IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 6, NO. 5, OCTOBER 2004

749

Intelligent Leaky Bucket Algorithms for
Sustainable-Cell-Rate Usage Parameter
Control in ATM Networks

Chung-Ju Chang, Senior Member, IEEE, Chung-Hsun Yu, Chih-Sheng Chang, and Li-Fong Lin, Student Member, IEEE

Abstract—1In this paper, we propose two intelligent leaky bucket
algorithms for sustainable-cell-rate usage parameter control of
multimedia transmission in asynchronous transfer mode net-
works. One is the fuzzy leaky bucket algorithm, in which a fuzzy
increment controller (FIC) is incorporated with the conventional
leaky bucket algorithm; the other is the neural fuzzy leaky bucket
algorithm, where a neural fuzzy increment controller (NFIC) is
added with the conventional leaky bucket algorithm. Both the
FIC and the NFIC properly choose the long-term mean cell rate
and the short-term mean cell rate as input variables to intelli-
gently determine the increment value. Simulation results show
that both intelligent leaky bucket algorithms have significantly
outperformed the conventional leaky bucket algorithm, by re-
sponding about 160% faster when taking control actions against
a nonconforming connection while reducing as much as 50% of
the queueing delay experienced by a conforming connection. In
addition, the neural fuzzy leaky bucket algorithm outperforms
the fuzzy leaky bucket algorithm, in aspects of three performance
measures such as selectivity, responsiveness, and queueing delay,
especially when the traffic flow is bursty, dynamic, and nonsta-
tionary.

Index Terms—Asynchronous transfer mode (ATM), fuzzy logic,
leaky bucket algorithm, neural fuzzy, sustainable cell rate, usage
parameter control.

1. INTRODUCTION

HE EMERGENCE of multimedia services has diversified

the quality-of-service (QoS) and bandwidth requirements
for communication services. Asynchronous transfer mode
(ATM) is considered as a suitable technique to meet the diverse
requirements. Several traffic-control mechanisms are recom-
mended for ATM networks [1]. Among them, call admission
control (CAC) and usage parameter control (UPC) are the most
important.

CAC is performed at the call setup phase of a new call to de-
cide whether the call can be accepted or not. It accepts the call
if the required bandwidth and QoS of the call can be afforded
while QoS of existing connections can still be maintained. A
traffic contract, which specifies traffic descriptors such as the

Manuscript received October 11, 2001; revised January 7, 2003. This work
was supported by the National Science Council, Taiwan, R.O.C., under Con-
tracts NSC 88-2213-E-009-088 and NSC 89-2213-E-009-105, and by the Lee
and MTI Center, National Chiao-Tung University, Taiwan. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Tak-shing Peter Yum.

The authors are with the Department of Communication Engineering,
National Chiao-Tung University, Hsinchu 300 Taiwan, R.O.C. (e-mail:
cjchang@cc.nctu.edu.tw; chyu@zyxel.com.tw; dole@cht.com.tw;
kawai.cm85g @nctu.edu.tw).

Digital Object Identifier 10.1109/TMM.2004.834860

peak cell rate (PCR), the sustainable cell rate (SCR), and the
maximum burst size (MBS) would be made between the ac-
cepted connection and the network. For CAC to perform cor-
rectly, all the established connections must not violate their re-
spective traffic contracts which are of vital importance to the
decision making of CAC. To make sure that the established con-
nections conform to their traffic contracts, CAC is coupled with
UPC.

UPC is performed at the user-network interface during the
data transfer phase. It is defined as the set of actions taken
by the network to police the offered traffic of a connection
so that the negotiated traffic contract is respected. Its main
purpose is to protect network resources from malicious as well
as unintentional misbehavior which can affect the QoS of other
already established connections. However, the wide variety of
multimedia services with different traffic characteristics and
QoS requirements makes UPC a difficult job. The difficulty
lies in finding a simple, universal, and effective UPC scheme
which is able to police any types of traffic ranging from video
to data traffic. Several UPC schemes such as the jumping
window, triggered jumping window, moving window, exponen-
tially weighted moving average, and leaky bucket mechanisms
were studied and compared [2]-[5]. The most popular and
well-known policing scheme is the leaky bucket algorithm
because of its simplicity and effectiveness.

Monitoring and controlling PCR of a connection is not dif-
ficult because we only have to determine if the peak emission
interval is smaller than the reciprocal of the negotiated PCR,
A pcr. However, policing the SCR of a connection is much
more complicated because the connection is eligible to transfer
cells with a short-term mean rate higher than the negotiated
SCR, Ascr, as long as the long-term mean rate of the connec-
tion conforms to Ascr. Therefore, we here concentrate on the
SCR UPC.

In this paper, we assume that a traffic shaper (TS) is equipped
within the customer premise equipment to regulate the cell
stream of the traffic source so as to conform the negotiated
SCR. The regulation is to alter the traffic characteristics of
the cell stream to achieve a desired traffic shape. However,
the consequence of the regulation would cause an increase in
the mean cell transfer delay. The conjunction of TS and UPC,
referred to as TS-UPC, should employ an identical scheme
with same parameters settings so that any possible illegal cell
that might have been detected as nonconforming by UPC will
be detected ahead of time and saved in the queue by TS. In this
way, the TS-UPC can guarantee zero cell-loss ratio at UPC for

1520-9210/04$20.00 © 2004 IEEE

750

->| Queue |->| Shaper |——E—//—:—->—>

[}
[}
: Usage Parameter
1 Controller (UPC)
[

wn

o

g

o

®
1l

1
Traffic Shaper (TS) :
1

Customer Premise Equipment

Fig. 1. Connection model.

a nonviolating connection. Nevertheless, if a user intentionally
or unintentionally changes the parameters settings in TS and
illegally enjoys a higher bit-rate service there, UPC will detect
the violation and take actions against it.

Three performance requirements have to be fulfilled by
TS-UPC in ATM networks.

1) High selectivity: UPC should detect and tag (drop) the
nonconforming cells of a violating connection, as many
as possible, while being transparent when the connection
conforms to its traffic contract.

2) High responsiveness: the time for UPC to detect a vio-
lating connection should be rather short.

3) Low queueing delay: cells of a nonviolating connection
should not experience too much queueing delay at TS.
However, the queueing delay introduced by TS on a vi-
olating connection is beyond our consideration.

The primitive connection model with TS-UPC is shown in
Fig. 1. The component attached to the traffic source is TS which
contains a shaper and a queue. The shaper employs the leaky
bucket algorithm to determine the conformance of cells. It by-
passes the conforming cells but stores the nonconforming cells
in the queue for further legal transmission. The component at
the entrance of the network is UPC, where a policer is incorpo-
rated. The policer also employs the same leaky bucket algorithm
as the shaper does. It bypasses the conforming cells but drops
or tags the nonconforming cells.

