
46 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 2, NO. I, FEBRUARY 1994

Regular Issue Papers

Reinforcement Structureparameter Learning for
Neural-Network-Based Fuzzy Logic Control Systems

Chin-Teng Lin and C. S . George Lee

Abstruct- This paper proposes a reinforcement neural-
network-based fuzzy logic control system (RNN-FLCS) for
solving various reinforcement learning problems. The proposed
RNN-FLCS is constructed by integrating two neural-network-
based fuzzy logic controllers (NN-FLC’s), each of which is a
connectionist model with a feedforward multilayered network
developed for the realization of a fuzzy logic controller. One
NN-FLC performs as a fuzzy predictor, and the other as a fuzzy
controller. Using the temporal difference prediction method, the
fuzzy predictor can predict the external reinforcement signal
and provide a more informative internal reinforcement signal to
the fuzzy controller. The fuzzy controller performs a stochastic
exploratory algorithm to adapt itself according to the internal
reinforcement signal. During the learning process, both structure
learning and parameter learning are performed simultaneously
in the two NN-FLC’s using the fuzzy similarity measure. The
proposed RNN-FLCS can construct a fuzzy logic control and
decision-making system automatically and dynamically through
a reward/penalty signal (i.e., a “good” or “bad” signal) or
through very simple fuzzy information feedback such as “high,”
“too high,” “low,” and “too low.” The proposed RNN-FLCS
is best applied to the learning environment, where obtaining
exact training data is expensive. The proposed RNN-FLCS
also preserves the advantages of the original NN-FLC, such as
the ability to find proper network structure and parameters
simultaneously and dynamically and to avoid the rule-matching
time of the inference engine in the traditional fuzzy logic
systems. Computer simulations were conducted to illustrate the
performance and applicability of the proposed RNN-FLCS.

I. INTRODUCTION

OST of the supervised and unsupervised learning al- M gorithms for neural networks require precise training
data sets for setting the link weights and link connectivity
of the neurons for various applications [l], [2]. For some
real-world applications, precise data for trainingfleaming are
usually difficult and expensive, if not impossible, to obtain.
For this reason, there has been a growing interest in rein-
forcement learning algorithms for neural networks [l]. In this

Manuscript received July 16, 1992; revised February 22, 1993. This work
was supported in part by the National Science Foundation under Grant CDR
8803017 to the Engineering Research Center for Intelligent Manufacturing
Systems and a Grant from the Ford Foundation.

C.-T. Lin is with the Department of Control Engineering, National Chiao-
Tung University, Hsinchu, Taiwan, R.O.C.

C. S. G. Lee is with the School of Electrical Engineering, h r d u e University,
West Lafayette, IN 47907.

IEEE Log Number 9213143.

paper, we are extending our previous work on neural-network-
based fuzzy logic control systems (NN-FLC) [3], [4] to the
reinforcement learning problem.

For the reinforcement learning problem, training data are
very rough and coarse, and are just “evaluative” as compared
with the “instructive” feedback in the supervised learning
problem. Training a network with this kind of evaluative
feedback is called reinforcement learning, and this simple
evaluative feedback, called reinforcement signal, is a scalar.
In addition to the roughness and noninstructive nature of
the reinforcement signal, a more challenging problem to the
reinforcement learning is that a reinforcement signal may only
be available at a time long after a sequence of actions has
occurred. To solve the long time-delay problem, prediction
capabilities are necessary in a reinforcement learning system.
Reinforcement learning with prediction capabilities is much
more useful than the supervised learning schemes in dynamic
control problems and artificial intelligence, since the success
or failure signal might only be known after a long sequence
of control actions. From the biological and cognitive points
of view, reinforcement learning is much closer to the modern
animal learning theory [5] than the supervised learning. This
is also true to the learning of many high-level intelligent skills
such as how to drive a car.

The development of reinforcement learning can be roughly
divided into two stages. The first stage began in the 1950’s,
when mathematical psychologists developed computational
models to explain the learning behavior of animals and human
beings [6] . They viewed learning as stochastic processes and
developed the so-called stochastic learning model. At almost
the same time, cyberneticians and control theorists made
independent efforts on the study of stochastic learning. Their
work basically used deterministic automata as a model for
learning systems operating in stationary random environments,
and later the model was generalized to use stochastic automata
[7]. More details on the stochastic learning automata can be
found in [9]. At this stage, most of the learning models were
“nonassociative,” since there was no input to the learning
system except the reinforcement signal. A typical example
is the two-armed bandit problem [8]. Representative of the
second stage development of reinforcement learning is the
associative reinforcement learning, in which people tried to

10634706/94$04.00 0 1994 IEEE

LIN AND LEE FUZZY LOGIC CONTROL SYSTEMS 41

associate an input pattem with output pattems according to
a reinforcement signal. This was stimulated by the theory
proposed by Klopf [lo]. Inspired by Klopf‘s work and earlier
simulation results [111, Barto and his colleagues used neuron-
like adaptive elements to solve difficult learning control prob-
lems with only reinforcement signal feedback [121. They also
proposed the associative reward penalty (A R - P) algorithm for
adaptive elements called AR-P elements [131, and proposed
several generalizations of the AR-P algorithm [141. Williams
formulated the reinforcement learning problem as a gradient-
following procedure [15], and identified a class of algorithms,
called REINFORCE algorithms, that possess the gradient
ascent property. However, these algorithms still do not include
the full A R - ~ algorithms.

