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A metastable homogeneous state exists down to zero temperature in systems of repelling vortices. A zero-
“fluctuation-temperature” liquid state therefore serves gssaudg “fixed point” controlling the properties of
vortex liquid below and even around melting point. Based on this picture for the vortex phase we apply the
Borel-Pade resummation technique to develop a quantitative theory of the vortex liquid for the lowest-Landau-
level Ginzburg-Landau model in type-ll superconductors. While on the solid phase, there exists a superheat
solid phase which ends at the spinodal line. The picture for the vortex phase is supported by an exactly solvable
largeN Ginzburg-Landau model in a magnetic field and has been recently confirmed by the experiments. The
applicability of the lowest-Landau-level model is discussed and corrections due to higher levels are calculated.
The melting line is located based on the quantitative theory for the description of the vortex solid and the
vortex liquid. Magnetization, entropy, and specific heat jumps along the melting line are calculated. The
theoretical results explain quantitatively very well the experimental data on theThighprates YBgCu;0O7,
DyBCO, low-T. material(K, Ba) BiO3, and also Monte Carlo simulation results.

DOI: 10.1103/PhysRevB.70.144521 PACS nuniber74.25-q, 74.40+k, 74.25.Ha, 74.25.Dw

I. INTRODUCTION order!? Another often-used approach applicable also beyond
the range of validity of the GL model is to use an elasticity
Abrikosov flux lines(vorticeg created by magnetic field theory description of the vortex lattice and Lindermann cri-
in type-Il superconductors strongly interact with each otherterion to determine the location of melting likHowever,
creating highly correlated configurations like the vortex lat-all those approaches do not provide a quantitative theory of
tice. In highT, cuprates thermal fluctuations at relatively melting since these are one-phase theories and in order, for
large temperatures are strong enough to melt the lattice. Seexample, to calculate discontinuities at first-order transitions
eral remarkable experiments demonstrated that the vortexn accurate description of both phases is necessary.
lattice melting in highT. superconductors is first order with  Two perturbative approaches were developed and greatly
magnetization jumpsand spikes in specific hedtMagneti-  improved recently to describe both the solid and liquid
zation and entropy jumps were measured using local Halphases in the LLL GL model. The perturbative approach on
probes! superconducting quantum interference devite, the liquid side was pioneered long ago by Ruggeri and
(SQUID), torque magnetomet®f and integrating the spe- Thouless* They developed a perturbative expansion around
cific heat spike:’ It was found that in addition to the spike a homogeneougiquid) state in which all the “bubble” dia-
there is also a jump in specific heat in Y8asO; (YBCO)  grams are resumed. Unfortunately they found that the series
which was measured as wéil:® These precise measure- are asymptotic, and although a first few terms provide accu-
ments pose the question of an accurate quantitative theoretiate results at very high temperatures, the series becomes
cal description of thermal fluctuations in vortex matter. inapplicable forat less than -2, which is quite far above the
The melting line in hight, cuprates has been studied melting line (believed to be located aroura}~-10). We
mainly not very far fronil.. In this part of the phase diagram recently obtained an optimized Gaussian sétieghich is
the Ginzburg-LandauGL) approach is generally appropriate convergent rather than asymptotic with radius of conver-
to describe thermal fluctuations né&t®°The GL model is, gence ofar=-5, but it is still unfortunately above the melt-
however, highly nontrivial even within the lowest-Landau- ing point.
level (LLL) approximation valid at relatively high fields. For the vortex solid in the LLL GL mode, Eilenberg®r
This simplified model has only one parameter: the dimenand Maki and Takayané calculated the fluctuations spec-
sionless LLL scaled temperatuig ~[T-Tn(H)]/(TH)?®  trum around Abrikosov’s mean-field solution. They noticed
[defined precisely in Eq13) below]. Over the last 20 years that the vortex lattice phonon modes are softer than that of
a great variety of theoretical methods were applied to studyhe acoustic phonons in atomic crystals and this leads to
this model. Brezin, Nelson, and Thiavitfeapplied the renor- infrared(IR) divergences in certain quantities. This was ini-
malization grougRG) method to the one-loop-level descrip- tially interpreted as the “destruction of the vortex solid by
tion of the vortex liquid. No nontrivial fixed points of the thermal fluctuations” and the perturbation theory was aban-
(functiona) RG equations were found and they concludeddoned. However, the divergences look suspiciously similar to
therefore that the transition from liquid to solid is first “spurious” IR divergences in the critical phenomenon theory
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and recently it was shown that all these IR divergences carliquid) using methods of theory of critical phenomena>®
cel in the perturbative series for physical quantities, in par-The generally effective mathematical tool to approach a non-
ticular the effective free enerdy. The perturbative series trivial fixed point (in our case at zero temperaturis the
therefore is reliable and was extended to two loops for théBorel-PadeBP) transformatiort® Before embarking on this
free energy. The free energy calculated to two loops on th@rogram in the following sections, we address several subtle-
solid side is now precise enough even around the meltinges which prevented the use and acceptance of the BP
point. method in the past. Very early on Ruggeri and Thoufess
Therefore the missing part is a theory in the regiontried to use BRunfortunately a “constrained” one, so that it
-10<a;<-5 for the liquid phase. Moreover, this theory interpolates smoothly with the solid, an assumption we be-
should be very precise since free energies of solid and liquitleve is incorrectto calculate the specific heat without much
happen to differ only by a few percent around melting.success. It was shown by Wilkin and Moét¢hat the con-
Closely related to melting is the problem of the nature of thestrained BP does not converge, while the results for uncon-
metastable phases of the theory. While it is clear that thetrained BP were inconclusive. They attributed this to the
overheated solid becomes unstable at some finite tempertmited order of expansion known at that time. The BP liquid
ture, it is not generally clear whether the overcooled liquid intheory combining with the recently developed LLL theory of
the LLL GL model becomes unstable at some finite temperasolids could be used to calculate the melting line and the
ture (like water and other molecular liquids, which, however, magnetization and the specific heat jumps across theéline.
have a crucial attractive component of the intermoleculaiThe attempts to use BP for the calculation of the melting line
force) or exists all the way down t@=0 as a metastable using a longer series also ran into problems. Hikami, Fujita,
state. The Gaussia(Hartree-Fock variational calculation, and Larkirt’ tried to find the melting point by comparing the
although perhaps of a limited precision, is usually a veryBP liquid free energy with the one-loop solid free energy and
good guide as far as the qualitative features of the phasebtainedar=-7. However, their one-loop solid energy was
diagram are concerned. Such a calculation in the liquid wagcorrect and, in any case, it was not precise endaiaghwill
performed long agd} while a significantly more compli- become clear in the following discussions that the two-loop
cated one sampling also inhomogeneous statedex lat-  contribution cannot be neglected
tice) was obtained recenth?1® The Gaussian results are as  The LLL GL model has been studied by various methods.
follows. The free energy of the solid state is lower than thatFor example, it was also studied numerically in both the
of the liquid for all temperatures lower than melting tempera-Lawrence-Doniach mode[a good approximation of the
tureaf. The solid state is therefore the stable one bedgw  three-dimensionaBBD) GL for large number of layetgRefs.
becomes metastable at somewhat higher temperatures, and®8 and 29 and in 2D(Ref. 30 and by a variety of nonper-
destabilized abiy=-5.5. The liquid state becomes metastableturbative analytical methods, among them the density
below the melting temperature, but unlike the solid, does nofunctional®* 1/N,3?-34 dislocation theory of melting> and
lose metastability all the way down @'=-~ (T=0). The others3 However, most of those theories in the literature are
excitation energy of the supercooled liquid approaches zerqualitative and have not given us a quantitative description
asa powee~1/a$. This general picture is supported in Sec. (locations of melting lines, magnetization jumps, entropy
[l by an exactly solvable larghl Ginzburg-Landau model of jumps, eto). for the melting of vortex lattice. The theory we
vortex matter in type-Il superconductors. will describe in this article can face the experimental test and
In the meantime similar qualitative results were obtainedwve found that the predication and results from the theory is
in different area of physics. It was shown by variety of ana-in good quantitative agreement with experiments.
lytical and numerical methods that liquidag phase of the As we show in this paper, the BP liquid free energy com-
classical one component Coulomb plasma exists as a methined with the correct two-loop solid energy computed re-
stable state down to very low temperature, possib0.2°  cently gives scaled melting temperat@g=-9.5 and in ad-
The quantum one-component plasma-electron gas alsdition predicts other characteristics of the model. The
shows similar feature®. It seems plausible to speculate that magnetization of liquid is larger than that of solid by ap-
the same phenomenon would happen in any system of poinproximate 1.8% irrespective of the melting temperaiihe
like or linelike objects interacting via purely repulsive forces. specific heat jump is about 6% and decreases slowly with
In fact the vortices in the London approximation are a sort otemperature in YBCQ A brief account of these results was
repelling lines with the force even more long range thanpublished®
Coulombic. This was an additional strong motivation to con- In addition to the theory of melting, we considered over-
sider the above scenario in vortex matter. In addition to theooled liquid and calculated magnetization and specific heat
above-mentioned theoretical evidence for the validity of thecurves. Since the metastable overcooled liquid state exists all
scenario, very recently, the supercooled vortex liquid at verthe way down to zero temperature in the model, we can
low temperature and the superheat vortex solid which vandefine the liquid Madelung energy. Looking at the melting
ishes at spinodal line have been observed in a beautiful exprocess from the low-temperature side for both the liquid and
periment on 2H-NbSe by Xiao et al?? Previous solid we find that the Madelung energy of the liquid is larger
experiment®® showed that the observed effect is not due tothan that of the solid approximately by the latent heat of
surface pinning or geometrical barriers. melting. Our magnetization curves agree quite well with
Assuming the absence of singularities on the liquidMonte Carlo simulations of the LLL G{Ref. 28 and almost
branch allows us develop an essentially precise theory of thperfectly for the specific heat in 2D by Kato and Nagaosa in
LLL GL model for vortex liquid(even including supercooled Ref. 30.
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We study also in this paper several “phenomenological’derivative is defined byp=V-27iA/®,, dy=hc/e* (e*
issues, some matter of significant disagreement. First is the2e). The microscopic thermal fluctuations are integrated
range of applicability of the LLL model. We find that in out and, as a consequence, coefficientb’, andm depend
order to describe the experimental reversible magnetizatioon temperature. Mesoscopic thermal fluctuations of the order
of YBCO at lower fields, higher-Landau-leve(slLL) cor-  parameter are described by the partition function
rections should be incorporated. We therefore clarify in Sec.

