one aboveTc, it is nearly canceled by the HLL con-
tributions. This explains the breaking of the LLL scaling in
the normal state.

The paper is organized as follows. The model is defined
and its applicability range discussed in Sec. II. In Sec. III, the
(including supercooled) liquid and (including superheated)
solid in the LLL GL will be discussed in the mean-field
approximation of the LLL GL model and in the large-N LLL
GL model. In Sec. IV, the LLL model is solved and the
melting theory of vortex lattice is presented and compared to
experiments. In Sec. V, the HLL corrections are discussed
and the magnetization curves are compared with experi-
ments.

In particular phenomenological issues are addressed in
Secs. II B (assumptions), IV C (melting line, Ginzburg pa-
rameter fit for various materials), IV D (magnetization, en-
tropy jumps), IV E (specific heat jumps), and V D(reversible
magnetization curve), so readers not interested in theoretical
details can go directly to these sections.

II. GL MODEL AND ITS BASIC ASSUMPTIONS

A. GL model

On the mesoscopic scale, 3D superconducting materials,
with not very strong asymmetry along thez axis which we
call as YBCO-type superconductors, are effectively de-
scribed by the Ginzburg-Landau free energy functional

Ffc,c * , Ag =E d3x
"2

2mab
uDcu2 +

"2

2mc
u]zcu2 − asTducu2

+
b8

2
ucu4 +

sB − Hd2

8p
s1d

involving the order parameter fieldc and magnetic fieldB.
The external constant magnetic field is described by the vec-
tor potential in Landau gaugeA0=sHy,0 ,0d. The covariant

derivative is defined byD; =−2piA /F0,F0;hc/e* se*
=2ed. The microscopic thermal fluctuations are integrated
out and, as a consequence, coefficientsa, b8, andm depend
on temperature. Mesoscopic thermal fluctuations of the order
parameter are described by the partition function

Z =E DcDc * DA expH−
Ffc,c * , Ag

T
J . s2d

Our aim is to quantitatively describe the effects of thermal
fluctuations of high-Tc cuprates of the YBCO type.

B. Assumptions

The use of the above GL free energy hinges upon several
physical assumptions. They are listed below.

(i) Continuum 3D model. We use the anisotropic GL
model despite the well established layered structure of the
high Tc cuprates for which models of the Lawrence-Doniach
type are more appropriate. Effects of layered structure are
dominant in BSCCO or Tl compounds(anisotropy very
large:g;Îmc/mab.1000) and noticeable for cuprates with
anisotropy of orderg=50 like LaBaCuO, strongly under-
doped YBCO(see, however, Ref. 39), or Hg1223. The re-
quirement that the 3D GL model can be effectively used
therefore limits us to optimally doped YBCO7−d (or slightly
overdoped or underdoped) for which the anisotropy param-
eter is not very large[aroundg=4–8(Ref. 40)], DyBCO and
possibly Hg1221 which has a slightly larger anisotropy.
However there is no such problem in recently discovered
isotropic “fluctuating” superconductor(K, Ba) BiO3.

41

(ii ) Range of validity of the mesoscopic (GL) approach.
The GL approach generally is an effective mesoscopic ap-
proach. It is applicable when one can neglect higher-order
terms in the functional of Eq.(1), typically generated when
one “integrates out” microscopic degrees of freedom. The
leading higher-dimensional terms we neglect(as “irrel-
evant”) are ucu6 and higher (four) derivative terms like
uD2cu2. This naively leads to a condition that 1−t−b is
smaller than 1. Here and in what follows, one defines

t ; T/Tc, b ; B/Hc2 < H/Hc2 ; h. s3d

The applicability line 1−t−b,0.2 for YBCO is plotted in
Fig. 1. We also will consider a model invariant under rota-
tions in theab plane. Noninvariant models sometimes can be
rescaled toma.mb=mab.

10. For several physical questions
those assumptions are not valid because neglected “irrel-
evant” terms might become “dangerous.” For example the
question of the structural phase transition into the square
lattice is clearly of this type.42 It is known that even assum-
ing ma/mb=1 in low-temperature vortex lattices in YBCO,
rotational symmetry is broken down to the fourfold symme-
try by the four derivative terms. However, there is no signifi-
cant correction to other physical quantities—for example, the
magnetization from those higher-dimensional terms.

(iii ) Expansion of parameters around Tc. Generally the
parameters of the GL model of Eq.(1) are complicated func-
tions of temperature which are determined by the details of
the microscopic theory. We expand the coefficientasTd near
Tc:
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asTd = Tcfas1 − td − a8s1 − td2 + ¯ g. s4d

The second and higher terms in the expansion are omitted
and therefore, when temperature deviates significantly from
Tc, one cannot expect the model to have a good precision.
We note that recently measuredHc2sTd is linear in T in a
wide region nearTc in both YBCO andsK,BadBiO3.

41,43

(iv) Constant nonfluctuating magnetic field. For strongly
type-II superconductors like the high-Tc cuprates not very far
from Hc2sTd (this easily covers the range of interest in this
paper; for the detailed discussion of the range of applicability
beyond it see Ref. 44), the magnetic field is homogeneous to
a high degree due to superposition from many vortices. In-
homogeneity is of order 1/k2,10−3. Since the main subject
of this study is thermal fluctuation effects of the order pa-
rameter field, one might ask whether thermal fluctuations of
the electromagnetic field should be also taken into account.
Halperin, Lubensky, and Ma considered this question long
time ago.45 The conclusion was that they are completely neg-
ligible for very largek. Upon discovery of the high-Tc cu-
prates, the issue was reconsidered46 and the same result was
obtained to a very high precision. Therefore here magnetic
field is treated both as constant and nonfluctuatingsB=Hd
and the last term in Eq.(1) can be omitted(to precision of
order 1/k2). However, when we calculate the magnetization
M =sB−Hd /4p, which is of order 1/k2, a higher-order cor-
rection must be considered.

Recently it was claimed that the “vortex loop” fluctua-
tions are important and even might lead to additional phase
transition at field of order GiHc2.

47 This is of order 100 G
for the materials of interest listed in Table II and therefore is
irrelevant for physics discussed in this paper. Note that Gi in
the papers discussing the vortex loops physics48 is assumed
to be much larger. We discuss this issue in Sec. IV C.