The conventional TS-UPC using the leaky bucket algorithm
recommended in ITU-T 1.371 has a crisp structure with two
fixed parameters of threshold and increment. It uses a parametric
model for analysis, thus resulting in the lack of real multimedia
traffic information which are dynamic, imprecise, nonlinear, and
even nonstationary. Generally speaking, it is difficult for net-
works to acquire complete statistics of input traffic. Therefore,
it is not easy to accurately determine the threshold or the in-
crement in the multimedia traffic flows. The rationale and prin-
ciples underlying the nature and choice of the threshold or the
increment under dynamic and bursty conditions are unclear. As
a result, the decision process of the network is based on incom-
plete information and full of uncertainty.

In this paper we propose two intelligent TS-UPCs using
fuzzy and neural fuzzy leaky bucket algorithms to perform the
sustainable-cell-rate UPC of multimedia transmission in ATM
networks. The fuzzy logic system and neural network are both
numerical model-free estimators and dynamical systems [6].
The fuzzy set theory appears to provide a robust mathemat-
ical framework for dealing with real-world imprecision. Its
approach exhibits a soft behavior which has the capability to
adapt to dynamic, imprecise, and bursty environments. The
fuzzy logic system can represent information in a way that

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 6, NO. 5, OCTOBER 2004

resembles natural human communication, and can handle the
information in a way similar to human reasoning [7]-[9]. It
would be an intelligent implementation that not only refers
to the mathematical formulation of classical control but also
mimics expert knowledge in traffic control. Neural networks are
trainable systems that demonstrate the ability to learn, recall,
and generalize from training patterns or data. Through learning,
neural networks can predict nonlinear complex functions, thus
making themselves effective tools to be employed in ATM
networks for traffic modeling and prediction [6].

In recent years, neural network research has pursued either
by a pre-structuring of the neural network to improve its per-
formance, or by a possible interpretation of the synaptic matrix
following the learning stage; and fuzzy logic research has pur-
sued the development of methods for automatic tuning of the
parameters which characterize the fuzzy control system. Notice
that fuzzy set theory possesses no clear, general technique to
map expert knowledge of traffic control onto the design param-
eters of the fuzzy logic controller (FLC). Hence, one approach
that receives the benefits of neural networks and fuzzy logics
and solves their respective problems, called the neural fuzzy
network, is developed. The neural fuzzy network integrates the
fuzzy logics within a neural network. The integration brings the
low-level learning and computational power of the neural net-
work into the fuzzy logic system, and provides the high-level,
human-like thinking and reasoning of the fuzzy logic system for
the neural network. The neural fuzzy network generally takes
the form of a multilayer neural network to realize a fuzzy logic
system. It is a structured neural network that can incorporate
domain knowledge from conventional policies; and it not only
provides a robust framework to mimic experts’ knowledge em-
bodied in existing traffic-control techniques, but also constructs
intelligent computational algorithm for traffic control [6], [10].

Some literature has studied traffic policing using the intelli-
gent techniques [11]-[14]. In [11], a neural network traffic-en-
forcement mechanism using window-based scheme for ATM
networks was presented. It is based upon an accurate estima-
tion of the probability density function (pdf) of traffic via count
process, and the system performance is evaluated in terms of
the pdf violation. It has scalability and convergence problems
if the number of previous windows is needed to be large. In
[12], a fuzzy controller for managing voice cells in ATM net-
works was proposed. Simulation results showed that the fuzzy
leaky bucket had performance improvement over the conven-
tional leaky bucket. In [13], the paper designed a fuzzy policer
based on a window control scheme, which has the characteris-
tics of simplicity and the capacity to combine a high degree of
responsiveness with a selectivity close to that of an ideal policer.
In [14], the proposed policing strategy integrated with a linear
prediction filter is used to forecast the cell rate of the policed
traffic source.

In this paper, one TS-UPC using a fuzzy logic system, called
Sfuzzy TS-UPC, is designed to contain a fuzzy leaky bucket al-
gorithm incorporated with a fuzzy increment controller (FIC)
for dynamic increment adjustment. Two system parameters, the
long-term mean cell rate and the short-term mean cell rate, of
a connection are fed into the FIC to adaptively calculate the
appropriate increment. Simulation results show that the fuzzy

CHANG et al.: INTELLIGENT LEAKY BUCKET ALGORITHMS FOR SUSTAINABLE-CELL-RATE UPC 751

Arrival of a cell at time ta

next cell l

X'=X-(ta-LCT)

Non-
Conforming
Cell

A

No

Conforming Cell
X=max(0, X)+T
LCT =ta

X Value of the Leaky Bucket Counter
X' Auxiliary Variable

Last Conformance Time

T Increment Value

T Threshold Value

Fig. 2. Flowchart of the conventional leaky bucket algorithm.

TS-UPC can have higher selectivity, faster responsiveness, and
smaller queueing delay than the conventional TS-UPC, as antic-
ipated. The other TS-UPC using a neural fuzzy network, called
the neural fuzzy TS-UPC, is designed to consist of a neural fuzzy
leaky bucket algorithm incorporated with a neural fuzzy incre-
ment controller (NFIC) to dynamically adjust the increment.
Neural fuzzy network is a structured neural network; it inte-
grates intelligent learning and computation of neural networks
with fuzzy logic systems. Also, the reinforcement learning is ap-
plied here for the NFIC, since we cannot measure the desired in-
crement. Simulation results show that the neural fuzzy TS-UPC
performs further better than the fuzzy TS-UPC in the above-
mentioned performance measures of selectivity, responsiveness,
and queueing delay, especially as the multimedia traffic flows
are more bursty, dynamic, and nonstationary.

The paper is oriented as follows. In Section II, we provide
an introduction of the leaky bucket algorithm recommended in
ITU-T 1.371 for conventional TS-UPC and the problems it en-
counters. In Section III, we describe the proposed fuzzy leaky
bucket algorithm for the fuzzy TS-UPC. In Section IV, we de-
scribe the proposed neural fuzzy leaky bucket algorithm for
the neural fuzzy TS-UPC. The performance measures of selec-
tivity, responsiveness, and queueing delay for the conventional
TS-UPC, the fuzzy TS-UPC, and the neural fuzzy TS-UPC are
compared in Section V. Finally, some concluding remarks are
presented in Section VI.