V the role of the HLL modes. Experimentally it was claimed 7= J DyDy* DA exp{— Flgy* ,A]} ?)

that one can establish the LLL scaling for fields abote’3 T '

A glance at the data, however, shows that in normal stat
(aboveT,) the LLL scaling for magnetization curves is gen-
erally very bad. Most of the HLL effects can be taken into
account by just renormalizing the parameters of the LLL
model. Therefore one should use the “effective LLL" in
which HLL were “integrated out.” To clarify this often- The use of the above GL free energy hinges upon several
salient feature we explicitly perform this integration within a physical assumptions. They are listed below.

self-consistent approach in Sec. V. It was noted by (i) Continuum 3D modelWe use the anisotropic GL
Koshelev® and others that, to calculate magnetization, onemodel despite the well established layered structure of the
has to carefully account for renormalization of the free en-high T, cuprates for which models of the Lawrence-Doniach
ergy since it is field dependent. Then we calculated the leadype are more appropriate. Effects of layered structure are
ing correction to the effective LLL and compare it with ex- dominant in BSCCO or Tl compound&@nisotropy very
periments. It is found that although the LLL contribution to large: y= ym./m,,> 1000 and noticeable for cuprates with
magnetization is much larger that the experimentally ob-anisotropy of ordery=50 like LaBaCuO, strongly under-
served one abov&,, it is nearly canceled by the HLL con- doped YBCO(see, however, Ref. 39or Hg1223. The re-
tributions. This explains the breaking of the LLL scaling in quirement that the 3D GL model can be effectively used
the normal state. therefore limits us to optimally doped YBGQ; (or slightly

The paper is organized as follows. The model is definedverdoped or underdopgtbr which the anisotropy param-
and its applicability range discussed in Sec. II. In Sec. Ill, theeter is not very larggaroundy=4-8(Ref. 40], DyBCO and
(including supercooledliquid and (including superheat¢d possibly Hg1221 which has a slightly larger anisotropy.
solid in the LLL GL will be discussed in the mean-field However there is no such problem in recently discovered
approximation of the LLL GL model and in the lardetLL isotropic “fluctuating” superconductgK, Ba) BiO5.4*

GL model. In Sec. IV, the LLL model is solved and the (i) Range of validity of the mesoscopic (GL) approach
melting theory of vortex lattice is presented and compared t@he GL approach generally is an effective mesoscopic ap-
experiments. In Sec. V, the HLL corrections are discussegroach. It is applicable when one can neglect higher-order
and the magnetization curves are compared with experiterms in the functional of EqJ), typically generated when
ments. one “integrates out” microscopic degrees of freedom. The

In particular phenomenological issues are addressed ileading higher-dimensional terms we neglgets “irrel-
Secs. Il B(assumptions IV C (melting line, Ginzburg pa- evant) are |¢{® and higher (four) derivative terms like
rameter fit for various materiglslV D (magnetization, en- |D?#/?>. This naively leads to a condition that 1—b is
tropy jumps, IV E (specific heat jumpsand V D(reversible  smaller than 1. Here and in what follows, one defines
magnetization curJe so readers not interested in theoretical

t=T/T, b=B/H,~H/H,=h. 3

details can go directly to these sections.
The applicability line 1t-b<0.2 for YBCO is plotted in
Fig. 1. We also will consider a model invariant under rota-
Il. GL MODEL AND ITS BASIC ASSUMPTIONS tions in theab plane. Noninvariant models sometimes can be
A. GL model rescaled tom,= My =My, 1%, For several physical questions
) ] _ those assumptions are not valid because neglected “irrel-
On the mesoscopic scale, 3D supercond_uctmg_ materialgyant’ terms might become “dangerous.” For example the
with not very strong asymmetry along tizeaxis which we  gyestion of the structural phase transition into the square
call as YBCO-type superconductors, are effectively deqaiice is clearly of this typé? It is known that even assum-

%ur aim is to quantitatively describe the effects of thermal
fluctuations of highf, cuprates of the YBCO type.