(v) Disorder. Point like disorder is always present in Y
BCO. For example magnetization becomes irreversible. The
melting line of the optimally doped or underdoped samples
bends towards lower fields7 and signs of the second-order
transition appear at 12T.49 However, in some samples like

fully oxidized YBa2Cu3O7 (Ref. 6) and DyBa2Cu3O7 (Refs.
8 and 50) the disorder effects are minor especially at tem-
perature close toTc. In the maximally oxidized YBCO,6 the
second-order transition associated with disorder is not seen
even at the highest available fieldss30 Td. Certain aspects of
the disorder problem were addressed in the framework of GL
theory,51 elasticity theory,52 and a phenomenological ap-
proach based on the Lindermann criterion.13

Throughout the most of the paper, we will use the coher-
ence lengthj=Î"2/ s2mabaTcd as a unit of length,Tc as unit
of temperature, andfdHc2sTcd /dTgTc=F0/2pj2 as a unit of
magnetic field. As we mentioned above, we assume constant
magnetic inductionB=bHc2 which is slightly different from
the external magnetic fieldH =hHc2. After rescaling Eq.(1)
by x→jx, y→jy, z→jz/g, and c2→ s2aTc/b8dc2sg
;Îmc/mabd one obtains the Boltzmann factor

f =
F

T
=

1

v
E d3xF1

2
uDcu2 +

1

2
u]zcu2 − Sah +

b

2
Ducu2

+
1

2
ucu4 +

k2sb − hd2

4
G , s5d

where the dimensionless parameter

v = Î2NGip
2t s6d

characterizes the strength of thermal fluctuations and the res-
caledD; =−iA with A =sby,0 ,0d. The commonly used di-
mensionless Ginzburg number is defined by

NGi ;
1

2
S32pe2k2jTcg

c2h2 D2

. s7d

And

ah =
1 − t − b

2
. s8d

defines the distance from the mean-field transition line.

C. Landau level modes in the quasimomentum basis

Assuming that all the requirements are met, we now di-
vide the fluctuations into the LLL and HLL modes to make
the problem manageable. It is convenient to expand the order
parameter field in a complete basis of noninteracting theory:
the Landau levels. In the hexagonal lattice phase the most
convenient basis is the quasimomentum basis

csx,y,zd =
1

Î2s2pd3/2E
k
o
n=0

`

e−ikzzwk
nsx,ydcnsk,kzd. s9d

Here wk
nsxd is the eigenstate of thenth Landau level

«n=sn+1/2dbf 1
2uDcu2wk

nsxd=sn+1/2dbwk
nsxdg with two-

dimensional quasimomentumk with hexagonal symmetry:

FIG. 1. Comparison of the experimental melting line for fully
oxidized YBa2Cu3O7 Ref. 6 with our theoretical fitting. Applicabil-
ity of the LLL approximation is between two lines, the solid LLL
applicability line and the(liquid) LLL dominance line. The GL
model applicability line is also plotted.
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wk
n =Î Îp

2n−1n!aD
o

l=−`

`

HnSyÎb +
kx

Îb
−

2p

aD

lD
3 expHiFplsl − 1d

2
+

2psÎbx− ky/Îbd
aD

l − xkxG
−

1

2SyÎb +
kx

Îb
−

2p

aD

lD2J , s10d

where aD;Î4p /Î3. The functionwA;wk=0
n=0 describes the

Abrikosov lattice solution.9 Even in the liquid state, which is
more symmetric than the hexagonal lattice, we find it conve-
nient to use this basis.

Naively, if the magnetic field is sufficiently high, the en-
ergy gap of the orderb separating then=0 LLL modes from
the HLL is very large and it is reasonable to keep only the
LLL modes in Eq.(5). The dominance of the LLL modes for
melting was discussed in Ref. 11 and Pierson and Valls in
Ref. 37, and we will discuss it in more detail in Sec. V. In the
rest of this section, we consider the LLL GL model.

D. LLL scaling

Using the LLL conditionuDcu2=bucu2, the free energy is
simplified:

f =
1

v
E d3xF1

2
u]zcu2 − ahucu2 +

1

2
ucu4 +

k2sb − hd2

4
G .

s11d

There is no longer a gradient term in directions perpendicular
to the field and consequently the model possesses the LLL
scaling.53 After additional rescalingx→x/Îb, y→y/Îb, z
→zsbv /4pÎ2d−1/3, andc→ sbv /4pÎ2d1/3c, the dimension-
less free energy takes the form

f =
1

4pÎ2
E d3xF1

2
u]zcu2 + aTucu2 +

1

2
ucu4

+ k2S bv

4pÎ2
D−4/3sb − hd2

4 G . s12d

Minimizing it with respect tob leads to magnetizationb−h
of the order of 1/k2. This means that in the strongly type-II
limit sk@1d the last term is of the order 1/k2 and can be
neglected. The theory has a single dimensionless parameter,
the Thouless scaled temperature defined by

aT = − S bv

25/2p
D−2/3

ah. s13d

The Gibbs free energy density in the newly scaled model is
defined as

gsaTd = −
4pÎ2

V
logE DcDc * exph− ffcgj, s14d

which is also a function ofaT only (4pÎ2 is the scaled “tem-
perature”). The relation to the original Gibbs free energy is

GsT,Hd =
Hc2

2

2pk2S bv

25/2p
D4/3

gsaTd. s15d

III. OVERCOOLED LIQUID AND THE T=0 FIXED POINT
OF THE LLL MODEL

In this section, we will show that in the mean-field ap-
proximation and the exact solvable large-N model, there is a
zero-temperature pseudocritical point for the vortex liquid
and the melting is a first-order phase transition. Moreover,
there exists a superheat solid which ends at spinodal line.

The energy of the hexagonal solid in the mean field(ne-
glecting mesoscopic thermal fluctuations) is9

gM
sol = −

aT
2

2bA
, GM

sol = −
Hc2

2

4pk2bA
ah

2, s16d

wherebA=1.1596 and the subscriptM underlies the similar-
ity to the Madelung energy of atomic solids. The major fluc-
tuations contribution to the solid free energy is due to the
“phonon” modes. In harmonic approximation it is propor-
tional to the fluctuation temperatureT=aT

−3/2:

g1
sol = 2.848uaTu1/2, G1

sol = C1
solT, s17d

C1
sol = 2.848

Hc2B

8k2Tc

Îuahu.

