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Relic density of dark matter in brane world cosmology
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We investigate the thermal relic density of cold dark matter in the context of brane world cosmology.
Since the expansion law in a high energy regime is modified from the one in the standard cosmology, if
the dark matter decouples in such a high energy regime its relic number density is affected by this
modified expansion law. We derive analytic formulas for the number density of dark matter. It is found
that the resultant relic density is characterized by the ‘‘transition temperature’’ at which the modified
expansion law in brane world cosmology is connecting with the standard one, and can be considerably
enhanced compared to that in the standard cosmology, if the transition temperature is low enough.
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Recent various cosmological observations, especially
Wilkinson Microwave Anisotropy Probe satellite [1],
have established the � CDM cosmological model with a
great accuracy, where the energy density in the present
universe consists of about 73% of the cosmological con-
stant (dark energy), 23% of nonbaryonic cold dark matter
and just 4% of baryons. However, to clarify the identity
of dark matter particle is still a prime open problem in
cosmology and particle physics. Many candidates for dark
matter have been proposed. Among them, the neutralino
in supersymmetric models is a suitable candidate, if the
neutralino is the lightest supersymmetric particle (LSP)
and the R-parity is conserved [2].

In the case that dark matter is the thermal relic, we can
estimate its number density by solving the Boltzmann
equation (3),

dn
dt

� 3Hn � �h�vi�n2 � n2EQ�; (1)

with the Friedmann equation,

H2 �
8
G
3

�; (2)

where H � _a=a is the Hubble parameter with a�t� being
the scale factor, n is the actual number density, nEQ is the
number density in thermal equilibrium, h�vi is the ther-
mal averaged product of the annihilation cross section �
and the relative velocity v, � is the energy density, and G
is the Newton’s gravitational constant. By using _�=� �
�4H � 4 _T=T � _g	=g	, where g	 is the effective total
number of relativistic degrees of freedom, in terms of
the number density to entropy ratio Y � n=s and x �
m=T, Eq. (1) can be rewritten as

dY
dx

� �
sh�vi
xH

�Y2 � Y2
EQ� (3)
address: okadan@post.kek.jp
address: osamu@mail.nctu.edu.tw

04=70(8)=083531(4)$22.50 70 0835
if _g	=g	 is almost negligible as usual. As is well known,
an approximate formula of the solution of the Boltzmann
equation can be described as

Y�1� ’
xd

���0 �
1
2�1x

�1
d �

; (4)

with a constant � � xs=H � 0:26�g	S=g
1=2
	 �MPm for

models in which h�vi is approximately parametrized as
h�vi � �0 � �1x

�1 �O�x�2�, where xd � m=Td, Td is
the decoupling temperature and m is the mass of the dark
matter particle, and MP ’ 1:2� 1019 GeV is the Planck
mass.

Recently, brane world models have been attracting a lot
of attention as a novel higher dimensional theory. In these
models, it is assumed that the standard model particles
are confined on a ‘‘3-brane’’ while gravity resides in the
whole higher dimensional spacetime. The model first
proposed by Randall and Sundrum (RS) [4], the so-called
RS II model, is a simple and interesting one, and its
cosmological evolution have been intensively investi-
gated [5]. In the model, our 4-dimensional universe is
realized on the 3-brane with a positive tension located at
the ultraviolet boundary of a five dimensional Anti de-
Sitter spacetime. In this setup, the Friedmann equation
for a spatially flat spacetime in the RS brane cosmology is
found to be

H2 �
8
G
3

�
�
1�

�
�0

�
�

C

a4
; (5)

where

�0 � 96
GM6
5; (6)

with M5 being the five dimensional Planck mass, the
third term with an integration constant C is referred to
as ‘‘dark radiation’’, and we have omitted the four dimen-
sional cosmological constant. The second term, propor-
tional to �2 and dark radiation, are new ingredients in
brane world cosmology and lead to a nonstandard expan-
sion law.
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In this paper, we investigate the brane cosmological
effect for the relic density of dark matter due to this
nonstandard expansion law. If the new terms in Eq. (5)
dominate over the term in the standard cosmology at the
free-zeout time of dark matter, they can cause a consid-
erable modification for the relic abundance of dark matter
as we will show later.