B. Assumptions

scribed by the Ginzburg-Landau free energy functional ing m,/m,=1 in low-temperature vortex lattices in YBCO,
52 52 rotational symmetry is broken down to the fourfold symme-
Flo,p* Al = f dx— D> + —| 3,41 - a(T)| > try by the four derivative terms. However, there is no signifi-
2Mgp, 2me cant correction to other physical quantities—for example, the
b’ . (B- H)? magnetization from those higher-dimensional terms.
+ E|¢| Lr— (1) (iii ) Expansion of parameters around.. TGenerally the

parameters of the GL model of E(.) are complicated func-
involving the order parameter fiel¢t and magnetic field.  tions of temperature which are determined by the details of
The external constant magnetic field is described by the vedhe microscopic theory. We expand the coefficief) near
tor potential in Landau gaug&,=(Hy,0,0). The covariant T
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fully oxidized YBaCu;0O, (Ref. 6) and DyBaCu;0O; (Refs.
8 and 50 the disorder effects are minor especially at tem-
perature close td@.. In the maximally oxidized YBCG,the
second-order transition associated with disorder is not seen
even at the highest available fiel@®) T). Certain aspects of
the disorder problem were addressed in the framework of GL
theory®® elasticity theory? and a phenomenological ap-
proach based on the Lindermann criterién.

Throughout the most of the paper, we will use the coher-
ence lengtht= %2/ (2my,aT,) as a unit of lengthT, as unit
of temperature, anfdH,(T.)/dT]T,=®y/27& as a unit of
magnetic field. As we mentioned above, we assume constant
magnetic inductiorB=bH., which is slightly different from

FIG. 1. Comparison of the experimental melting line for fully the external magnetic field =hH,. After rescaling Eq(1)
oxidized YBaCu0, Ref. 6 with our theoretical fitting. Applicabil- by X—&, y—&, z—é&ly, and ¢?— (2aT /b))y (y
ity of the LLL approximation is between two lines, the solid LLL = ym./m,,) one obtains the Boltzmann factor
applicability line and the(liquid) LLL dominance line. The GL

model applicability line is also plotted. F 1 3 1 5 1 5 ( b) 9
2 f—;—;fdx SIDUI*+ Sl = | an+ = |1yl
=T, 1-t)—-a'(1-t)°+---]. 4
a( ) c[a( ) (1( ) ] ( ) 1 . KZ(b_h)Z
# ol 2 ©)

The second and higher terms in the expansion are omitted
and therefore, when temperature deviates significantly from
T., one cannot expect the model to have a good precisiorW
We note that recently measurétl,(T) is linear inT in a I
wide region neaf, in both YBCO and(K, Ba)BiO4.4143 ® = \2Ng7t (6)

(iv) Constant nonfluctuating magnetic fieldlor strongly
type-Il superconductors like the high-cuprates not very far  characterizes the strength of thermal fluctuations and the res-
from He,(T) (this easily covers the range of interest in this caledD=V-iA with A=(by,0,0. The commonly used di-
paper; for the detailed discussion of the range of applicabiliynensionless Ginzburg number is defined by
beyond it see Ref. 44the magnetic field is homogeneous to

here the dimensionless parameter

a high degree due to superposition from many vortices. In- 1 327 KPET y \?

homogeneity is of order &”~ 1073, Since the main subject Gi~= 5 22 (7)
of this study is thermal fluctuation effects of the order pa-

rameter field, one might ask whether thermal fluctuations ofy 4

the electromagnetic field should be also taken into account.

Halperin, Lubensky, and Ma considered this question long 1-t-b

time ago?® The conclusion was that they are completely neg- an= (8)
ligible for very large. Upon discovery of the higfi; cu- 2

prates, the issue was reconsidéfeahd the same result was
obtained to a very high precision. Therefore here magneti€efines the distance from the mean-field transition line.
field is treated both as constant and nonfluctuatiBgH)
and the last term in Eq1) can be omittedto precision of
order 1/k?). However, when we calculate the magnetization
M=(B—H)/4, which is of order 1k, a higher-order cor- Assuming that all the requirements are met, we now di-
rection must be considered. vide the fluctuations into the LLL and HLL modes to make
Recently it was claimed that the “vortex loop” fluctua- the problem manageable. It is convenient to expand the order
tions are important and even might lead to additional phasg@arameter field in a complete basis of noninteracting theory:
transition at field of order GH,.*” This is of order 100 G the Landau levels. In the hexagonal lattice phase the most
for the materials of interest listed in Table Il and therefore isconvenient basis is the quasimomentum basis
irrelevant for physics discussed in this paper. Note that Gi in

C. Landau level modes in the quasimomentum basis

the papers discussing the vortex loops phy$its assumed 1 <
to be much larger. We discuss this issue in Sec. IV C. Py, = = > > ek 2l (x,y) ¥k k).  (9)
(v) Disorder. Point like disorder is always present in Y V2(2m)*Jicn=o

BCO. For example magnetization becomes irreversible. The

melting line of the optimally doped or underdoped samplediere ¢i(x) is the eigenstate of theith Landau level
bends towards lower fieldsand signs of the second-order ,=(n+1/2)b[|Dy|2el(x)=(n+1/2bgf(x)] with two-
transition appear at I2*° However, in some samples like dimensional quasimomentukiwith hexagonal symmetry:
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\““’7—7 * — ok 2 I1l. OVERCOOLED LIQUID AND THE T=0 FIXED POINT
n_ : Hoyl yvb+ =% — =7 OF THE LLL MODEL
i 2" 'nlay " Vb ay
) — — In this section, we will show that in the mean-field ap-
| (I =1)  2m(Vbx-k,/Vb) proximation and the exact solvable laryemodel, there is a

X exp) i + I = xk, e . 2

2 ay zero-temperature pseudocritical point for the vortex liquid
) and the melting is a first-order phase transition. Moreover,

—Zwb+ ke 2m (10) there exists a superheat solid which ends at spinodal line.

N \T a, ' The energy of the hexagonal solid in the mean figld-

R ~ glecting mesoscopic thermal fluctuatipns®
where a, = \47/3. The functiongy= ¢j-9 describes the X )
Abrikosov lattice solutiof.Even in the liquid state, which is sol__ 91 G- _ H, 5 (16)
more symmetric than the hexagonal lattice, we find it conve- v = 28, M 477K23Aah'

nient to use this basis.