In this paper, we shall apply the technique of associative re-
inforcement learning to our proposed reinforcement NN-FLC
learning system. The proposed learning system can construct
a fuzzy logic control and decision system automatically and
dynamically through a reward penalty signal (i.e., good/bad
signal) or through very simple fuzzy feedback information
such as “high,” “too high,” “low,” and “too low.” Moreover,
there is a possibility of a long time delay between an action
and the resulting reinforcement feedback information. To
achieve the goal of solving reinforcement learning problems in
fuzzy logic systems, a Reinforcement Neural-Network-Based
Fuzzy Logic Control System (RNN-FLCS) is proposed which
consists of two closely integrated NN-FLC’s. One NN-FLC,
the action network, is used for the fuzzy logic controller, it
can choose a proper action or decision according to the current
input vector. Its functions are the same as those proposed in
[3], [4], and the major difference is that there is no “teacher”
to indicate output errors for the action network to learn in
the reinforcement learning problem. The other NN-FLC, the
evaluation network, is used as the fuzzy predictor, and it
performs the single- or multistep prediction of the scalar
extemal reinforcement signal. The fuzzy predictor provides the
action network with more informative and beforehand intemal
reinforcement signals for learning. Structurally, these two NN-
E C ’ s share the first two layers of the original NN-FLC in [3];
that is, they use the same distributed representation of input
pattems. This representation is the overlapping type and is
dynamically adjustable through the learning process.

Associated with the proposed RNN-FLCS is the reinforce-
ment structure/parameter learning algorithm, which uses the
temporal difference technique on the evaluation network to
decide the output errors for either the single- or multistep
prediction. With the knowledge of output errors, the on-line
supervised structure/parameter learning algorithm developed
in [4] can be applied to train the evaluation network to obtain
the proper membership functions and fuzzy logic rules. For the
action network, the reinforcement structure/parameter learning
algorithm allows its output nodes to perform stochastic explo-
ration. With the intemal reinforcement signals from the fuzzy
predictor, the output nodes of the action network can perform
more effective stochastic searches with a higher probability of
choosing a good action as well as discovering its output errors.
Again, after finding the output errors, the whole action network
can be trained by the on-line learning algorithm described

in [4]. Thus, the proposed reinforcement structure/parameter
learning algorithm basically utilizes the techniques of temporal
difference, stochastic exploration, and the on-line supervised
structure/parameter learning algorithm [4]. It can determine
the proper network size, connections, and parameters of an
RNN-FLCS dynamically through an extemal reinforcement
signal. Moreover, learning can proceed even in the period
without any extemal reinforcement feedback. The RNN-FLCS
also maintains the human-understandable structure of the NN-
FLC, such that IF-THEN type expert knowledge can be
easily incorporated into the fuzzy logic controller or the fuzzy
predictor, which is basically a model of the environment or the
controlled plant. After learning, the action network becomes
an independent fuzzy logic controller which can be used to
control the plant in the original environment.

In Section 11, the basic structure and functions of our
previously proposed NN-FLC are described [3], 141. The
structure of the proposed NN-FLCS and the correspond-
ing reinforcement structure/parameter leaming algorithm with
single-step prediction capability are presented in Section I11
to solve simpler reinforcement learning problems. In Section
IV, the multistep fuzzy predictor is proposed to perform
multistep prediction in more complex reinforcement learning
problems in which there is a long time delay between an
action and the resultant reinforcement signal. In Section V, the
cart-pole balancing problem is simulated to demonstrate the
capabilities of the proposed RNN-FLCS. Finally, conclusions
are summarized in Section VI.

11. NEURAL-NETWORK-BASED FUZZY
LOGIC CONTROLLER (NN-FLC)

This section introduces the structure and functions of our
previously proposed Neural-Network-Based Fuzzy Logic Con-
troller (NN-FLC) [3], [4], which is a basic component of
the proposed RNN-FLCS. The learned NN-FLC functions
as a connectionist neural-network-based fuzzy logic control
and decision-making system. Fig. 1 shows the basic con-
figuration of a fuzzy logic controller which is composed
of three major components: fuzzifier, fuzzy rule base and
inference engine, and defuzzifier. The fuzzifier performs the
function of fuzzification that converts input data from an
observed input space into proper linguistic values of fuzzy
sets through predefined input membership functions. The rule
base consists of a set of fuzzy logic rules in the form of
“&THEN” to describe the control policy of expert knowledge.
The inference engine is to match the output of the fuzzifier
with the fuzzy logic rules and perform fuzzy implication
and approximate reasoning to decide a fuzzy control action.
Finally, the defuzzifier performs the function of defuzzification
to yield a nonfuzzy (crisp) control action from an inferred
fuzzy control action through predefined output membership
functions. More detailed descriptions of the concepts and
definitions of a fuzzy logic controller can be found in [3],
[4], [161, [171. A major problem of designing a fuzzy logic
controller is determining the proper input/output membership
functions and fuzzy logic rules. Based on the basic structure
and concepts of the fuzzy logic controller, an NN-FLC with