II. LEAKY BUCKET ALGORITHM

ITU-T Recommendation 1.371 [1] recommends the Generic
Cell Rate Algorithm (GCRA) as a conformance test for the cell
stream of a connection. The GCRA has two equivalent ver-
sions—the virtual scheduling algorithm and the leaky bucket al-
gorithm. The latter seems to be better comprehended since it can
be pictured as a virtual leaky bucket whose content determines
the conformance of a cell. As shown in Fig. 2, the leaky bucket
is viewed as a finite capacity bucket whose real-valued content
drains out at one unit rate but is increased by 7" units for each

X —>1 Fuzzifier Inference Engine Defuzzifier —> vy
Fuzzy Rule Base
Fig. 3. Basic structure of a fuzzy logic controller.

conforming cell. If a cell arrives at the time when the bucket
content X' is above the threshold value 7, then the cell is non-
conforming; otherwise, the cell is conforming and the bucket
content is added by an increment 7'.

The conventional TS-UPC employs the leaky bucket algo-
rithm in the shaper and the policer as their schemes to monitor
the SCR of a connection. The threshold value 7 is taken to be
TrBT+T§0 and the increment T' is taken to be the reciprocal of
the negotiated SCR Agc g of the connection, where 77 g is the
intrinsic burst tolerance (IBT) used to limit the burst size to the
negotiated MBS and 74, is an additional tolerance added to
account for the cell delay variation (CDV) introduced by multi-
plexing schemes. Details of the two parameters 77pr and 75
can be found in the ITU-T Recommendation 1.371.

If Ascr is set to be the mean cell rate A,,eqn for the
TS-UPC, then the possible rate fluctuations of the connection
around the claimed mean cell rate will cause the leaky bucket
within TS to detect some nonconforming cells. These detected
nonconforming cells are stored in the queue, resulting in a
long queueing delay. The undesirable long queueing delay can
be avoided by making the bucket threshold 7 in TS and UPC
deviate from 71 + T5op to a large value. Unfortunately, a
higher 7 would cause the slower response time for UPC. An-
other solution without changing the bucket threshold is to make
Ascr be Apeqrn multiplied by a magnifying factor C, C' > 1.
By doing this, we can eliminate the retardation provoked by
a higher 7. However, it has a risk of letting a connection with
small rate fluctuations, e.g., a CBR connection, enjoy band-
width higher than that negotiated. There are an infinite number
of admissible couples of values for Agcr and 7. The detailed
analysis for the selection of Agcr and 7 and the consequent
system performance can be found in [15].

III. Fuzzy LEAKY BUCKET ALGORITHM

The FLC has three functional blocks: a fuzzifier, a defuzzifier,
and an inference engine with a fuzzy rule base [16], as shown in
Fig. 3. The fuzzifier performs the function of fuzzification that
translates the value of each input linguistic variable x into fuzzy
linguistic terms. These fuzzy linguistic terms are defined in a
term set and are specified by a set of membership functions. The
defuzzifier describes an output linguistic variable of the control
action y by a term set which is characterized by a set of member-
ship functions, and adopts a defuzzification strategy to convert
the linguistic terms into a nonfuzzy value that represents control
action y. The term set should be determined at an appropriate
level of granularity to describe the value of linguistic variables,
and the number of terms in a term set is selected as a compro-
mise between the computational complexity and the controlled
performance. The fuzzy rule base is the control policy knowl-
edge base, which is characterized by a set of linguistic state-
ments in the form of “if-then” rules that describe the fuzzy logic

752

Arrival of a cell at time ta

next cell v
X'=X-(ta-LCT)

Non-
< Conforming
Cell

No

Conforming Cell
X=max(0, X)+T
LCT = ta

Tr

Intelligent Increment
Controller (1IC)

X Value of the Leaky Bucket Counter
X' Auxiliary Variable

Last Conformance Time

T Increment Value

T Threshold Value

Note that lIC is either FIC or NFIC

Fig. 4. Intelligent leaky bucket algorithm.

relationship between the input variables = and the control action
y. The inference engine embodies the decision-making logic. It
acquires the input linguistic terms of input linguistic variables
from the fuzzifier and uses an inference method to obtain the
output linguistic terms of output linguistic variables [7].

Fig. 4 shows an intelligent fuzzy leaky bucket algorithm
which contains the conventional leaky bucket algorithm incor-
porated with an intelligent increment controller (IIC). The first
intelligent leaky bucket algorithm we proposed is the fuzzy
leaky bucket algorithm which employs a FIC to implement
IIC. FIC is designed to dynamically adjust 7', instead of using
a fixed T = 1/Ascr, so that the selectivity, responsiveness,
and queueing delay can be optimally achieved. The reason
we use the fuzzy logic system to implement the increment
controller is because the fuzzy logic can represent information
in a way resembling natural human communication and handle
the information in a way similar to human reasoning [7]. The
domain knowledge for the adjustment of 7" is as follows. When
the cell stream of a connection appears to be violating the
negotiated SCR, T' should be adjusted to be big so that the
leaky bucket can quickly detect the nonconforming cells; while
in contrast, when the cell stream of a connection appears to be
conforming or conservative to the SCR, 7" should be adjusted
to be reasonably small so that no cell of the connection will be
detected as nonconforming cells by the fuzzy leaky bucket (i.e.,
the leaky bucket would be transparent to the connection).

We choose two input variables for FIC: the long-term mean
cell rate Az, and the short-term mean cell rate Ag of the con-
nection being policed. The long-term mean cell rate is defined
as the average cell rate of a connection since the beginning of
the connection, and the short-term mean cell rate is defined as
a moving-average cell rate in a time window. Ay and Ag are
used to provide an indication of the conformance degree of the

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 6, NO. 5, OCTOBER 2004

connection. At the arrival of a cell, the statistics of Ay and Ag
are fed into FIC to obtain an optimal increment 7'

We design Arp and Ag to have the same term
set—{Low, Moderate, High}. And let T have five
terms—{Very Small (Ty),Small (T3), Medium (T3),
Big (Ty),Very Big (Ts)}. Fig. 5(a) and Fig. 5(b)
shows the membership function of the input and output
variables, respectively. The membership functions for
{Low, M oderate, High} are denoted by {Ar,, Ao, Ami}s
the membership functions for {T}, T, T5, T4, T5} are denoted
by {Aq,,Ar,, Ar,, Ar,, Ar, }. These membership functions
in the figures are represented by either triangular or trapezoidal
functions, which have the advantage of simple computational
complexity.