Naively, if the magnetic field is sufficiently high, the en- whereB,=1.1596 and the subscrim underlies the similar-
ergy gap of the ordep Separating th@=0 LLL modes from Ity to the Madelung energy of atomic solids. The major fluc-
the HLL is very |arge and it is reasonable to keep On|y thetuations contribution to the solid free energy is due to the
LLL modes in Eq.(5). The dominance of the LLL modes for “phonon” modes. In harmonic approximation it is propor-
melting was discussed in Ref. 11 and Pierson and Valls iional to the fluctuation temperatufle=a;>

Ref. 37, and we will discuss it in more detail in Sec. V. In the

sol _ 1/2 sol _ ~so
rest of this section, we consider the LLL GL model. 0i"=2.848a,"%  Gi"=CiT, (17)
D. LLL scaling H.B
sol _ c2 /_
Using the LLL condition|D¢{?>=b|#|2, the free energy is Cr= 2'8488K2Tcw|ah|'

simplified:
) ) At low fluctuation temperatures one can neglectTraepen-
«(b-h)* dence ofa,=-(1-b)/2. The solid becomes unstable st

4 ' =-5.5 according to the self-consisten{Gaussian

(11)  approximation®
In the (homogeneouysliquid state the order parameter

There is no longer a gradient term in directions perpendiculaganishes and the contributions to the free energy come solely
to the field and consequently the model possesses the LL{zom fluctuations. The Gaussiatimean-field’) approxima-
scaling>? After additional rescalingc— x/\b, y—y/\b, z  tion to the free enerdy is
— z2(bw/4m/2)"13, and y— (bw/4m2) 3y, the dimension-

1 1 1
=2 [ s e+ Yt
w 2 2

less free energy takes the form g= 4\5'; -4, (18
1 1 1 where the excitation energy is given by a solution of the
— 3| Z1a.002 2, L4
f= 42 d X[ 2"72‘”| *alyl®+ 2|¢| cubic “gap equation”
b -413(p — )2 32_g g-4=0.
. Kz( wﬁ) (b-h?| 1 %2 -anle-4=0 (19
47\2 4

The liquid state becomes metastable below the melting tem-
Minimizing it with respect tob leads to magnetizatiob—h perature, but unlike the solid above melting, does not lose
of the order of 1k2. This means that in the strongly type-Il Metastability at a certain “spinodal” poirftit persists all the
limit (k> 1) the last term is of the order x# and can be Wway down toT=0. The excitation energy of the supercooled
neglected. The theory has a single dimensionless parametdfluid approaches zero as a power 16/a%. For ar— -,

the Thouless scaled temperature defined by the scaled energy, E18), has an expansion in &fe T2 for
o small fluctuation temperaturg(the radius of convergency of
ar=— (b_“’> a (13) the expansion extending #3=-3). Therefore the liquid de-
T 2527 n spite having energy larger than that of the solid becomes

pseudocritical®® at zero temperature. Physical quantities

The Gibbs free energy density in the newly scaled model iéaround“ this point exhibit a power behavior with character-

defined as istic (pseudgcritical exponents. The metastable liquid state
am2 has a distinct Madelung energy
9(ar) =-—~ log f DyDy*exp{-fly]}, (14 , ,
_ g _ 8 gia__ He o (20)
which is also a function ofi; only (472 is the scaled “tem- M 4’ M g

perature}. The relation to the original Gibbs free energy is ) ) )
As the temperature increases the difference between the solid

2
_ HG [ bo \*° and liquid becomes smaller and vanishes at melting. Gener-
G(T;H) - 2\ »5/2 g(aT)- (15) . .

27K\ 2> ally one expects a linear correction at smgll
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G =G+ claT, (21)  Here the “nonfluctuating part” is the Abrikosov free energy

densit
Since the expansion of the mean-field free energy i¥4n Y

C'l'q=0. Comparing the solid free energy, E¢t6) and(17), 1 > Ba g
with Eq. (21), we get the melting temperatuad'=-6.3. We foe = 42 arct T c (24)
therefore conclude that in this approximation the supercooled

liquid state exists down to its pseudocritical point at zerowe omitted several cubic terms which do not influence the
temperature. Moreover, the pseudocritical point might govieading order in 1N. Integrating over the fluctuating thg

ern the behavior of the liquid phase to temperatures as higfields one obtains the effective scaled Gibbs energy density
as the melting point and there exists a good low-temperaturghe calculation is very similar to that in Ref. 19, where tech-
expansion(stronger coupling expansipfor the supercooled nical details can be found

B

liquid.
It is important to confirm the above scenario in an exactly Geft a2+ &c“— ’_’pz + 1- V|X|2
solvable model. The simplest model of this kind is the mul- N T 2 2 2 x
ticomponent GL model. The LLL GL theory can be general- —_— —
ized (in several different waysto an N-component order +2(Veg(k) + Veak) )y (25
parameter field/#, a=1,... N: The spectrum has two branches
f= 4—15 d3x[%|(921//3|2 +ag| A+ ihﬂzhﬂz eoalk) =ar+ v(Bc?+ py) £ |(L =) (P + x| (26)
™ To have a stablperturbativeAbrikosov solution which shall
1 be a good solution for the low temperature, the spectrum

v *b *b
* 2N I } (22) should be positive definite fgr,= x,=0 (in the perturbative

o _ _ approach p=x«=0 and c?®=|a;|/B,). Thus we demand
The largeN limit of this theory can be solved in a way _,/2+(,-1)=0 or »=2, as stated above.
similar to that in theN-component scalar models widely used -
, o : The HS fields
in theory of critical phenomer®.The simplest case=1 has
been considered in Ref. 32. It was found that the homoge- pc= M| P X=X e (X X))y, (27)
neous state is stable at all temperatures. Under assumption ) .
that the conventional Abrikosov lattice takes over at low@nd the constartare determined by minimizing free energy
temperatures it supported the original conjecture by Bretin Yeft- ) ) , )
all! that melting of the flux lattice is a first-order phase  Now we will study the inhomogeneoysolid) solution.
transition. However, it was showtby explicit numerical 1ne minimization with respect tp(x) and x(x) leads to

evaluation in Ref. 12 that the low-temperature ground state - 2 T2 4+ KT
in that model is not the Abrikosov lattice state in which just P = (o) HLeo(k)] Lealk)T™ b

one component has a nonzero expectation védirailar to 5
the one component Abrikosov latticeThe “true” ground sgr(L - 1)x(x) = @k(X)w_k(X)M{[eo(k)]_llz
state has infinite degeneracy. Different ground states at large 129+ xid

N are markedly different from the hexagonal lattice. The case

v=2, in which the Abrikosov lattice state is a stable ground -[ea)TY3 ), (28)

state, was first introduced in Ref. 34 and we will refer it as k

the Lopatin-Kotliar (LK) model. Equation(22) is a slight

generalization including both models studied in Refs. 32 an

34. We find that in fact all models with=2 possess such a

stable lattice state. _ p1= (Brdl (k)T M2+ [eak)] V2,
A straightforward method to develop the N expansion

with the last component ofN having the expectation value 2 +

xpa= gp-g, describing the hexagonal lattigsee Eq.(10)], sgnl-v)x = <'y;|#{[eo(k)]_1/2— [eA(k)]‘1’2}> :

is to shift this field yN(x,y,2) — ¢yN(X,y,2)+VNcea(X,y), |yt xid k

wherec is a (real) constant. Then one introduces Hubbard- (29

Stratonovich (HS) fields p, x (Ref. 39 via free energy

f[42,p,x] equal to

hich, in terms of Fourier harmonics of the hexagonal lat-
ice, takes a form

The lattice functionssy, v, and vy, are defined as

1 /1 Be={elPeren 1= {(0* ) 2ok
. 5<5lw|2+ (vp+ 2412+ Pl gl o X

! 7= Ixds vt = {@p-k@-10xs (30

1-v . . . . . -
+ T[(c2¢i+ PP +c.cl and their properties were discussed in more detail in Ref. 19.