At low fluctuation temperatures one can neglect theT depen-
dence ofah.−s1−bd /2. The solid becomes unstable ataT

=−5.5 according to the self-consistent(Gaussian)
approximation.19

In the (homogeneous) liquid state the order parameter
vanishes and the contributions to the free energy come solely
from fluctuations. The Gaussian(“mean-field”) approxima-
tion to the free energy14 is

g = 4Î« − 4/«, s18d

where the excitation energy« is given by a solution of the
cubic “gap equation”

«3/2 − aT
Î« − 4 = 0. s19d

The liquid state becomes metastable below the melting tem-
perature, but unlike the solid above melting, does not lose
metastability at a certain “spinodal” point.54 It persists all the
way down toT=0. The excitation energy of the supercooled
liquid approaches zero as a power«,16/aT

2. For aT→−`,
the scaled energy, Eq.(18), has an expansion in 1/aT

3~T2 for
small fluctuation temperatureT (the radius of convergency of
the expansion extending toaT=−3). Therefore the liquid de-
spite having energy larger than that of the solid becomes
(pseudo)critical55 at zero temperature. Physical quantities
“around” this point exhibit a power behavior with character-
istic (pseudo)critical exponents. The metastable liquid state
has a distinct Madelung energy

gM
liq = −

aT
2

4
, GM

liq = −
Hc2

2

8pk2ah
2. s20d

As the temperature increases the difference between the solid
and liquid becomes smaller and vanishes at melting. Gener-
ally one expects a linear correction at smallT:
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Gliq = GM
liq + C1

liqT. s21d

Since the expansion of the mean-field free energy is inT2,
C1

liq =0. Comparing the solid free energy, Eqs.(16) and(17),
with Eq. (21), we get the melting temperatureaT

m=−6.3. We
therefore conclude that in this approximation the supercooled
liquid state exists down to its pseudocritical point at zero
temperature. Moreover, the pseudocritical point might gov-
ern the behavior of the liquid phase to temperatures as high
as the melting point and there exists a good low-temperature
expansion(stronger coupling expansion) for the supercooled
liquid.

It is important to confirm the above scenario in an exactly
solvable model. The simplest model of this kind is the mul-
ticomponent GL model. The LLL GL theory can be general-
ized (in several different ways) to an N-component order
parameter fieldca, a=1, . . . ,N:

f =
1

4pÎ2
E d3xF1

2
u]zc

au2 + aTucau2 +
n

2N
ucau2ucbu2

+
1 − n

2N
cacac*bc*bG . s22d

The large-N limit of this theory can be solved in a way
similar to that in theN-component scalar models widely used
in theory of critical phenomena.24 The simplest casen=1 has
been considered in Ref. 32. It was found that the homoge-
neous state is stable at all temperatures. Under assumption
that the conventional Abrikosov lattice takes over at low
temperatures it supported the original conjecture by Brezinet
al.11 that melting of the flux lattice is a first-order phase
transition. However, it was shown(by explicit numerical
evaluation) in Ref. 12 that the low-temperature ground state
in that model is not the Abrikosov lattice state in which just
one component has a nonzero expectation value(similar to
the one component Abrikosov lattice). The “true” ground
state has infinite degeneracy. Different ground states at large
N are markedly different from the hexagonal lattice. The case
n=2, in which the Abrikosov lattice state is a stable ground
state, was first introduced in Ref. 34 and we will refer it as
the Lopatin-Kotliar (LK ) model. Equation(22) is a slight
generalization including both models studied in Refs. 32 and
34. We find that in fact all models withnù2 possess such a
stable lattice state.

A straightforward method to develop the 1/N expansion
with the last component ofcN having the expectation value
~wA;wk=0

n=0, describing the hexagonal lattice[see Eq.(10)],
is to shift this field cNsx,y,zd→cNsx,y,zd+ÎNcwAsx,yd,
wherec is a (real) constant. Then one introduces Hubbard-
Stratonovich (HS) fields r, x (Ref. 34) via free energy
ffca,r ,xg equal to

1

4pÎ2
K1

2
u]zc

au2 + snr + aTducau2 + nc2uwAu2ucau2

+
1 − n

2
fsc2wA

2 + xdc*bc*b + c.c.gL
x

−
N

4pÎ2
K n

2
r2 +

1 − n

2
uxu2L

x

+ Nfnf + ¯. s23d

Here the “nonfluctuating part” is the Abrikosov free energy
density

fnf =
1

4pÎ2
FaTc2 +

bA

2
c4G . s24d

We omitted several cubic terms which do not influence the
leading order in 1/N. Integrating over the fluctuating theca

fields one obtains the effective scaled Gibbs energy density
(the calculation is very similar to that in Ref. 19, where tech-
nical details can be found)

geff

N
= aTc2 +

bA

2
c4 −K n

2
r2 +

1 − n

2
uxu2L

x

+ 2kÎeOskd + ÎeAskdlk . s25d

The spectrum has two branches

eO,Askd = aT + nsbkc
2 + rkd ± us1 − ndsc2gk + xkdu. s26d

To have a stableperturbativeAbrikosov solution which shall
be a good solution for the low temperature, the spectrum
should be positive definite forrk=xk=0 (in the perturbative
approach, rk=xk=0 and c2= uaTu /bA). Thus we demand
−n /2+sn−1dù0 or nù2, as stated above.

The HS fields

rk = krsxduwksxdu2lx, xk = kxsxdwk
*sxdw−k

* sxdlx, s27d

and the constantc are determined by minimizing free energy
gef f.