The rule base is designed according to the domain knowledge
on how the FIC should behave. For example, the knowledge and
experience tell us: when both Ay, and Ag are lower than Agcg,
FIC should generate a very small 7" so that the connection can
enjoy a higher cell rate later because the connection is likely
to be too conservative; when both Ay and Ag are higher than
Ascr, the connection is likely to violate the negotiated SCR
and FIC should generate a very big T" so that the violation will
be detected quickly. The inference rule base is shown in Table I.
Below is an example of how the rules should be read.

Rule 1: If (Ar is Low) and (As is Low), then (I is
Very Small).

The linguistic values of 1%, T, Ts, T4, and T5 of the output
linguistic variable 7' are defined over a discrete universe of
discourse having 65 536 points. The inference method adopts
max — min scheme. Take rule 1 and rule 2, which have the
same term Very Small (Ty) for example. In the first step,
the max — min inference method applies the min operator on
membership values of associated term of all the input linguistic
variables for each rule. We denote the firing strength of rule 1
and rule 2 by w; and w»

wy = min (Ar,(AL), Aro(As)) (1
wo = min (Azo(AL), Aro(As)) -)

Then applying the max operator between w; and ws yields the
overall membership value of 77, denoted by

wr, = max(wy, ws). 3)

The defuzzification method uses the center of area mechanism
to obtain T’

7 izt Ar(z) * 2
>ii Ar(zi)

where 7 is the number of points of the output, n = 65 536, z; is
the amount of control output at point ¢, and Ar(z;) represents
its membership value in the output term set {77, T, T5, Ty, T5 }
[7], which is given by

“)

Ar(z;) = max [min (wT.,AT.(zi))] . 5)

J€1,5] Y
After FIC is built, the membership functions are finely tuned
by observing the progress of simulation. The tuning can be
done with different objectives, such as the response time and

CHANG et al.: INTELLIGENT LEAKY BUCKET ALGORITHMS FOR SUSTAINABLE-CELL-RATE UPC 753

A(A) A(T)
A A
ALo Awmo Ani At A A3 ATs ATs
1 1
0 05%Agn Aeew 15%Ascn > 0 0B/Agy TAge 15/Agen 2MAgem
/\LorAS
(@ (b)

Fig. 5.

TABLE 1
RULE BASE FOR FIC
Rule A L As T
1 Low Low Very Small (77)
2 Low Moderate | Very Small (77)
3 Low High Small (T3)
4 | Modecrate Low Small (Ty)
5 | Moderate | Moderate | Medium (75)
6 | Moderate High Big (1)
7 High Low Big (T%)
8 High Moderate | Very Big (T5)
9 High High Very Big (T5)

queueing delay. Any gain in response time must be traded off
by a possible increase in the queueing delay experienced by a
cell. However, since the tuning of the membership functions is
intuitive, it is easy to achieve an appropriate balance between
an acceptable queueing delay and a satisfactory responsiveness.
The final control surface of FIC is shown in Fig. 6.

IV. NEURAL Fuzzy LEAKY BUCKET ALGORITHM

The second intelligent leaky bucket algorithm we proposed is
the neural fuzzy leaky bucket algorithm which employs a NFIC
to realize IIC. The NFIC also chooses the long-term mean cell
rate Ay, and the short-term mean cell rate A g as input variables
and the increment 1" as the output variable; it adopts the same
term sets for Ay, Ag, T and the same rule base as those em-
ployed by FIC, before the learning.

A. Structure of the NFIC

We adopt a five-layer neural fuzzy network [6], [10] to design
the NFIC. Fig. 7 shows the structure of the NFIC. Nodes in layer
one and layer five are input and output linguistic nodes, respec-
tively. Nodes in layer two and layer four are term nodes which
act as the membership functions for the respective input and
output linguistic variables. Nodes in layer three are rule nodes,
where each node represents one fuzzy rule and all nodes form
a fuzzy rule base. Links in layer three and layer four function
as an inference engine—layer-three links define preconditions
and layer-four links define consequences of rule nodes. Links
in layer two and layer five are fully connected between the lin-
guistic nodes and their corresponding term nodes.

Generally, node 7 in layer k£ for the neural fuzzy controller

has input function fi(k)(ug‘f)) and activation output function

(a) Membership functions for the input variables A ;, and A s. (b) Membership functions for the output variable 7'

(k)(f (k)) where u(k) denotes the input to node ¢ in layer k
from node j in layer (k — 1) and ugjl) is expressed as u(k) if
k = 1. The layers for the NFIC are then designed as follows

Layer 1: There are two input nodes for input linguistic vari-

ables Ay, and Ag, and define
O (o) =iV, o0 =

where ugl) = A and uél) = As.

Layer 2: The nodes in this layer are used as the fuzzi-
fier. As mentioned earlier, A; and Ag have the same term
set—{ Low, Moderate, High}; thus, we have six nodes in the
layer. Each node performs a bell-shaped function defined as

(u@) ma))

D 1<i<2 (©)

f(”((2>> Y Pl 1<i<6 (7)
jn
where ug) = aﬁ»l), Jj = [+2)/3], and mgfl) and a](-i) are

the mean and the standard deviation of the nth term of the input
linguistic variable from node j in layer 1, respectively, n = ¢ if
1< 3andn =i—3if7z > 3.

Layer 3: The links perform precondition matching of fuzzy
control rules. There are nine rules in this layer as shown in
Table 1. Each rule node executes the fuzzy AND operation de-
fined as

fL(s) (ufj)) =min (
where u() = aj(-z) and P; = {j] all j that are precondition
nodes of the ith rule}.

Layer 4: The nodes in this layer have two operating modes:
down—up and up—down. In the down—up operating mode, the
links perform consequence matching of fuzzy control rules. As
shown in Fig. 5(b), there are five nodes in this layer. Each node
performs a fuzzy OR operation to integrate the fired strength of
rules that have the same consequence. Thus, we define

() =max(uPsvj e &), ol =1, 1<i<s
©))
where ugj) = a§»3) and C; = {j| all j that have the same conse-
quence of the sth term in the term set of 7'}. In the up — down
operating mode which is used for training, the nodes in this layer

™ eP) aP =1 1<i<9 (8)

754

Layer 5
(output linguistic nodes)

Layer 4
(output term nodes)

Layer 3
(rule nodes)

Layer 2
(input term nodes)

Layer 1
(input linguistic nodes)

Fig. 7. Structure of the NFIC.

and the links in layer five have functions similar to those in layer
two. Node 7 performs a bell-shaped function defined as

(9 -m@)’
~ 7. (3 7(4
O (3])) =g "= 1<i<s
9%
(10
where “~” denotes the up — down operation, aﬁ;” = &g-a) ob-

tained from layer five, 7 = 1, and mgo) and 01(0) are the mean

and the standard deviation of the th term of the desired output.
Layer 5: There are two nodes in this layer. One node performs
the down — up operation for the actual output 7'. The node and
its link act as the defuzzifier. The function used to simulate a
center of area defuzzification method is approximated by

9 (40) = 3 (o)
J

5) £

o) =i =1 (11)
ol

7

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 6, NO. 5, OCTOBER 2004

ATM Systems

Reinforcement
Signal, r

Fig. 8. Configuration of the reinforcement learning for the NFIC.

where ug) = aj(»4), and az@ = T'. The other node performs the
up — down operation during the training period. It should feed
the desired output into the controller to adjust the link weight
optimally. We set

ﬂ(s) (ﬂf°)) _ ﬂ55)7 &55) _ J;i(a)7 i1

where ﬂf’) is the desired output. Since we cannot obtain the de-
sired output for the increment 7', here we apply the reinforce-

ment learning for the NFIC.