x The only consistent solution preserving hexagonal symmetry

__N _ r_zpz N 1- V|X|2 FEINTI (23) IS xk=Xxc Yk Wherex. is a constant independent kfand the

42\ 2 2 .o ' above equation will be simplified to
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TABLE |. Coefficients of the mode expansion for the solid solution.

ar g Eo E: Es A
-4.6179 -3.43164 0.728715 —0.0022412 -0.00001227 0.6167
-5 -4.96636 1.92669 0.0717767 0.00003881 2.0331
-10 -34.3165 6.29543 0.355908 0.00023872 7.2718
-20 -159.826 13.8477 0.842385 0.00058357 16.3036

sgr(1 - v)xeBa = {(sgr(c® + xo) mdleo(K) T Y2~ [ea(k)]¥3).  ponentially withn.* It is quite easy to get a more higher-
(31) mode approximation, but it is not necessary as the first few-
mode approximation has given us a result with very high
For the LK modef* »=2, this leads to x,8»  Pprecision. As an example, when we retain the first three non-
=(npdlea(k)] %[ eo(k)] Y3, Finally the set of the mini- zerog, expansion approximation, the result can be seen from

mization equationgusing the properties of the lattice func- Table I.

tions By, ¥k, vk1) can be derived: The solution disappears a{=-4.6179. At this point the
_ ) 1 Y solid is no longer a metastable statég(k) is a gapless mode
0 =ar+ Bac® + A Bdleo(k)] 2+ [ealk) 21 andex(k) — constx k2 for k — 0 in the largeN model. How-
+{pdleo(K) 2= [ea(k) ]2y, ever, for the perturbative spectruna,(k) — constx k* for
k—0.
xeBa= (ndleak)] ™2 = [eo(K) T3, Using
- -1/2 -1 Qett _ . 2, Bna_( 2 1 [0 + e (k)
o= BadleoT 24 [T ), (382 Syi=ad®+ het={ 0= D) + 2eolk) + Veak,
X
and (38)
— 2 2
eonlk) =ar+2BC* + 2px |(C* + xo) - (33 the energy corresponding to the solid solution of the minimi-
The following formulas can be obtained and used for thezation equatiot32) is given in Table I. The convergence of
calculation of the free energy: the mode expansion is exponential as seen from Table I.
5 1o _y 1o For liquid, we impose the rotation-invariant ansatz with
(0% = (Bi-d[eo(k) ™2+ [en(k) T H{[ en(1)] c2=0, x=0 and obtain the gap equation
+[eaDT ™)y, )
p = /= y (39)
var+2p

1
2\ — — -1/2 _ -1/ 2
<|X| >_ BA[<77k{[€A(k)] [EO(k)] 2}>k] . (34) Wthh mlnlmlzes the energy
Equa}tion(32) can pe solved very easily by using mode Giig = — P>+ dar+ 2p. (40)
expansion and iteration meth&d3* The spectrum can be

written as follows: The results for both the liquid and solid free energies are

plotted in Fig. 2. The melting point appears &t=-5.15
eo(k) =E(K) + Az, ea(k) =E(k) — Az, (35 where the liquid and solid energies are equal.

with E(k) expanded in modes:

017 Instability Point
E(k) =2 EnBq(K), (36) | \
5-0.2
where g X
K Melting Point
- _ g-03
Bc= 2 exd - 2mn/\3]B,(K), =
o S04 4
Bk= 2>  exdik-X], (37 ¥
X|?=47n/\3 05 : ! : ! : \
0 0.04 0.08 0.12

whereX lies on the lattice which basic “cell” is a primitive
cell of the vortex lattice and the integer determines the
distance of a lattice point from the origin. For some FIG. 2. Free energy of soliddotted points and liquid (cross
integers—for examplen=2,5,6—3,=0 and the first three pointg of the largeN model as function of the fluctuation tempera-
nonzerog, are By, B1,8s. The effective “expansion param- ture 14a;*”%. The solid line ends at a poittiot), indicating the loss
eter” is expp—2m/3]=0.0265 and coefficients decrease ex-of metastability.

Fluctuation Temperature
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It is well approximated in the whole region by its low- ergy and use it within the validity region of the LLL model.
temperature expansion in powers|af| 32 [which is propor- We emphasize that this means that the matching of the
tional to the “fluctuation temperatur@d”assuming that at low (Borel-Pade approximantiquid to the solid energy at=0

temperaturesy,=-(1-b)/2]: employed in Ref. 14 to improve convergence of the series is
ol not only ineffective?® but should lead to an incorrect resuilt.
9_2 =+ O+ 2, L T = a3, Liquid and solid energies are different in the limit of zero
ar fluctuation temperature in this model.

In a recent experiments, Xiagt al. observed the super-
sol _ sol_ sol _ cooled vortex liquid at very low temperature and the
Cm BETR C; =2.84835, C;’=-2.54087. (41)  gyperheat vortex solid which vanishes at spinodal line in
2H-NbSe by Ref. 22. They found that the spinodal line is
The first two terms of this larghtmodel are the same as for arounda;=-6 which is a bit higher tham;=-5.5 in the
the usual one-component model, while the two-loop correcGaussian approximation calculation. This small discrepancy

tion is different. could attribute to the fact that Gaussian approximation is not
Similarly the liquid energy can be expanded, but this timevery good for too smaléy.
in powers of square of the “fluctuation temperature” In atomic liquids, an attractive long-range force is gener-
liqg _ _ ally present. As a result the supercooled liquid state loses its
g_2 =9+ 9T +claT2, ... T =|ar %72, metastability at an end poirspinoda).>* Lovett® a long
ar time ago argued on general grourtise stability analysis of

approximate set of relations between density correlatbed

for certain purely repelling interactions the spinodal point

disappeargor, in other words, shifted to zero temperajure

. . . e and is recovered when the attractive interaction is intro-
Here the first term is the “Madelung energy” of liquid at zero g,,ceq. The existence of a metastable overcooled liquid down

fluctuation temperature. Note that, as in the mean-field apg, ;1 temperature for repelling particles therefore might be
proximation to the one-component theory, there is no temhuite general.

linear in T (the harmonic approximationThis means that
the specific heat vanishes at zero temperature. Retaining just
the Madelung and the harmonic term for solid and liquid we V. BOREL-PADE METHOD APPLIED TO THE LLL

estimate the melting temperature in the linear approximation: MODEL: MELTING LINE, MAGNETIZATION,
AND SPECIFIC HEAT

) 1 : i i
di=-1, it =0 dfi=6, di=-20. 2

Chi — cut o
m= m- (43 A. BP method applied to liquid energy
) o As we have seen above, within the mean-field approxima-
The latent heat in the same approximation is tion of the LLL GL model or the largéd LLL GL model, the
AU =0 g, (44  liquid branch exhibits a pseudocritical pdihat T=0. It is

well known that in the theory of critical phenomena one can

Numerically this melting temperatuiig,=0.064 correspond- obtain an accurate description in the critical region by apply-
ing to ar=-6.25 and the latent hea&tU=0.18 should be ing the Borel-Pade method to the perturbation expansion at
compared with the exact resultd;,=0.086 (ar=-5.19,  “weak coupling”?® In technical terms there exists a renor-
AU=0.122945. This shows that the low-temperature expanmalization group flow from the weak-coupling fixed point
sion of the supercooled liquid free energy gave us quite @wards the strongly couple oR&We therefore start with the
sensible result. (renormalizedl weak-couplinghigh-temperature or nonideal