Now we will study the inhomogeneous(solid) solution.
The minimization with respect torsxd andxsxd leads to

rsxd = kuwksxdu2hfeOskdg−1/2 + feAskdg−1/2jlk

sgns1 − ndxsxd =Kwksxdw−ksxd
c2gk + xk

uc2gk + xku
hfeOskdg−1/2

− f«Askdg−1/2jL
k

, s28d

which, in terms of Fourier harmonics of the hexagonal lat-
tice, takes a form

rl = kbl−khfeOskdg−1/2 + feAskdg−1/2jlk

sgns1 − ndxl =Kgk,l
* c2gk + xk

uc2gk + xku
hfeOskdg−1/2 − feAskdg−1/2jL

k

.

s29d

The lattice functionsbk, gk, andgk,l are defined as

bk = kuwu2wk→wk→
*lx, gk = ksw * d2w−k→wk→lx,

hk = uxku,gk,l = kwk
*w−k

* w−l→wl→lx, s30d

and their properties were discussed in more detail in Ref. 19.
The only consistent solution preserving hexagonal symmetry

is xk=xcgk wherexc is a constant independent ofkW, and the
above equation will be simplified to
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sgns1 − ndxcbA = ksgnsc2 + xcdhkhfeOskdg−1/2 − feAskdg−1/2jlk.

s31d

For the LK model,34 n=2, this leads to xcbA
=khkhfeAskdg−1/2−feOskdg−1/2jlk. Finally the set of the mini-
mization equations(using the properties of the lattice func-
tions bk,gk,gk,l) can be derived:

0 = aT + bAc2 + 2kbkhfeOskdg−1/2 + feAskdg−1/2jlk

+ khkhfeOskdg−1/2 − feAskdg−1/2jlk ,

xcbA = khkhfeAskdg−1/2 − feOskdg−1/2jlk,

rl = kbl−khfeOskdg−1/2 + feAskdg−1/2jlk, s32d

and

eO,Askd = aT + 2bkc
2 + 2rk ± usc2 + xcdgku. s33d

The following formulas can be obtained and used for the
calculation of the free energy:

kr2l = kbl−khfeOskdg−1/2 + feAskdg−1/2jhfeOsldg−1/2

+ feAsldg−1/2jlk,l ,

kuxu2l =
1

bA
fkhkhfeAskdg−1/2 − feOskdg−1/2jlkg2. s34d

Equation(32) can be solved very easily by using mode
expansion and iteration method.19,34 The spectrum can be
written as follows:

eOskd = Eskd + Dhk, eAskd = Eskd − Dhk, s35d

with Eskd expanded in modes:

Eskd = o Enbnskd, s36d

where

bk = o
n=0

`

expf− 2pn/Î3gbnskd,

bnskd ; o
uX u2=4pn/Î3

expfik ·Xg, s37d

whereX lies on the lattice which basic “cell” is a primitive
cell of the vortex lattice and the integern determines the
distance of a lattice point from the origin. For some
integers—for example,n=2,5,6—bn=0 and the first three
nonzerobn are b0,b1,b3. The effective “expansion param-
eter” is expf−2p /Î3g=0.0265 and coefficients decrease ex-

ponentially withn.19 It is quite easy to get a more higher-
mode approximation, but it is not necessary as the first few-
mode approximation has given us a result with very high
precision. As an example, when we retain the first three non-
zerobn expansion approximation, the result can be seen from
Table I.

The solution disappears ataT=−4.6179. At this point the
solid is no longer a metastable state.eAskd is a gapless mode
andeAskd→const3k2 for k →0 in the large-N model. How-
ever, for the perturbative spectrum,eAskd→const3k4 for
k →0.

Using

gef f

N
= aTc2 +

bA

2
c4 −Kr2 −

1

2
uxu2L

x
+ 2kÎeOskd + ÎeAskdlk ,

s38d

the energy corresponding to the solid solution of the minimi-
zation equation(32) is given in Table I. The convergence of
the mode expansion is exponential as seen from Table I.

For liquid, we impose the rotation-invariant ansatz with
c2=0, x=0 and obtain the gap equation

r =
2

ÎaT + 2r
, s39d

which minimizes the energy

gliq = − r2 + 4ÎaT + 2r. s40d

The results for both the liquid and solid free energies are
plotted in Fig. 2. The melting point appears ataT=−5.15
where the liquid and solid energies are equal.

TABLE I. Coefficients of the mode expansion for the solid solution.

aT g E0 E1 E3 D

−4.6179 −3.43164 0.728715 −0.0022412 −0.00001227 0.6167

−5 −4.96636 1.92669 0.0717767 0.00003881 2.0331

−10 −34.3165 6.29543 0.355908 0.00023872 7.2718

−20 −159.826 13.8477 0.842385 0.00058357 16.3036

FIG. 2. Free energy of solid(dotted points) and liquid (cross
points) of the large-N model as function of the fluctuation tempera-
ture 1/uaTu3/2. The solid line ends at a point(dot), indicating the loss
of metastability.
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It is well approximated in the whole region by its low-
temperature expansion in powers ofuaTu−3/2 [which is propor-
tional to the “fluctuation temperature”T assuming that at low
temperaturesah.−s1−bd /2]:

gsol

aT
2 = cM

sol + c1
solT + c2

solT2, . . . ,T ; uaTu−3/2,

cM
sol = −

1

2bA
, c1

sol = 2.84835, c2
sol = − 2.54087. s41d

The first two terms of this large-N model are the same as for
the usual one-component model, while the two-loop correc-
tion is different.

Similarly the liquid energy can be expanded, but this time
in powers of square of the “fluctuation temperature”T:

gliq

aT
2 = cM

liq + c1
liqT + c2

liqT2, . . . ,T = uaTu−3/2,

cM
liq = −

1

4
, c1,3,. . .

liq = 0, c2
liq = 6, c4

liq = − 20. s42d

Here the first term is the “Madelung energy” of liquid at zero
fluctuation temperature. Note that, as in the mean-field ap-
proximation to the one-component theory, there is no term
linear in T (the harmonic approximation). This means that
the specific heat vanishes at zero temperature. Retaining just
the Madelung and the harmonic term for solid and liquid we
estimate the melting temperature in the linear approximation:

Tm =
cM

sol − cM
liq

c1
liq − c1

sol. s43d

The latent heat in the same approximation is

DU = cM
sol − cM

liq . s44d

Numerically this melting temperatureTm=0.064 correspond-
ing to aT=−6.25 and the latent heatDU=0.18 should be
compared with the exact results:Tm=0.086 saT=−5.15d,
DU=0.122945. This shows that the low-temperature expan-
sion of the supercooled liquid free energy gave us quite a
sensible result.