12)

B. Reinforcement Learning

The diagram of the reinforcement learning for the NFIC is
shown in Fig. 8, where the ATM system offers statistics of Ay,
and A g input to the NFIC, provides a reinforcement signal as a
desired output to the NFIC, and receives the updating increment
value T" from the NFIC. The reinforcement signal is defined as

r=P] — Py

a

(13)

where P denotes the desired cell-loss ratio and P is the actual
measured cell-loss ratio.

CHANG et al.: INTELLIGENT LEAKY BUCKET ALGORITHMS FOR SUSTAINABLE-CELL-RATE UPC 755

Based on this connectionist structure established in Fig. 7, the
reinforcement learning is applied to optimally adjust parame-
ters of input and output membership functions, according to the
input training data, the reinforcement signal, the fuzzy partition,
and the fuzzy logic rules. It derives updating rules for the mean
and the standard deviation of the bell-shaped membership func-
tions so as to minimize the error function, defined as

1 1, 2
E:§r2:§(Pd—Pd) .

(14)
For each training data set, starting at the input nodes, the down—
up operation can compute to obtain the actual output of incre-
ment 7. In the opposite direction, starting at the output node, the
up — down operation is used to compute 9 E /0w for all hidden
nodes, where w is the adjustable parameters such as the mean
and the standard deviation for the input and output bell-shaped
membership functions. We adopt the general learning rule to do
the adjustment, which is given by

wn+1) =wn)+n- <—Z—i> (15)

where 7 is the learning rate. The updating rules for parameters
are layer by layer listed as follows.

Layer 5: The updating rule for m](_o) in this layer can be ob-

tained by
(0),,(5)
g5 U)
mﬁ-o)(n+l) :mgo)(n)-i-n-r-%, 1<j5<5
205t
(16)
and the updating rule for Uﬁo) is given by
Jj(»o)(n +1)= U](-O)(n)—l—n-r
0),,(5) 0),,05) (5) (0)_(0), (5)
My i (Zj T5 i)_“ij (Zj My 05 ij) (17)

0) ()\?
(Zj %)“Ej))
The error signal §®), to be propagated to the proceeding layer,
is given by
§G) =, (18)

Layer 4: In this layer, only the error signal 654) needs to be
computed and propagated. 654) is derived as

165, 0 o (5, 1o ul)
(S,
(19)
Layer 3: As in layer 4, only the error signal, 61(3), needs to be
computed as

(5(4) =7T-

53 = 6, (20)

Layer 2: The adaptive rule of m(I)

ij is derived as

(N () @ @ (“1('2) -y))
m;; (n+1) = m;;’(n)+n-6; efi. e (21)
ij
and the adaptive rule of ag) becomes
A1) = o) P (u?;_nlng’l')
ij
where 652) = — Zk qr; and g = —5,&3) if agz) is minimum in

kth rule node’s inputs; g = O otherwise.

V. SIMULATION RESULTS

We verify the effectiveness of the intelligent leaky bucket al-
gorithms in TS-UPC by comparing to the conventional leaky
bucket algorithm. In the simulations, a two-state Markov modu-
lated deterministic process (MMDP) source model, a two-state
Markov modulated Bernoulli process (MMBP) source model,
and a VBR MPEG video “Star Wars” are performed. We set the
two-state MMDP and the two-state MMBP sources to have the
mean active duration of 350 ms, the mean silence duration of
650 ms, and the mean cell rate A,,,.q., = 21.875 cells/s. The
holding time of each state of these two source models follows
a geometric distribution. During the active state, the two-state
MMDP source is a deterministic process which transmits cells
at a fixed packetization interval of Tpcr = 16 ms, whereas the
two-state MMBP source is a Bernoulli process which, for every
fixed time interval Tpcr = 1.6 ms, is likely to transmit a cell
with probability of 0.1. The PCR of the VBR MPEG video is
4000 cells/s, and the mean cell rate A,,cqn, = 975 cells/s. The
window size for calculating the short-term mean rate is set to be
ten times the sum of the mean active duration and mean silent
duration, i.e., window size = 10 * (350 + 650) ms = 10s.

In the simulations, C is set to be 1.1, thus for MMDP and
MMBP sources, Ascr = C * Appean = 24.0625 cells/s. The
increment 7T for the conventional leaky bucket algorithm, which
is taken to be the inverse of the SCR, equals 0.041558, and the
threshold Tg¢ g of the leaky bucket equals 77 g7 + 75 g, Where
T1pr = [(MBS — 1)(Tscr — Tpcr)] and 7505 = Tscr
for MMDP and MMBP. In order to compare the performance
under the MMDP and MMBP sources, 7scr for the MMBP
source is set to be the same as the MMDP source. To calculate
TreT for the MMDP source, we need the MBS of the source.
We set the allowed MBS for the MMDP source to be ten times
the mean number of cell arrivals during the active state, i.e.,
MBS = 10 * (350/16) = 218.75 cells. Then 7scr can be
calculated as 5.607. For the VBR MPEG video source, Tscr
is set to be 3.79, and MBS = 4870 cells. For simplicity of
simulation and not to distract our attention, the queue in TS is
assumed to be of infinite capacity.

In this paper, we define Source o as the ratio of the actual
mean cell rate to the SCR of the traffic source. There are three

756

2
TS
b
O
o
o]
e I N —
P UPC
o
'_
0
0 1/C 1 2
< >le—ple > Source ¢
Non-violation Intermediate Violation
Region Region Region

Fig. 9. Correspondence between TS o, UPC o, and Source o.

regions for Source o: nonviolation region, intermediate region,
and violation region. The nonviolation region ranges from
Source o = 0 to Source 0 = 1/C, where C is the magnifying
factor. The user within this region is a legal user and is guaran-
teed a zero cell dropping (or tagging) probability imposed by
UPC and a negligible queueing delay introduced by TS. The
intermediate region is the region between Source 0 = 1/C and
Source o = 1. Any user within this region is also a legal user
and can still have zero cell dropping probability, but it does not
have a satisfactory queueing delay. Finally, the violation region
is from those beyond Source o = 1. The user whose Source o
is located in this region is an illegal user, and both the cell
dropping probability and queueing delay are not guaranteed by
TS-UPC.