In this section we obtain the first-order melting in the gag expansion.
mean-field LLL GL model and the large-LLL GL model. The liquid LLL (scaled free energy is written a$
We note that as we show in last section, the GL model or the N
LLL GL model may not be valid for every low temperature. Giiq = 4671 +h(x)]. (45)
Thps in reality, t_he zero-temperature pseudocritical fixedrpe functionh can be expanded as
point may not exist, though the LLL GL model does have
this pseudocritical fix point at zero temperature. In the mean- h(x)=>, c X", (46)
field solution of the LLL GL model, the largh- LLL GL
model and even the exact solution of the LLL GL model aswhere the “small parametelsfzée‘?”2 ande is defined as a
we will show in the next section, supercooled liquid persistssolution of the Gaussian gap equati@8). The coefficients
as a metastable state all the way to zero temperature and thg can be found in Ref. 27. The consecutive approximants
superheat vortex solid exists and vanishes at the spinodare plotted in Fig. 3 as dashed lin¢$1-T9, TO being
line. Based on the fact that the GL LLL model has a zero-equivalent to the Gaussian mean fiel@ne clearly sees that
temperature fixed point, we could use the Borel-Pade methothe series are asymptotic and can be used onlgrat-2.
to calculate the liquid free energy of the LLL GL model at One can improve on the Gaussian variational method by op-
higher temperaturésee the next section for detgil§here- timizing the variational parameterat each order instead of
fore we can use this method to calculate the liquid free enfixing it at the first-order calculation. The procedure is rather
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10 e A S -0.9642/2f3,, which is slightly larger than the Madelung
5 “‘ | \\ \ Lo energy of the solid. This limit, the “ideal liquid,” however,
Voo T cannot be thought as a minimization of a potential energy.
0 .
= \/ B. Melting line: Comparison with Monte Carlo simulations
% 10 BP}/_/ and Lindemann criterion
= 5 L The solid energy calculated perturbatively to two loops
Ty o ig17.19
S A A ,
Ay C a 2.4
15 // S L Osol= ~ T+ 2-848{7‘T|l/2 T (49
M /12 8 W T 2B ar
-0 -8 -6 -4 -2 0 2 where 8,=1.1596. In Fig. 1 of Ref. 18 we plot the energies
SCALED TEMPERATURE of the solid and liquid. They are very close near meliisge

the difference on inset of this figureNe find that the melt-

FIG. 3. The BP approximation for the free energy. BP3 and BPS, o 1y6int (the energy curves of solid and liquid cross at the
are the free energy results given lyandhs. The dashed ling; is mgeltri)ng pE)in) is oy q

the original perturbative expansion of ordemn Ref. 14 and the
dot-dashed liné is the optimized expansion of order aT'=-9.5. (50)

The available 3D Monte Carlo simulaticiisunfortunately
e not precise enough to provide an accurate melting point
since the LLL scaling is violated and one gets values{pf
e51—14.5,—13.2,—10.9 at magnetic field4,2,9T respec-
tively. We found also that the theoretical magnetization cal-
culated by using parameters given by Ref. 28. is in a very
ood agreement with the Monte Carlo simulation result of
ef. 28. However, the determination of melting temperature
needs higher precision, and the sample ¢iz&00 vortice$

involved (see Ref. 5Y. However, the optimized perturbation
series is how convergent with radius of convergence abo
ar=-5 (see dash-dotted lines 1-9 in Fig. Einally we will
construct the BP series and compare them with the optimiz
perturbation series results faf>-5.

We denote byh(x) the [k,k—1] BP transform® of h(x)
(other BP approximants violate the correct low-temperatur
asymptotics The BP transform is defined as

©__ used in Ref. 28 may be not large enough to give an accurate
hﬁf h(xtexp(— t)dt, (47)  determination of the melting temperatui@ue to boundary
0 effects, LLL scaling will be violated too The situation in 2D

~ is better since the sample size is much larger. We performed
where hc is the [kk-1] Pade transform of similar calculation for the 2D LLL GL liquid free energy,

2k-1 : ; k i k=1 i
Zi-p ¢X'/nl—namely, a rational functiorEi_;ax /Zi-ibX'  compined it with the earlier solid energy calculatifri?
with the same expansion at smalhs the original function.
2

Fork=4 andk=5, the liquid energy converges to required ar la;] 19.9
precision(0.1%); see Fig. 3. In this figure only=3 and 5 are Os0l =~ 28a +2log a2 2 2.92, (59)
shown sincek=4 practically coincides with the latter. In A T
what follows we will usehs as the best available approxima- and find that the melting poiraf'=-13.2. It is in good agree-
tion of the liquid branch. The liquid energy completely ment with MC simulations?
agrees with the optimized Gaussian expansion réSultsil Phenomenologically the melting line can be located using
its radius of convergence at=-5. We therefore conclude the Lindemann criterion or its more refined version using the
thatk=5 is quite good for our purposes. Debye-Waller factor. The more refined criterion is more ap-

Since the metastable liquid state exists at all temperaturepyopriate since vortices are not point like. It was found nu-
one can consider th€=0 limit. One finds merically for Yukawa ga¥ that the Debye-Waller factor

e 2V (ratio of the structure function at the second Bragg peak

g"(ay) . 0.964 (4g @t melting to its value aT=0) is about 60% at the melting
g*%(ay) ' point. Using methods of Ref. 59, one obtains for the 3D LLL
) ~_ GL model at the melting point
for ar——=. For g®(ay), the leading term in this limit is o
-a2/2B,, which is the Madelung energy of the solid. The e“'=0.59. (52

leading term foig"(ay) is —0.964%/23,. Usually the Made-

lung energy for the solid phase of the point particle system is . o )

realized by minimizing the potential energy of the system C. Fitting of the meltlng line:Values of the Ginzburg numbers

(the minimum is often obtained by taking the hexagonal lat- of various superconductors

tice for the repulsive system in 3DIn this vortex system, In this subsection we use the above results to fit experi-
we can have the supercooled liquid downap—-= (T  mental melting line of several “fluctuating” superconductors.
—0). The leading term for the overcooled liquid energy or As an example in Fig. 2 of Ref. 18 we presented the fitting of
the Madelung energy of the liquid is therefore equal tothe melting line of fully oxidized YBgCu;0,.6 The melting
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lines of two different samples of the optimally doped d
untwined?4° near T, (YBa,Cu,0;_s), DyBa,Cu;0,,8 and m(ar) :—ag(ar), (53
(K,Ba)BiO3,*! are also fitted and the fittings are all ex-
tremely well. The results of fittings are given in TablTb  while the LLL contribution to the magnetization is
recall our conventionH,, is defined asT . dH.(T)/ dT|T=TC
rather tharH,(T=0) (often inaccessiblg. He a,

Our values for the Ginzburg number of YBCO andDy- Mo = 477K2a_m(aT)' (54)
BCO estimated here are generally lower than the ones com-

monly believed in the literature. The often-quoted value forUsing expressions, E¢49), for solid and Eqs(45) and(47)
YBCO is of orderNg=0.01(see p. 1134 of commonly used for the liquid, the magnetization jumpM at the melting