In this section we obtain the first-order melting in the
mean-field LLL GL model and the large-N LLL GL model.
We note that as we show in last section, the GL model or the
LLL GL model may not be valid for every low temperature.
Thus in reality, the zero-temperature pseudocritical fixed
point may not exist, though the LLL GL model does have
this pseudocritical fix point at zero temperature. In the mean-
field solution of the LLL GL model, the large-N LLL GL
model and even the exact solution of the LLL GL model as
we will show in the next section, supercooled liquid persists
as a metastable state all the way to zero temperature and the
superheat vortex solid exists and vanishes at the spinodal
line. Based on the fact that the GL LLL model has a zero-
temperature fixed point, we could use the Borel-Pade method
to calculate the liquid free energy of the LLL GL model at
higher temperature(see the next section for details). There-
fore we can use this method to calculate the liquid free en-

ergy and use it within the validity region of the LLL model.
We emphasize that this means that the matching of the
(Borel-Pade approximant) liquid to the solid energy atT=0
employed in Ref. 14 to improve convergence of the series is
not only ineffective,26 but should lead to an incorrect result.
Liquid and solid energies are different in the limit of zero
fluctuation temperature in this model.

In a recent experiments, Xiaoet al. observed the super-
cooled vortex liquid at very low temperature and the
superheat vortex solid which vanishes at spinodal line in
2H-NbSe2 by Ref. 22. They found that the spinodal line is
aroundaT=−6 which is a bit higher thanaT=−5.5 in the
Gaussian approximation calculation. This small discrepancy
could attribute to the fact that Gaussian approximation is not
very good for too smallaT.

In atomic liquids, an attractive long-range force is gener-
ally present. As a result the supercooled liquid state loses its
metastability at an end point(spinodal).54 Lovett56 a long
time ago argued on general grounds(the stability analysis of
approximate set of relations between density correlators) that
for certain purely repelling interactions the spinodal point
disappears(or, in other words, shifted to zero temperature)
and is recovered when the attractive interaction is intro-
duced. The existence of a metastable overcooled liquid down
to zero temperature for repelling particles therefore might be
quite general.

IV. BOREL-PADE METHOD APPLIED TO THE LLL
MODEL: MELTING LINE, MAGNETIZATION,

AND SPECIFIC HEAT

A. BP method applied to liquid energy

As we have seen above, within the mean-field approxima-
tion of the LLL GL model or the large-N LLL GL model, the
liquid branch exhibits a pseudocritical point55 at T=0. It is
well known that in the theory of critical phenomena one can
obtain an accurate description in the critical region by apply-
ing the Borel-Pade method to the perturbation expansion at
“weak coupling”.25 In technical terms there exists a renor-
malization group flow from the weak-coupling fixed point
towards the strongly couple one.24 We therefore start with the
(renormalized) weak-coupling(high-temperature or nonideal
gas) expansion.

The liquid LLL (scaled) free energy is written as14

gliq = 4«1/2f1 + hsxdg. s45d

The functionh can be expanded as

hsxd = o cnx
n, s46d

where the “small parameter”x= 1
2e−3/2 ande is defined as a

solution of the Gaussian gap equation(68). The coefficients
cn can be found in Ref. 27. The consecutive approximants
are plotted in Fig. 3 as dashed lines(T1–T9, T0 being
equivalent to the Gaussian mean field). One clearly sees that
the series are asymptotic and can be used only ataT.−2.
One can improve on the Gaussian variational method by op-
timizing the variational parametere at each order instead of
fixing it at the first-order calculation. The procedure is rather
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involved (see Ref. 57). However, the optimized perturbation
series is now convergent with radius of convergence about
aT=−5 (see dash-dotted lines 1–9 in Fig. 3). Finally we will
construct the BP series and compare them with the optimized
perturbation series results foraT.−5.

We denote byhksxd the fk,k−1g BP transform25 of hsxd
(other BP approximants violate the correct low-temperature
asymptotics). The BP transform is defined as

hk =E
0

`

h̃ksxtdexps− tddt, s47d

where h̃k is the fk,k−1g Pade transform of
on=1

2k−1cnx
n/n!—namely, a rational functionoi=1

k aix
i /oi=1

k−1bix
i

with the same expansion at smallx as the original function.
For k=4 andk=5, the liquid energy converges to required

precision(0.1%); see Fig. 3. In this figure onlyk=3 and 5 are
shown sincek=4 practically coincides with the latter. In
what follows we will useh5 as the best available approxima-
tion of the liquid branch. The liquid energy completely
agrees with the optimized Gaussian expansion results15 until
its radius of convergence ataT=−5. We therefore conclude
that k=5 is quite good for our purposes.

Since the metastable liquid state exists at all temperatures,
one can consider theT=0 limit. One finds

gliqsaTd
gsolsaTd

→ 0.964 s48d

for aT→−`. For gsolsaTd, the leading term in this limit is
−aT

2 /2bA, which is the Madelung energy of the solid. The
leading term forgliqsaTd is −0.964aT

2 /2bA. Usually the Made-
lung energy for the solid phase of the point particle system is
realized by minimizing the potential energy of the system
(the minimum is often obtained by taking the hexagonal lat-
tice for the repulsive system in 2D). In this vortex system,
we can have the supercooled liquid down toaT→−` sT
→0d. The leading term for the overcooled liquid energy or
the Madelung energy of the liquid is therefore equal to

−0.964aT
2 /2bA, which is slightly larger than the Madelung

energy of the solid. This limit, the “ideal liquid,” however,
cannot be thought as a minimization of a potential energy.