A connection with Source o may have corresponding TS o
and UPC ¢ for TS and UPC, respectively, where TS o (UPC o)
is defined as the ratio of the allowed mean cell rate to the SCR at
TS (UPC). As can be seen from Fig. 9, UPC ¢ is always held at
1 for all Source o’s such that UPC can pass legal cells but drop
(tag) illegal cells. TS o is fixed at 1 for Source o < 1, denoting
that legal cells can pass TS transparently; TS ¢ = Source o for
Source o > 1, denoting that the illegal calls can still pass TS in
the sense that the badly-behaved user of the connection enlarges
TS o and intends to illegally enjoy a higher bit-rate service. If
the user had not changed TS o, then the cell stream passed by
TS would have been conforming, even though Source o > 1,
but there would be tremendous queueing delay incurred.

Fig. 10(a)—(c) shows the selectivity for the conventional
leaky bucket algorithm, the fuzzy leaky bucket algorithm, and
the neural fuzzy leaky bucket algorithm, under the two-state
MMDP traffic source, the two-state MMBP traffic source, and
the MPEG video traffic source, respectively. The ideal curve
of cell-loss ratio is P; = 1 — 1/(Source o) for Source o > 1
and P; = 0 for Source 0 < 1. As can be seen, the three
algorithms present a zero cell-loss ratio for Source o < 1. But
for Source o > 1, the neural fuzzy leaky bucket algorithm has
a cell-loss ratio closest to the ideal curve, then the fuzzy leaky

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 6, NO. 5, OCTOBER 2004

0.50
045
0.40 -

-———conventional leaky bucket algorithm > E
neural fuzzy leaky bucket algorithm = p
--—-—fuzzy leaky bucket algorithm

030 L ideal]

025 | ; :
020 |) -
0.15 | -
0.10 | -
0.05 | .
0.00

hel

P
e
w
(3}

T

cell loss ratio

0.50

0.45 | -———conventional leaky bucket algorithm B

neural fuzzy leaky bucket algorithm e J

0.40
| --— —fuzzy leaky bucket algorithm =7
0.35 h =
"""" ideal

0.30 | g i
025 S .
020 | , E
0.15 oz -
0.10 | -
0.05 | -
0.00

R

cell loss ratio

08 1 12 14 16 18 2
(b) S
0.50
045 |
5040 |

-———conventional leaky bucket algorithm

neural fuzzy leaky bucket algorithm

--—-—fuzzy leaky bucket algorithm
----ideal

o

w

(3]
T

0.30
025
020

cell loss ratio P,
=
o

0.10
0.05
0.00

© °

Fig. 10. Selectivity of the conventional leaky bucket algorithm, the fuzzy leaky
bucket algorithm, and the neural fuzzy leaky bucket algorithm under: (a) MMDP
traffic source; (b) MMBP traffic source; and (c) MPEG video traffic source.

bucket algorithm and the conventional leaky bucket algorithm.
In the case of the MPEG video traffic source, the difference
phenomenon is more significant. It is because MPEG video
traffic is burstier than MMDP and MMBP traffic sources and
the intelligent TS-UPCs can be more adaptive than the conven-
tional TS-UPC in dynamic, nonstationary systems.

Fig. 11(a)—(c) shows the responsiveness behavior of the three
leaky bucket algorithms under the two-state MMDP traffic
source, the two-state MMBP traffic source, and the MPEG
video traffic source, for Source 0 = 1.5. The responsiveness
is illustrated in terms of the cell-loss ratio versus time. From
the figures, it can be seen that the intelligent leaky bucket
algorithms not only have a shorter response time (i.e., the time
it takes control action to start dropping the cells of a violating
connection) which is about 1.5 s, as compared to 4 s of the
conventional leaky bucket algorithm, but also has a higher
detection rate (i.e., the rate the cell-loss ratio grows) than the
conventional leaky bucket algorithm, under the MMDP, the
MMBP, and the MPEG video traffic sources. It is because
the adopted intelligent techniques have the ability to quickly
express the control structure system using a priori knowledge;
they are less dependent on the availability of a precise model

CHANG et al.: INTELLIGENT LEAKY BUCKET ALGORITHMS FOR SUSTAINABLE-CELL-RATE UPC 757

0.35
030 t
ideal
0° 025+
o
= 020} neural fuzzy fuzzy leaky bucket
= leaky bucket algorithm algorithm
® 015¢ f
kel
5 0.10+ E
© 0.051 conventional
’ leaky bucket algorithm
0.00
5 . 10 15 20
time (sec)
(@
0.35
0.30 T
ideal
n° 025}
2 020t fuzzy leaky bucket
= 015 neural fuzzy algorithm
Q" i leaky bucket algorithm
kol 0.10¢ conventional
© oosk leaky bucket algorithm
0-00G 5 10 15 20
time (sec)
(b)
0.35
0.30[i
0°0.25
2 020 ¢ e T e T e
5 O
§ 0.5
— 010 -———conventional leaky bucket algorithm
8) neural fuzzy leaky bucket algorithm
0.05 *'*'*lfuzzy leaky bucket algorithm |
—————— ideal
0'000 50 100 150 200 250 300
time (sec)
(©)
Fig. 11. Responsiveness of the conventional leaky bucket algorithm, the fuzzy

leaky bucket algorithm, and the neural fuzzy leaky bucket algorithm under:
(a) MMDP traffic source; (b) MMBP traffic source; and (c) MPEG video traffic
source, for Source o = 1.5.

of the controlled process and are more capable of handing
nonlinearities. Also, the neural fuzzy leaky bucket algorithm
performs better than the fuzzy leaky bucket algorithm. It is
because the neural fuzzy network is a neural network structured
on the basis of fuzzy logics; it integrates intelligent learning and
computation of neural networks into fuzzy logic systems. Note
that the fuzzy and neural fuzzy leaky bucket algorithms have
similar detection rate to the fuzzy policer proposed in [13], but
the former two have much earlier response time than the latter.