Before turning to our analysis, we give some comments
here. First, the dark radiation term is severely constrained
by the success of the Big Bang Nucleosynthesis (BBN),
since the term behaves like an additional radiation at the
BBN era [6]. Hence, for simplicity, we neglect the term in
the following analysis. Even if we include nonzero C
consistent with the BBN constraint, we cannot expect
the significant effects from dark radiation since, at the
era we will discuss, the contribution of dark radiation is
negligible. The second term is also constrained by the
BBN, which is roughly estimated as �1=4

0 > 1 MeV (or
M5 > 8:8 TeV). On the other hand, more severe con-
straint is obtained by the precision measurements of the
gravitational law in submillimeter range. Through the
vanishing cosmological constant condition, we find
�1=4
0 > 1:3 TeV (or M5 > 1:1� 108 GeV) discussed in

the original paper by Randall and Sundrum [4].
However, note that this result, in general, is quite model
dependent. For example, if we consider an extension of
the model so as to introduce a bulk scalar field, the
constraint can be moderated as discussed in [7]. Hence,
hereafter we impose only the BBN constraint on �0.

We are interested in the early stage of brane world
cosmology where the �2 term dominates, namely,
�2=�0 
 �. In this case the coupling factor of collision
term in the Boltzmann equation is given by

sh�vi
xH

’
�

x2t
h�vi; (7)

with a temperature independent constant � defined as

s
xH

�
s

x

�����������������������������
8
G
3 �

�
1� �

�0

�s � �
x�2�������������������

1�
�
xt
x

�
4

s ; (8)

where a new temperature independent parameter xt is
defined as x4t �

�
�0
jT�m. Note that the evolution of the

universe can be divided into two eras. At the era x � xt,
the �2 term in Eq. (5) dominates (the brane world cos-
mology era), while at the era x 
 xt, the expansion law
obeys the standard cosmological law (the standard cos-
mology era). In the following, we call the temperature
defined as Tt � mx�1

t (or xt itself) ‘‘transition tempera-
ture’’ at which the evolution of the universe changes from
the brane world cosmology era to the standard cosmology
era. We consider the case that the decoupling temperature
of dark matter particle is higher than the transition tem-
perature. In such a case, we can expect a considerable
083531
modification for the relic density of dark matter from the
one in the standard cosmology.

At the brane world cosmology era the Boltzmann equa-
tion can be read as

dY
dx

� �
�

x2t
�nx�n�Y2 � Y2

EQ�: (9)

Here, for simplicity, we have parametrized the average of
the annihilation cross section times the relative velocity
as h�vi � �nx�n with a (mass dimension 2) constant �n.
Note that, in the right-hand side of the above equation, x2

in the standard cosmology is replaced by the constant x2t .
At the early time, dark matter particle is in the thermal
equilibrium and Y tracks YEQ closely. To begin, consider
the small deviation from the thermal distribution � �

Y � YEQ � YEQ. The Boltzmann equation leads to

� ’ �
x2t �dYEQ=dx�

��nx�n�2YEQ � ��
’

x2t
2��nx�n ; (10)

where we have used an approximation formula YEQ �

0:145�g=g	S�x
3=2e�x and dYEQ=dx ’ �YEQ. As the tem-

perature decreases or equivalently x becomes large, the
deviation relatively grows since YEQ is exponentially
dumping. Eventually the decoupling occurs at xd, roughly
evaluated as ��xd� ’ Y�xd� ’ YEQ�xd�, or explicitly

x2t
2��nx�n

��������x�xd

’ 0:145
g
g	S

x3=2e�x

��������x�xd

: (11)

At further low temperature, � ’ Y 
 YEQ is satisfied and
Y2
EQ term in the Boltzmann equation can be neglected so

that

d�
dx

� �
�

x2t
�nx

�n�2: (12)

The solution is formally given by

1

��x�
�

1

��xd�
�

Z x

xd
�
�nx

�n

x2t
: (13)

For n � 0 (S-wave process), n � 1 (P-wave process), and
n > 1 we find

��0

x2t
�x� xd�;

1

��x�
�

1

��xd�
�

��1

x2t
ln
�
x
xd

�
;

��n

x2t

�
1

n� 1

��
1

xn�1
d

�
1

xn�1

�
; (14)

respectively. Note that ��x��1 is continuously growing
without saturation for n � 1. This is a very characteristic
behavior of brane world cosmology, comparing the case
in standard cosmology where ��x� saturates after decou-
pling and the resultant relic density is roughly given by
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Y�1� ’ Y�xd�. For a large x 
 xd in Eq. (14), ��xd� and
xd can be neglected. When x becomes large further and
reaches xt, the expansion law changes into the standard
one, and then Y obeys the Boltzmann equation with the
standard expansion law for x � xt. Since the transition
temperature is smaller than the decoupling temperature
in standard cosmology (which is the case we are inter-
ested in), we can expect that the number density freezes
out as soon as the expansion law changes into the stan-
dard one. Therefore the resultant relic density can be
roughly evaluated as Y�1� ’ ��xt� in Eq. (14). In the
following analysis, we will show that this expectation is
in fact correct.