B. Melting line: Comparison with Monte Carlo simulations
and Lindemann criterion

The solid energy calculated perturbatively to two loops
is17,19

gsol = −
aT

2

2bA
+ 2.848uaTu1/2 +

2.4

aT
, s49d

wherebA=1.1596. In Fig. 1 of Ref. 18 we plot the energies
of the solid and liquid. They are very close near melting(see
the difference on inset of this figure). We find that the melt-
ing point (the energy curves of solid and liquid cross at the
melting point) is

aT
m = − 9.5. s50d

The available 3D Monte Carlo simulations28 unfortunately
are not precise enough to provide an accurate melting point
since the LLL scaling is violated and one gets values ofaT

m

=−14.5,−13.2,−10.9 at magnetic fieldss1,2,5dT respec-
tively. We found also that the theoretical magnetization cal-
culated by using parameters given by Ref. 28. is in a very
good agreement with the Monte Carlo simulation result of
Ref. 28. However, the determination of melting temperature
needs higher precision, and the sample size(,100 vortices)
used in Ref. 28 may be not large enough to give an accurate
determination of the melting temperature(due to boundary
effects, LLL scaling will be violated too). The situation in 2D
is better since the sample size is much larger. We performed
similar calculation for the 2D LLL GL liquid free energy,
combined it with the earlier solid energy calculation,17,19

gsol = −
aT

2

2bA
+ 2 log

uaTu
4p2 −

19.9

aT
2 − 2.92, s51d

and find that the melting pointaT
m=−13.2. It is in good agree-

ment with MC simulations.30

Phenomenologically the melting line can be located using
the Lindemann criterion or its more refined version using the
Debye-Waller factor. The more refined criterion is more ap-
propriate since vortices are not point like. It was found nu-
merically for Yukawa gas58 that the Debye-Waller factor
e−2W (ratio of the structure function at the second Bragg peak
at melting to its value atT=0) is about 60% at the melting
point. Using methods of Ref. 59, one obtains for the 3D LLL
GL model at the melting point

e−2W = 0.59. s52d

C. Fitting of the melting line:Values of the Ginzburg numbers
of various superconductors

In this subsection we use the above results to fit experi-
mental melting line of several “fluctuating” superconductors.
As an example in Fig. 2 of Ref. 18 we presented the fitting of
the melting line of fully oxidized YBa2Cu3O7.

6 The melting

FIG. 3. The BP approximation for the free energy. BP3 and BP5
are the free energy results given byh3 andh5. The dashed lineTi is
the original perturbative expansion of orderi in Ref. 14 and the
dot-dashed linei is the optimized expansion of orderi.
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lines of two different samples of the optimally doped
untwined,2,40 near Tc sYBa2Cu3O7−dd, DyBa2Cu3O7,

8 and
sK,BadBiO3,

41 are also fitted and the fittings are all ex-
tremely well. The results of fittings are given in Table II[To
recall our convention,Hc2 is defined asTcdHc2sTd /dTuT=Tc
rather thanHc2sT=0d (often inaccessible)].

Our values for the Ginzburg number of YBCO andDy-
BCO estimated here are generally lower than the ones com-
monly believed in the literature. The often-quoted value for
YBCO is of orderNGi=0.01(see p. 1134 of commonly used
Ref. 10). Direct calculation from Eq.(7) givesNGi=0.003 for
l=1400 A, j=15 A, and g=7 sk=93.3d. Note, however,
that these values are estimated from measurements at very
low temperature. Our values ofl and j are fitted to the
vortex physics experiments nearTc and extrapolating using
the (admittedly questionable) two-liquid model toT=0 to
give l=931 A,j=18.7 A. Our values ofdHc2sTd /dT nearTc

are consistent with recent measurement43 (which is about 2)
and smaller than earlier ones. There is no consensus on val-
ues of k measured using the microwave technique at very
low temperatures; however, they are also generally smaller
than 100(smaller than 70 atT=0 and decreasing with tem-
perature according to Ref. 60 and valued from 50 to 60 ac-
cording to Ref. 61). This explains the difference of order of
magnitude inNGi between the often-used values and our fit-
ting results(smallk will lead a smallNGi asNGi~k4j2Tc

2g2).
We emphasize that the actual small parameter in the theory is
not NGi but ratherv=Î2Gip2 [see Eq.(5)]. Even for Gin-
zburg number as small as 2310−4 this quantity is 0.2. As a
result the effect of thermal fluctuations is important on a
significant portion of the phase diagram.

Recently it was found that thermal fluctuation are quite
significant even in a low-Tc material sK,BadBiO3. This is
despite its lower critical temperature and very small aniso-
tropy (and thereby very small Ginzburg number 5.3310−5).
Since this material is not a “strange metal” ord-wave super-
conductor, itsHc2 is directly accessible and there is no prob-
lem with direct estimate ofNGi. However, v=0.1 for
sK,BadBiO3 is not much smaller than that of YBCO. There
is therefore no surprise[contrary to a statement in Ref. 41
that fluctuation effects are still experimentally observable in
sK,BadBiO3]. In order to be able safely to ignore thermal
fluctuations the fluctuation parameterv should be of order
0.01, in which caseNGi should be smaller than 5310−7.
These are the cases of most low-Tc materials.

D. Magnetization jump at melting

The scaled magnetization(of liquid or solid) is defined by

msaTd = −
d

daT
gsaTd, s53d

while the LLL contribution to the magnetization is

MLLL =
Hc2

4pk2

ah

aT
msaTd. s54d

Using expressions, Eq.(49), for solid and Eqs.(45) and(47)
for the liquid, the magnetization jumpDM at the melting
point aT

m=−9.5 divided by the magnetization at the melting
on the solid side is

DM

Ms
=

Dm

ms
= 0.018. s55d

It is indeed small and is compared on Fig. 2 of Ref. 18(right
inset) with experimental results of fully oxidized YBa2Cu3O7
(Ref. 6) (rhombs) and optimally doped untwined
YBa2Cu3O7−d (Ref. 4) (stars). The agreement is quite good.
If the HLL contribution is significant(see next section), Eq.
(55) is expected to be violated.

E. Specific heat jump at melting

In addition to thed-function-like spike at melting for spe-
cific heat experiments, the experiments also show specific
heat jump. The theory allows us to quantitatively estimate it.

The specific heat contribution due to the vortex matter is
C=−T]2/]T2GsT,Hd. The normalized specific heat is de-
fined as

c =
C

Cmf
, s56d

whereCmf=Hc2
2 T/4pk2bATc

2 is the mean-field specific heat
of the solid. Substituting the definition of the scaled free
energy, Eq.(15), and scaled temperature, Eq.(13), we obtain

c = −
16bA

9t2 S bv

4pÎ2
D4/3

gsaTd +
4bA

3t2
sb − 1 − td

3S bv

4pÎ2
D2/3

g8saTd −
bA

9t2
s2 − 2b + td2g9saTd. s57d

Using our expressions for the energy of the liquid and solid
we obtain the following specific heat jump at melting:

TABLE II. Parameters of highTc superconductors deduced from the melting line.