Fig. 12 shows the mean queueing delay versus different
Source ¢’s under the two-state MMDP, the two-state MMBP,
and the MPEG video traffic sources. We only consider the
queueing delay of a connection with Source ¢ < 1 because
the mean queueing delay of a violating connection needs not
to be concerned. The figure reveals that the intelligent leaky
bucket algorithms have the queueing delay more satisfactory
than the conventional leaky bucket algorithm, regardless of the
traffic source model used. This improvement owes to the fact

10’
> -
% conventional "
° leaky bucket algorithm P
o P
£ - 9 T
2 210’ e ;
[oIKZS e
o] -
g L-—" fuzzy and neural fuzzy
g leaky bucket algorithms
S
101}]
0.9 0.92 0.94 0.96 0.98
(@) °
102
> _4
© 1 e
3 10
ccn conventional
T O leaky bucket algorithm _ _ _ ——
S 8100} e 4
[TIRZ) e
el
c af - fuzzy and neural fuzzy
3 10 leaky bucket algorithms 3
S
2
10503 092 094 096 098
() °
10’
- SRR
0] conventional
'g) 10° L leaky bucket algorithm
[=
)
g) fuzzy and neural fuzzy
o 10-1 leaky bucket algorithms |
c
©
[0}
S
-2
10%3 092 094 096 098
© °

Fig. 12. Mean queueing delay of the conventional leaky bucket algorithm,
the fuzzy leaky bucket algorithm, and the neural fuzzy leaky bucket algorithm
under: (a) MMDP traffic source; (b) MMBP traffic source; and (¢) MPEG video
traffic source.

that the intelligent leaky bucket algorithms further consider
two system parameters, namely, the long-term and short-term
mean rates. With these two parameters, the intelligent leaky
bucket algorithms can know that the connection is conforming,
so they set the increment to be very small in order to reduce
the probability of cells being stored in the queue and thus
decrease the mean queueing delay. Besides, the neural fuzzy
leaky bucket algorithm has almost the same mean queueing
delay as the fuzzy leaky bucket algorithm. Apparently, since
the traffic source is legal, almost nothing can be learned from
the reinforcement learning by the neural fuzzy leaky bucket
algorithm to improve its performance.

VI. CONCLUDING REMARKS

In this paper, we employ the well-known intelligent tech-
niques, which are the fuzzy logic systems and neural fuzzy net-
works, to design two intelligent leaky bucket algorithms for sus-
tainable-cell-rate UPC of multimedia transmission in ATM net-
works. The first algorithm we proposed is the fuzzy leaky bucket

758

algorithm, which as the name implies, employs a FIC in con-
junction with the conventional leaky bucket algorithm. The FIC
monitors the long-term mean rate and the short-term mean rate
of a connection and uses the fuzzification, inference rules and
defuzzification to process them in order to derive the optimal
increment value. The other intelligent leaky bucket algorithm
we proposed is the neural fuzzy leaky bucket algorithm, which
utilizes a NFIC to dynamically adjust the increment value. The
NFIC is basically an FIC, except that it further employs a neural
network to optimize its fuzzy logic system through the rein-
forcement learning.

Simulation results show that, regardless of the traffic sources
chosen, both intelligent leaky bucket algorithms achieve better
performance in terms of selectivity, responsiveness, and mean
queueing delay as compared to the conventional leaky bucket
algorithm. The performance gain of the intelligent algorithms
is a result of employing fuzzy logic and neural fuzzy network,
as well as taking the long-term and short-term mean rates as
the feedback information. Based on the feedback information,
both intelligent algorithms can adapt to the time-varying and
nonstationary traffic, and thus enhance their performance.

Simulation results also show that one of the intelligent
leaky bucket algorithms outperforms the other. Compared
with the fuzzy leaky bucket algorithm, the neural fuzzy leaky
bucket algorithm achieves better performance in all aspects.
Although the fuzzy logic is excellent in dealing with real-world
impression and is capable of adapting itself to dynamic and
bursty environments, it lacks the capability of automatically
constructing its rule structure and membership functions to
achieve the optimal performance. On the other hand, the neural
fuzzy leaky bucket algorithm has perfected the impairment
of the fuzzy leaky bucket algorithm by utilizing the learning
capability of the neural network to continuously update the
membership functions of the fuzzy logic system. However, the
implementation cost of the neural fuzzy leaky bucket algorithm
could be higher than that of the fuzzy leaky bucket algorithm.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their suggestions in improving the presentation of the paper.

REFERENCES

[1] ITU-T, Recommendation 1.371, Geneva, May 1996.

[2] E. P. Rathgeb, “Modeling and performance comparison of policing
mechanism for ATM networks,” IEEE J. Select. Areas Commun., vol.
9, pp. 325-334, Apr. 1991.

[3] L. Dittmann, S. B. Jacobsen, and K. Moth, “Flow enforcement algo-
rithms for ATM networks,” IEEE J. Select. Areas Commun., vol. 9, pp.
343-350, Apr. 1991.

[4] S. Shioda and H. Saito, “Satisfying QoS standard with combined
strategy for CAC and UPC,” in Proc. ICC ’95, pp. 965-969.

[5] M. Butto, E. Cavallero, and A. Tonietti, “Effectiveness of the leaky
bucket policing mechanism in ATM networks,” IEEE J. Select. Areas
Commun., vol. 9, pp. 335-342, Apr. 1991.

[6] C.T.LinandC.S.G.Lee, Neural Fuzzy Systems.
Hall, 1996.

[71 H. J. Ziemmermann, Fuzzy Set Theory and Its Applications, 2nd
ed. New York: Kluwer, 1991, pp. 11-17.

New York: Prentice-

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 6, NO. 5, OCTOBER 2004

[8] R. G. Cheng and C. J. Chang, “Design of a fuzzy traffic controller for
ATM networks,” IEEE/ACM Trans. Networking, vol. 4, pp. 460—469,
June 1996.

[9] A.B.Bonde and S. Ghosh, “A comparative study of fuzzy versus “fixed”
thresholds for robust queue management in cell-switching networks,”
IEEE/ACM Trans. Networking, vol. 2, no. 4, pp. 337-344, Aug. 1994.

[10] R. G. Cheng, C. J. Chang, and L. F. Lin, “A QoS-provisioning neural
fuzzy connection admission controller for multimedia high-speed net-
works,” IEEE/ACM Trans. Networking, vol. 7, pp. 111-121, Feb. 1999.

[11] A. A. Tarraf, I. W. Habib, and T. N. Saadwi, “A novel neural network
traffic enforcement mechanism for ATM networks,” IEEE J. Select.
Areas Commun., vol. 12, pp. 1088-1096, Aug. 1994.

[12] T. D. Ndousse, “Fuzzy neural control of voice cells in ATM networks,”
IEEE J. Select. Areas Commun., vol. 12, no. 3, pp. 1488-1494, Dec.
1994.