Ref. 10. Direct calculation from Eq(7) givesNg=0.003 for it a"=-9.5 divided by the magnetization at the melting
A=1400 A, é&=15 A, and y=7 (x=93.3. Note, however, g, the solid side is

that these values are estimated from measurements at very
low temperature. Our values of and ¢ are fitted to the AM  Am

vortex physics experiments nedy and extrapolating using IR =——=0.018. (55)
the (admittedly questionabjetwo-liquid model toT=0 to s M

giveA=931 A,£=18.7 A. Our values ofiH:(T)/dT nearT,
are consistent with recent measureri&qawhich is about 2
and smaller than earlier ones. There is no consensus on Vi
ues of k measured using the microwave technique at ver
low temperatures; however, they are also generally small P -

than 100(smaller than 70 aT=0 and decreasing with tem- iig;?SHeLxlbggpetgt;gtfg \L?OISA?Q(;ﬂcan(see next section Eq.
perature according to Ref. 60 and valued from 50 to 60 ac- '
cording to Ref. 61 This explains the difference of order of
magnitude inNg; between the often-used values and our fit- E. Specific heat jump at melting
ting results(small « will lead a smallNg; asNg; * k*¢?T2?).

- . . In addition to thes-function-like spike at melting for spe-
We emphasize that the actual small parameter in the theory Sific heat experiments, the experiments also show specific
not Ng; but rathero=+v2Gin? [see Eq.(5)]. Even for Gin- P ' P b

zburg number as small as<210 this quantity is 0.2. As a heat jump. The theory allows us to quantitatively estimate it.

result the effect of thermal fluctuations is important on a The specific heat contribution due to the vortex matter is
> . , b C=-T#/JT?°G(T,H). The normalized specific heat is de-
significant portion of the phase diagram.

Recently it was found that thermal fluctuation are quiteflrled as
significant even in a lovik, material (K,Ba)BiO3. This is c
despite its lower critical temperature and very small aniso- c=—o, (56)
tropy (and thereby very small Ginzburg number %.3075). Cint
Since this material is not a “strange metal”’dwave super- ) b . »
conductor, itsH, is directly accessible and there is no prob- Where Crn=Hg, T/4mx“BaT; is the mean-field specific heat
lem with direct estimate ofNg. However, ®=0.1 for of the solid. Substituting the definition of the scaled_free
(K,Ba)BiO5 is not much smaller than that of YBCO. There energy, Eq(15), and scaled temperature, E@3), we obtain

is therefore no surprisgcontrary to a statement in Ref. 41

It is indeed small and is compared on Fig. 2 of Ref(dght
inseh with experimental results of fully oxidized YB&u;O,
Ref. 6 (rhombg and optimally doped untwined
Ba,Cu;0,_s (Ref. 4 (starg. The agreement is quite good.

that fluctuation effects are still experimentally observable in c=- %(b_w)““g(a ) + 4_'gA(b -1-1)
(K,Ba)BiO3]. In order to be able safely to ignore thermal o2 \ 42 TS
fluctuations the fluctuation parametershould be of order 213
0.01, in which caseNg; should be smaller than 10", ><< be ) g'(ar —&(Z—Zﬁt)zg”(aﬂ. (57)
These are the cases of most I@wmaterials. 477\/5 ot*

D. Magnetization jump at melting Using our expressions for the energy of the liquid and solid

The scaled magnetizatigof liquid or solid) is defined by ~ we obtain the following specific heat jump at melting:

TABLE Il. Parameters of higfT, superconductors deduced from the melting line.

Material T Heo Gi K y Reference
YBCO;_s 93.1 167.5 1.%x10* 48.5 7.76 2
YBCO;_s 92.6 190 2104 50 8.3 40

YBCO;, 88.2 175.9 7.x10°° 50 4 6
DyBCOg; 90.1 163 3.x10° 33.77 5.3 8

(K,Ba)BiOg 31 26 5.3 10°° 107 1 41
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_ 2/3
2B avo-1-o( ) k=2 [ o dapue oo + ot i)
w

(58) (60)

Using the parameters of YBGO; obtained by fitting the  The small perturbation is therefore

melting line, Table I, we compare E¢8) with the experi-

mental result of Ref.2 in Fig. 2 of Ref. 1&ight inse). Note V= 1 f d3x[(— an— )|yl + }|¢|4]_ (62)
that error bars are very large and also that disorder might be ) 2

important>® so that the agreement of the theoretical and ex-

Ac= 0.007<

The Gaussian energy consists of two parts. The first is the

penmeqtal _reSL_JIt of specific jump is not good as that of the‘Tr log” term
magnetization jump.
oH?, b« ——
- Iog{f Diyexp— K)} —=—> \nb+s.
V. HIGHER-LANDAU-LEVEL CONTRIBUTIONS: 2m V0| 2mK? V27 =0
EFFECTIVE LLL MODEL (62)

A. Where is the LLL approximation really valid The second is proportional to the expectation value of a

Contributions of HLL are important phenomenologically solvable model defined bi:
in two regions of the phase diagram. The first is at a tem- w
perature above the mean-field critical temperaffu@) in- ch2< >_ chz (—a ) b 1
side the liquid phase. The second is far below the melting K2 & 2\'21-rn o \Vnb+¢
point deep inside the solid phase. . )

Naively in the solid phase, when “distance from the +w< b 1 ) ] 63

mean-field transition line” is smaller than the “inter-Landau- 2\577 ~ b+

. / n=0 V &
level gap,” 1-t—-b<2b, one expects that higher-Landau-
level harmonics can be neglected. A more careful examinaBoth are divergent in the ultraviolet in a sense that at I&fge
tion shows that a weaker condition 1—b<12b should be the sums diverge. Introducing a UV momentum cutoff which
used for a validity test of the LLL approximatitthto calcu-  effectively limits the number of Landau levels dy=A/b
late the mean-field LLL contributions in a vortex solid. An —1, the Tr log term diverges as
additional factor of 6 comes from the hexagonal symmetry of o
the lattice sjnce contributions of higher Landau Ieyels, the bz \rnb+s - 1 [2A3’2+ (8 _ 9)/\1’2} +u(e,b),
first to the fifth HLL, do not appear in the perturbative cal- |27 =0 N 2 2
culation of the mean-field solution for a vortex solid. In the
liquid state the question has been studied by Lef#ising (64)
the Hartree-FocKGaussiahn approximation. The result was with the last term, the function, being finite(see Ref. 63 for
that the region of validity is limited, but quite wide; see Fig. detailg. The “bubble” integral diverges logarithmically:
1.