Material Tc Hc2 Gi k g Reference

YBCO7−d 93.1 167.5 1.9310−4 48.5 7.76 2

YBCO7−d 92.6 190 2310−4 50 8.3 40

YBCO7 88.2 175.9 7.0310−5 50 4 6

DyBCO6.7 90.1 163 3.2310−5 33.77 5.3 8

sK,BadBiO3 31 26 5.3310−5 107 1 41
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Dc = 0.0075S2 − 2b + t

t
D2

− 0.20NGi
1/3sb − 1 − tdS b

t2
D2/3

.

s58d

Using the parameters of YBCO7−d obtained by fitting the
melting line, Table II, we compare Eq.(58) with the experi-
mental result of Ref.2 in Fig. 2 of Ref. 18(right inset). Note
that error bars are very large and also that disorder might be
important,51 so that the agreement of the theoretical and ex-
perimental result of specific jump is not good as that of the
magnetization jump.

V. HIGHER-LANDAU-LEVEL CONTRIBUTIONS:
EFFECTIVE LLL MODEL

A. Where is the LLL approximation really valid?

Contributions of HLL are important phenomenologically
in two regions of the phase diagram. The first is at a tem-
perature above the mean-field critical temperatureTcsHd in-
side the liquid phase. The second is far below the melting
point deep inside the solid phase.

Naively in the solid phase, when “distance from the
mean-field transition line” is smaller than the “inter-Landau-
level gap,” 1−t−b,2b, one expects that higher-Landau-
level harmonics can be neglected. A more careful examina-
tion shows that a weaker condition 1−t−b,12b should be
used for a validity test of the LLL approximation44 to calcu-
late the mean-field LLL contributions in a vortex solid. An
additional factor of 6 comes from the hexagonal symmetry of
the lattice since contributions of higher Landau levels, the
first to the fifth HLL, do not appear in the perturbative cal-
culation of the mean-field solution for a vortex solid. In the
liquid state the question has been studied by Lawrie62 using
the Hartree-Fock(Gaussian) approximation. The result was
that the region of validity is limited, but quite wide; see Fig.
1.

In this section we will incorporate the leading HLL cor-
rection using the Gaussian approximation and then compare
the theoretical results with experimental magnetization
curves.

B. Gaussian approximation in the liquid phase

The free energy density beyond the LLL approximation is

G = −
vHc2

2

2pk2Nvol
log E DcDc̄ expS−

1

v
E d3x

1

2
u]zcu2

− ahucu2 +
1

2
ucu4D , s59d

where Nvol denotes volume. In the framework of the Gauss-
ian (Hartree-Fock) approximation the free energy is divided
into an optimized quadratic partK and a “small” partV.
ThenK is chosen in such a way that the Gaussian energy is
minimal.62 The Gaussian energy is a rigorous lower bound
on energy. Due to the translational symmetry of the vortex
liquid, an arbitrary U(1)-symmetric quadratic partK has only
one variational parameter«:

K =
1

v
E d3xS1

2
suDcu2 − bucu2d +

1

2
u]zcu2 + «ucu2D .

s60d

The small perturbation is therefore

V =
1

v
E d3xFs− ah − «ducu2 +

1

2
ucu4G . s61d

The Gaussian energy consists of two parts. The first is the
“Tr log” term

−
vHc2

2

2pk2vol
logFE Dc exps− KdG =

vHc2
2

2pk2

b
Î2p

o
n=0

`

Înb+ «.

s62d

The second is proportional to the expectation value ofv in a
solvable model defined byK:

vHc2
2

2pk2kVl =
vHc2

2

2pk2Fs− ah − «d
b

2Î2p
o
n=0

`
1

Înb+ «

+ vS b

2Î2p
o
n=0

`
1

Înb+ «
D2G . s63d

Both are divergent in the ultraviolet in a sense that at largeN
the sums diverge. Introducing a UV momentum cutoff which
effectively limits the number of Landau levels toNf =L /b
−1, the Tr log term diverges as

1
Î2p

bo
n=0

`

Înb+ « =
1

Î2p
F2

3
L3/2 + S« −

b

2
DL1/2G + us«,bd,

s64d

with the last term, the functionu, being finite(see Ref. 63 for
details). The “bubble” integral diverges logarithmically:

b

2Î2p
o
n=0

`
1

Înb+ «
=

1
Î2p

L1/2 + u8, s65d

where u8;s] /]«dus« ,bd. Substituting Eq. (64) into the
Gaussian energy one obtains(in units of vHc2

2 /2pk2)

gGauss=
1

Î2p

2

3
L3/2 + vS 1

Î2p
L1/2D2

+ S− ah −
b

2
D 1
Î2p

L1/2

− ahu8 + 2v
1

Î2p
L1/2u8 − «u8 + vsu8d2 + u. s66d

The first term does not depend on the parameters of the sys-
tem and can be ignored(the renormalization of the reference
energy density), while the second isv dependent and indi-
cates thatTc present insideah is renormalized. Definingah
=ah

r +2vs1/Î2pdL1/2, the above energy becomes

gGauss= − vS 1
Î2p

L1/2D2

+ S− ah
r −

b

2
D 1
Î2p

L1/2

− ah
r u8 − «u8 + vsu8d2 + u. s67d

Thus the temperatureTc and vacuum energy will be renor-
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malized. The first two terms in the free energy are divergent
and linear in the fluctuation temperaturev; they will not
contribute to any physical quantities like magnetization and
specific heat. Minimizing the energy, Eq.(67), we get the
gap equation

« = − ah
r + 2vu8. s68d

Superscriptr will be dropped later on. The functionus« ,bd
can be written in the form

us«,bd =
1

Î2p
b3/2vS«

b
D , s69d

where

vsxd = o
n=0

` FÎn + x −
2

3
Sx + n +

1

2
D3/2

+
2

3
Sx + n −

1

2
D3/2G

−
2

3
Sx −

1

2
D3/2

. s70d

For the LLL model in the Gaussian approximation,vsxd
=Îx. In the “Prange” limit64 NGi→0, the free energy is

vHc2
2

2pk2

1
Î2p

b3/2vS−
ah

b
D . s71d

C. Integration of the HLL modes and the effective LLL
model

A method for treating HLL modes is integrating them and
obtaining an effective LLL model. The(effective) LLL
model is applicable in a surprisingly wide range of fields and
temperatures determined by the condition that the relevant
excitation energy« be much smaller than the gap between
Landau levelsb. Within the mean-field approximation in the
liquid « is a solution of the gap equation(68). For the LLL
dominance region, we take a conservative condition« /«c
=1/20. One observes that, apart from the fields smaller than
HLLL<0.1 T for YBCO, the experimentally observed melt-
ing line and its neighborhood are well within the range of
applicability of this approximation as shown in Fig. 1.