[13] V. Catania, G. Ficili, S. Palazzo, and D. Panno, “A comparative analysis
of fuzzy versus conventional policing mechanisms for ATM networks,”
IEEE/ACM Trans. Networking, vol. 4, pp. 449-459, June 1996.

[14] R. G. Garroppo, S. Giordano, S. Miduri, and F. Russo, “A prediction
based UPC mechanism for VBR video traffic,” in Proc. ICC 98, pp.
1119-1123.

[15] F. Guillemin, C. Rosenberg, and J. Mignault, “On characterizing an
ATM source via the sustainable cell rate traffic descriptor,” in Proc.
INFOCOM 95, pp. 1129-1136.

[16] C.C. Lee, “Fuzzy logic in control systems: fuzzy logic controller—part
1> IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 419-435, Mar./Apr.
1990.

Chung-Ju Chang (S’81-M’85-SM’94) was born
in Taiwan, R.O.C., in 1950. He received the B.E.
and M.E. degrees in electronics engineering from
National Chiao-Tung University (NCTU), Hsinchu,
Taiwan, in 1972 and 1976, respectively, and the
Ph.D. degree in electrical engineering from National
Taiwan University (NTU), Taipei, in 1985.

From 1976 to 1988, he was with Telecom-
munication Laboratories, Directorate General of
Telecommunications, Ministry of Communications,
R.O.C., as a Design Engineer, Supervisor, Project
Manager, and then Division Director. There, he was involved in designing
digital switching systems, the RAX trunk tester, the ISDN user-network inter-
face, and ISDN service and technology trials at the Science-Based Industrial
Park. He also acted as a Science and Technical Advisor for the Minister of the
Ministry of Communications from 1987 to 1989. In August 1988, he joined
the faculty of the Department of Communication Engineering and Center for
Telecommunications Research, College of Electrical Engineering and Com-
puter Science, NCTU, as an Associate Professor. He has been a Professor since
1993. He was Director of the Institute of Communication Engineering from
August 1993 to July 1995 and Chairman of Department of Communication
Engineering from August 1999 to July 2001. He is currently the Dean of the
Research and Development Office at NCTU. He has served as an Advisor for
the Ministry of Education to promote the education of communication science
and technologies for colleges and universities in Taiwan since 1995. He is also
acting as a Committee Member for the Telecommunication Deliberate Body.
His research interests include performance evaluation, wireless communication
networks, and broadband networks.

Dr. Chang is a member of the Chinese Institute of Engineers (CIE).

Chung-Hsun Yu received the B.E. and M.E. degrees
in communication engineering from National Chiao-
Tung University, Hsinchu, Taiwan, R.O.C., in 1996
and 1998, respectively.

Since 2001, he has been an Engineer with ZyXEL
Communications Corporation, where he is involved
in the designing of the virtual private network (VPN)
on the Internet.

CHANG et al.: INTELLIGENT LEAKY BUCKET ALGORITHMS FOR SUSTAINABLE-CELL-RATE UPC

Chih-Sheng Chang received the B.E. and M.E. de-
grees in communication engineering from National
Chiao-Tung University, Hsinchu, Taiwan, R.O.C., in
1997 and 1999, respectively.

Since 1999, he has been an Associate Re-
searcher in the Broadband Transport and Access
Technology Laboratory, Telecommunication Lab-
oratories, Taiwan, where he is involved in VoIP
and voice-packetized technology studies and the
development of VoIP-related value-added services.

759

Li-Fong Lin (S5°03) received the B.E. degree in
communication engineering in 1996 from National
Chiao-Tung University (NCTU), Hsinchu, Taiwan,
R.O.C., where he is currently pursuing the Ph.D.
degree in the area of communication engineering.

His research interests include performance anal-
ysis, traffic control over high-speed multimedia net-
works, fuzzy systems, and neural networks.

	toc
	Intelligent Leaky Bucket Algorithms for Sustainable-Cell-Rate Us
	Chung-Ju Chang, Senior Member, IEEE, Chung-Hsun Yu, Chih-Sheng C
	I. I NTRODUCTION

	Fig. 1. Connection model.
	Fig. 2. Flowchart of the conventional leaky bucket algorithm.
	II. L EAKY B UCKET A LGORITHM

	Fig. 3. Basic structure of a fuzzy logic controller.
	III. F UZZY L EAKY B UCKET A LGORITHM

	Fig. 4. Intelligent leaky bucket algorithm.
	Fig. 5. (a) Membership functions for the input variables $\Lambd
	TABLE€I R ULE B ASE FOR FIC
	IV. N EURAL F UZZY L EAKY B UCKET A LGORITHM
	A. Structure of the NFIC

	Fig. 6. Control surface of FIC.
	Fig. 7. Structure of the NFIC.
	Fig. 8. Configuration of the reinforcement learning for the NFIC
	B. Reinforcement Learning
	V. S IMULATION R ESULTS

	Fig. 9. Correspondence between ${\hbox {TS}}\ \sigma$, ${\hbox {
	Fig. 10. Selectivity of the conventional leaky bucket algorithm,
	Fig. 11. Responsiveness of the conventional leaky bucket algorit
	Fig. 12. Mean queueing delay of the conventional leaky bucket al
	VI. C ONCLUDING R EMARKS
	ITU-T, Recommendation I.371, Geneva, May 1996.
	E. P. Rathgeb, Modeling and performance comparison of policing m
	L. Dittmann, S. B. Jacobsen, and K. Moth, Flow enforcement algor
	S. Shioda and H. Saito, Satisfying QoS standard with combined st
	M. Butto, E. Cavallero, and A. Tonietti, Effectiveness of the le
	C. T. Lin and C. S. G. Lee, Neural Fuzzy Systems . New York: Pre
	H. J. Ziemmermann, Fuzzy Set Theory and Its Applications, 2nd ed
	R. G. Cheng and C. J. Chang, Design of a fuzzy traffic controlle
	A. B. Bonde and S. Ghosh, A comparative study of fuzzy versus fi
	R. G. Cheng, C. J. Chang, and L. F. Lin, A QoS-provisioning neur
	A. A. Tarraf, I. W. Habib, and T. N. Saadwi, A novel neural netw
	T. D. Ndousse, Fuzzy neural control of voice cells in ATM networ
	V. Catania, G. Ficili, S. Palazzo, and D. Panno, A comparative a
	R. G. Garroppo, S. Giordano, S. Miduri, and F. Russo, A predicti
	F. Guillemin, C. Rosenberg, and J. Mignault, On characterizing a
	C. C. Lee, Fuzzy logic in control systems: fuzzy logic controlle