[

In this section we will incorporate the leading HLL cor- b 1 1 AV24 (65
rection using the Gaussian_approxim_ation and then compare 2\5%:0 Jnb+¢ B \EW
the theoretical results with experimental magnetization
curves. where u’=(d/de)u(e,b). Substituting Eq.(64) into the

Gaussian energy one obtai¢s units of wH§2/2m<2)
B. Gaussian approximation in the liquid phase I E 2A3’2+ ( iL A1’2)2+ (_ o [_3) 1 AL2
The free energy density beyond the LLL approximation is V273 N2m \V2m
1
wH ’ 1/2, 1 ’ 2
G=- lo DDy exd — = dgx—& 2 —apu’ + 20—=A"U" —eu’' + w(U" )+ u. (66)
27TK2NV0I g f ‘p lﬂ [< f | ZIM \277

The first term does not depend on the parameters of the sys-
- ap|yf* + 5|l//|4), (59 tem and can be ignorethe renormalization of the reference
energy density while the second i dependent and indi-
where N, denotes volume. In the framework of the Gauss-cates thafl, present insides;, is renormalized. Definingy,
ian (Hartree-Fock approximation the free energy is divided =aj,+2w(1/y2m)AY2 the above energy becomes
into an optimized quadratic paK and a “small” partV. 1 2 b 1
ThenK is chosen in such a way that the Gaussian energy is OGauss= — w<7A1/2> + (_ a, - _>TA1/2
minimal 82 The Gaussian energy is a rigorous lower bound 2w N2m

on energy. Due to the translational symmetry of the vortex —ay = el + (U2 +
liquid, an arbitrary J1)-symmetric quadratic pak has only U’ e+ o(U) +u. 67)
one variational parametet: Thus the temperaturgé, and vacuum energy will be renor-
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malized. The first two terms in the free energy are divergent
and linear in the fluctuation temperatuse they will not

contribute to any physical quantities like magnetization and
specific heat. Minimizing the energy, E¢67), we get the

gap equation
=—a,+2wuU'. (68)

Superscriptr will be dropped later on. The function(s, b)
can be written in the form

u(e,b) = —b%( ) (69)
where
i 312 312
v(x):g[\"n+x—§<x+n+%> +§(x+n—%) }
2 1 3/2
2-3)” (70

For the LLL model in the Gaussian approximatiamx)
=VX. In the “Prange” limif4 Ng;— 0, the free energy is
HZ, 1
uTbBIZU<_%)_ (71

27K \[24r b

C. Integration of the HLL modes and the effective LLL
model

A method for treating HLL modes is integrating them and

obtaining an effective LLL model. Theeffective) LLL

PHYSICAL REVIEW B70, 144521(2004)

Ag=-—>log LI DyiDy; expl- fuululy, (74
i=1

NvoI

where the HLL energy is

1(1 1
fa = _|:§|‘9Z¢IHLL|2 — a2+ E|¢HLL|41| , (79
w

where iy | =22, 4. To calculateAg, we divide thefy, into

Ku=— <(|Dl/f|2 b|l/f|2)+_|(9z'r/f|2+8|‘lf|2) (76)

plusfy | —Ky - Takinge as the solution of the gap equation
(68), one finds thatAg takes the form

Ag = 0causs™ 9LLL + 2<| ¢0‘2>(<|¢O|2> - <|¢|2>),

OuL=- NG |09fD¢oDl/fo exp{- fuulwolt.  (77)

Here ggauss IS the effective free energy of the full GL ob-
tained in the first subsection of the current section, (6d),
and(|¢]?) is likewise the expectation value pff? in the full
GL. The quantityg, |, is the effective free energy calculated
with variational parametes and (|yy|?) is the expectation
value in the LLL GL. The consistengpr matching require-
ment is

— 1
Oeff=— Ni |09f DDy exp{— _geff[lﬂo]} . (78
vol w

This condition determines the value Af:

model is applicable in a surprisingly wide range of fields and
temperatures determined by the condition that the relevant At =4((|¥? - {|¢ol?) = 4olu’ (g,b)] = 4| 1ho|>)

excitation energy be much smaller than the gap between
Landau leveld. Within the mean-field approximation in the = do—= 1 b1/2[ (8) 1 \/E} (79
liquid ¢ is a solution of the gap equatiq68). For the LLL V27 b/ 2 Ve

dominance region, we take a conservative conditidn,
=1/20. One observes that, apart from the fields smaller tha
H. . =0.1T for YBCO, the experimentally observed melt-
ing line and its neighborhood are well within the range o
applicability of this approximation as shown in Fig. 1.

The effective LLL energy(we will use unit of energy
densityHZ,/ 2«2 in this subsectionfunctional is defined by

for Y BCO, the correctiort is small. The effective LLL GL
approach achieves a simplification by starting from the LLL
seffective model withT; and other parameters renormalized to
account for the contribution of the HLL modes. This is what
we assumed in Secs. Il and IV. In particular, this approach is
very precise if we calculate the properties along the melting
line. For example, the magnetization jump is mostly due to
the fluctuation of the LLL modes, and the background effec-
tive energyAg will not contribute anything since it is the
same on both sides of the melting line.

et 0] = - ©

N log | [1 DDy expl— Lo, o, v, 07 1,
\Y/e] i=1

(72

where i is the LLL N=0 component field and the rest are
denoted byy;. Expanding the functional up to the fourth
order in ¢, and to the second order i one obtains

D. HLL contribution to the magnetization

Generally wherk is quite large and magnetization can be
approximated by

At
Gerd Yol = Ag + — |1hol* + wf i [0, M=- iG(T,H). (80
2 oH

The HLL correction will be calculated as follows. We nu-
merically solve the gap equatiai8) from which G(T,H)
can be obtained. Then E@O) is used to calculate the mag-
netization of the full GL model in the Gaussian approxima-

1|1 1

flvol = =| Slahl* - anl ol + [wl* | (73)
w| 2 2

The direct(no ¢y dependencerenormalization of energy is
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tion. The HLL correction is thus the magnetization of the full zero fluctuation temperature and the superheat vortex solid
GL model in the Gaussian approximation minus the magnewhich vanishes at the spinodal line by solving the lakye-
tization of the LLL contribution in the Gaussian approxima- LLL Ginzburg-Landau model. The recent experiments in
tion. We compare the experiments using the following ap-2H-NbSe by Xiao et al?? had been carried out to test the
proximation. While the corrections due to HLL are theoretical results based on the LLL GL model and it was
calculated in the Gaussian approximation, the LLL contribu-found that there indeed exist the supercooled vortex liquid at
tion will be calculated nonperturbatively. The comparison ofvery low temperature and the superheat vortex solid which
the theoretical predictions with the experiments for fully oxi- vanishes at the spinodal line. Thus the supercooled liquid
dized YBaCu;0; (Ref. 6), is shown on Fig. 3 of Ref. 18. We state can be approached using the methods of the physics of
used the experimental asymmetry valye4 and values of critical phenomenghe Borel-Pade resummation technigjue
T. He and Ng; from the fitting of the melting curvésee  The applicability of the effective lowest-Landau-level model
Table Il). The agreement is fair at intermediate magneticwas subsequently discussed and corrections due to higher
fields, while at low magnetic fields is not good. It is expectedlevels are calculated.
that agreement is improved at higher fields. It is not clear The theory is then applied to quantitatively describe a
whether magnetizatioin contrast to magnetization jump at great variety of experimentg&onfined to a region not far
melting will be strongly influenced by disorder, so at this from T.) including melting curves of YBCO, DyBCO, and
time it is not possible to consider optimal doped YBCO mag-(K,Ba)BiO3;, magnetization curves, and discontinuities of
netization curved more quantitatively. various quantities at melting, and it was found that the the-
We comment that the theory of the full GL mod&igher  oretical results can fit the experimental data quantitatively
Landau levels includadbeyond the Gaussian approximation very well.
is required at low magnetic fields. Indeed experimentally it is
often claimed that one can establish the LLL scaling for ACKNOWLEDGMENTS
fields above 3 T for YBCQsee, for example, Ref. 3as, at
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