The effective LLL energy(we will use unit of energy
densityHc2

2 /2pk2 in this subsection) functional is defined by

gef ffc0g = −
v

Nvol
logE p

i=1

`

DciDci
* exph− ffc0,c0

* ,ci,ci
* ,gj,

s72d

wherec0 is the LLL N=0 component field and the rest are
denoted byci. Expanding the functional up to the fourth
order inc0 and to the second order in]z one obtains

gef ffc0g = Dg +
Dt

2
uc0u2 + vfLLLfc0g,

fLLLfc0g =
1

v
F1

2
u]zc0u2 − ahuc0u2 +

1

2
uc0u4G . s73d

The direct(no c0 dependence) renormalization of energy is

Dg = −
v

Nvol
logE p

i=1

`

DciDci
* exph− fHLLfcigj, s74d

where the HLL energy is

fHLL =
1

v
F1

2
u]zcHLLu2 − ahucHLLu2 +

1

2
ucHLLu4G , s75d

wherecHLL=oi=1
` ci. To calculateDg, we divide thefHLL into

KHLL =
1

v
S1

2
suDcu2 − bucu2d +

1

2
u]zcu2 + «ucu2D s76d

plus fHLL−KHLL. Taking« as the solution of the gap equation
(68), one finds thatDg takes the form

Dg = gGauss− gLLL + 2kuc0u2lskuc0u2l − kucu2ld,

gLLL = −
v

Nvol logE Dc0Dc0
* exph− fLLLfc0gj. s77d

Here gGauss is the effective free energy of the full GL ob-
tained in the first subsection of the current section, Eq.(67),
andkucu2l is likewise the expectation value ofucu2 in the full
GL. The quantitygLLL is the effective free energy calculated
with variational parameter« and kuc0u2l is the expectation
value in the LLL GL. The consistency(or matching) require-
ment is

gef f = −
v

Nvol
logE Dc0Dc̄0 expH−

1

v
gef ffc0gJ . s78d

This condition determines the value ofDt:

Dt = 4skucu2l − kuc0u2ld = 4vfu8s«,bdg − 4kuc0u2l

= 4v
1

Î2p
b1/2Fv8S«

b
D −

1

2
Îb

«
G . s79d

For Y BCO, the correctionDt is small. The effective LLL GL
approach achieves a simplification by starting from the LLL
effective model withTc and other parameters renormalized to
account for the contribution of the HLL modes. This is what
we assumed in Secs. III and IV. In particular, this approach is
very precise if we calculate the properties along the melting
line. For example, the magnetization jump is mostly due to
the fluctuation of the LLL modes, and the background effec-
tive energyDg will not contribute anything since it is the
same on both sides of the melting line.

D. HLL contribution to the magnetization

Generally whenk is quite large and magnetization can be
approximated by

M = −
]

]H
GsT,Hd. s80d

The HLL correction will be calculated as follows. We nu-
merically solve the gap equation(68) from which GsT,Hd
can be obtained. Then Eq.(80) is used to calculate the mag-
netization of the full GL model in the Gaussian approxima-
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tion. The HLL correction is thus the magnetization of the full
GL model in the Gaussian approximation minus the magne-
tization of the LLL contribution in the Gaussian approxima-
tion. We compare the experiments using the following ap-
proximation. While the corrections due to HLL are
calculated in the Gaussian approximation, the LLL contribu-
tion will be calculated nonperturbatively. The comparison of
the theoretical predictions with the experiments for fully oxi-
dized YBa2Cu3O7 (Ref. 6), is shown on Fig. 3 of Ref. 18. We
used the experimental asymmetry valueg=4 and values of
Tc Hc2 and NGi from the fitting of the melting curve(see
Table II). The agreement is fair at intermediate magnetic
fields, while at low magnetic fields is not good. It is expected
that agreement is improved at higher fields. It is not clear
whether magnetization(in contrast to magnetization jump at
melting) will be strongly influenced by disorder, so at this
time it is not possible to consider optimal doped YBCO mag-
netization curved more quantitatively.

We comment that the theory of the full GL model(higher
Landau levels included) beyond the Gaussian approximation
is required at low magnetic fields. Indeed experimentally it is
often claimed that one can establish the LLL scaling for
fields above 3 T for YBCO(see, for example, Ref. 37) as, at
low magnetic fields, the HLL contribution will be significant.

VI. SUMMARY

The problem of calculating the fluctuations effects in the
framework of the Ginzburg-Landau approach to vortex mat-
ter in type-II superconductors is studied in the LLL approxi-
mation and basically solved in the LLL limit. The results
allow a quantitative description of the melting transition. We
provided evidence that in the LLL GL model metastable ho-
mogeneous state(the supercooled liquid state) exists down to

zero fluctuation temperature and the superheat vortex solid
which vanishes at the spinodal line by solving the large-N
LLL Ginzburg-Landau model. The recent experiments in
2H-NbSe2 by Xiao et al.22 had been carried out to test the
theoretical results based on the LLL GL model and it was
found that there indeed exist the supercooled vortex liquid at
very low temperature and the superheat vortex solid which
vanishes at the spinodal line. Thus the supercooled liquid
state can be approached using the methods of the physics of
critical phenomena(the Borel-Pade resummation technique).
The applicability of the effective lowest-Landau-level model
was subsequently discussed and corrections due to higher
levels are calculated.

The theory is then applied to quantitatively describe a
great variety of experiments(confined to a region not far
from Tc) including melting curves of YBCO, DyBCO, and
sK,BadBiO3, magnetization curves, and discontinuities of
various quantities at melting, and it was found that the the-
oretical results can fit the experimental data quantitatively
very well.
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