Now, we derive analytic formulas of the final relic
density of dark matter in brane world cosmology. At
low temperature where � ’ Y 
 YEQ is satisfied, the
Boltzmann equation is given by

d�
dx

� �
�����������������

x4 � x4t
p ��nx�n��2; (15)

and the solution is formally described as

1

��x�
�

1

��xd�
� ��n

Z x

xd
dy

y�n����������������
y4 � x4t

p : (16)

For n � 0, the integration is given by the elliptic integral
of the first kind such as

Z x

xd
dy

1����������������
y4 � x4t

p �
Z x

0
dy

1����������������
y4 � x4t

p �
Z xd

0
dy

1����������������
y4 � x4t

p
�

2�
���
2

p

xt

�
F
	
arctan�1�

���
2

p
�

�
xt � x
xt � x

; 2
������������������
3

���
2

p
� 4

q �
� F

	
arctan

��1�
���
2

p
�
xt � xd
xt � xd

; 2
������������������
3

���
2

p
� 4

q ��
;

(17)

where the elliptic integral of the first kind F��; k� is
defined as

F��; k� �
Z �

0

d!�������������������������
1� k2sin2!

p : (18)

In the limit x ! 1, we obtain (with appropriate choice of
the phase � in F��; k�)
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Z 1

xd

dy����������������
y4 � x4t

p �
2�

���
2

p

xt

�
�F

	
arctan�1�

���
2

p
�

�
xt � xd
xt � xd

; 2
������������������
3

���
2

p
� 4

q �

�F
	

� arctan�1�

���
2

p
�; 2

������������������
3

���
2

p
� 4

q ��
:

(19)

In the case of xd � xt, the integration gives ’ 1:85=xt,
and we find the resultant relic density Y�1� ’
0:54xt=���0�. Note that the density is characterized by
the transition temperature xt as we expected. By using the
well known formula (4), for a given h�vi, we obtain the
ratio of the energy density of dark matter in brane world
cosmology (��b�) to the one in standard cosmology (��s�),
such that

��b�

��s�
’ 0:54

�
xt
xd�s�

�
; (20)

where xd�s� is the decoupling temperature in standard
cosmology. Similarly, for n � 1 we find

Z 1

xd
dy

y�1����������������
y4 � x4t

p �
1

4x2t
ln
� ����������������

x4 � x4t
p

� x2t����������������
x4 � x4t

p
� x2t

���������1

xd

’ �
1

4x2t
ln

����������������
x4d � x4t

q
� x2t����������������

x4d � x4t
q

� x2t
: (21)

Again, in the case of xd � xt, the integration gives ’
x�2
t ln�xt=xd� ’ x�2

t lnxt, and we find the resultant relic
density Y�1� ’ x2t =���0 lnxt�. Thus the ratio of the en-
ergy density of dark matter is found to be

��b�

��s�
’

1

2 lnxt

�
xt
xd�s�

�
2
: (22)

We can obtain results for the case of n > 1 in the same
manner. Now we have found that the relic energy density
in brane world cosmology is characterized by the tran-
sition temperature and can be enhanced compared to the
one in standard cosmology, if the transition temperature
is lower than the decoupling temperature.

In summary, we have investigated the thermal relic
density of cold dark matter in brane world cosmology. If
the five dimensional Planck mass is small enough, the �2

term in the modified Friedmann equation can be effective
when dark matter is decoupling. We have derived the
analytic formulas for the relic density and found that
the resultant relic density can be enhanced. The enhance-
ment factor is characterized by the transition tempera-
ture, at which the evolution of the universe changes from
the brane world cosmology era to the standard cosmology
era.
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It would be interesting to apply our result to detailed
numerical analysis of the relic abundance of supersym-
metric dark matter (for example, the neutralino dark
matter). Allowed regions obtained in the previous analy-
sis in standard cosmology [8] would be dramatically
modified if the transition temperature is small enough
[9]. Furthermore, if the brane world cosmology era exists
in the history of the universe, the modified expansion law
affects many physics controlled by the Boltzmann equa-
083531
tions in the early universe. For example, we can expect
considerable modifications for the thermal production of
gravitino [10], the thermal leptogenesis scenario [11], etc.,
Those are worth investigating.
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