48 IEEE TRANSACTIONS ON FUZZY SYSYEMS, VOL. 2. NO. 1, FEBRUARY 1994

X

states
or

outputs

Fuzzifier Plant Engine

I I

L - - - - - - - - - - -’
Fig. 1. General model of a fuzzy logic controller and decision making system.

a connectionist structure has been proposed [3] to realize
the traditional fuzzy logic controller with learning abilities.
The NN-FLC is a feedforward multilayered network that
integrates the basic elements and functions of a traditional
fuzzy logic controller (e.g., membership functions, fuzzy logic
rules, fuzzification, defuzzification, and fuzzy implication)
into a connectionist structure which has distributed learning
abilities to learn the input/output membership functions and
fuzzy logic rules.

Fig. 2 shows the structure of our NN-FLC, which is de-
scribed in [3]. The system has five layers. Nodes at layer
one are input nodes (linguistic nodes) which represent input
linguistic variables. Layer five is the output layer. Nodes at
layers two and four are term nodes and act as membership
functions to represent the terms of the respective linguistic
variable. Actually, a layer-two node can be either a single node
that performs a simple membership function (e.g., a triangular-
shaped function or a bell-shaped function) or multilayered
nodes (a subneural net) that perform a complex membership
function (e.g., in an acoustic cue detector [4]). Hence, the
total number of layers in this connectionist model could be
more than five. Each node at layer three is a rule node
which represents one fuzzy logic rule. Thus, all layer-three
nodes form a fuzzy rule base. Links at layers three and four
function as a connectionist inference engine [3], [4], which
avoids the rule-matching process. Layer-three links define the
preconditions of the rule nodes, and layer-four links define the
consequences of the rule nodes. Therefore, for each rule node,
there is at most one link (perhaps none) from some term node
of a linguistic node. This is true both for precondition links
and consequent links. The links at layers two and five are fully
connected between linguistic nodes and their corresponding
term nodes. The arrow on the link indicates the normal signal
flow direction when this network is in use. We shall later
indicate the signal propagation, layer by layer, according to
the arrow direction. Signals may flow in the reverse direction
in the learning process, as discussed below in Sections 111 and
IV.

With this five-layered structure of the proposed connection-
ist model, a node’s basic functions can be defined. A typical
network consists of a unit which has some finite fan-in of

connections represented by weight values from other units and
fan-out of connections to other units (see Fig. 3). Associated
with the fan-in of a unit is an integration function, f, which
serves to combine information, activation, or evidence from
other nodes. This function provides the net input for this node:

net - input = f (@, U! , . . . , U:; wf, tug, .. . , w,”) (1)

where U: represents an ith input signal from the kth layer, w:
represents the ith link weight of the kth layer, the superscript
k indicates the layer number, and p represents the number of
a node’s input connections. This notation will also be used in
the following equations. A second action of each node is to
output an activation value as a function of its net input:

(2) output = of = a(f)

where a(.) denotes the activation function. For example (in
standard form),

Y

We shall next describe the functions of the nodes in each of
the five layers of the proposed connectionist model.

.Layer 1: The nodes in this layer transmit input values
directly to the next layer. That is,

f =ut and a= f. (4)

From (4), the link weight at layer one (wd) is unity.
.Layer 2 : If we use a single node to perform a simple

membership function, then the output function of this node
should be this membership function. For example, for a bell-
shaped function

where m;j and a;j are, respectively, the center (or mean) and
the width (or variance) of the bell-shaped function of the jth
term of the ith input linguistic variable zi. Hence, the link
weight at layer two can be interpreted as m;j. If we
use a set of nodes to perform a membership function, then
the function of each node can be in the standard form as (3),

49 LIN AND LEE FUZZY LOGIC CONTROL SYSTEMS

r A

Fig. 2. F’roposed neural-network-based fuzzy logic controller (NN-FLC)

Layer k - - -

U:

Basic Structure of a Node

Fig. 3. Basic structure of a node in a neural network.

The link weight in layer three (w,”) is then unity. Other pos-
sibilities for performing the fuzzy AND operation are “product”
or “softmin” operator (a soft version of the min operator
[33]). Although these operators require more computations
than the min operator, they are differentiable and suitable for
the derivation of a learning algorithm.

.Layer 4: The links at layer four should perform the fuzzy
OR operation to integrate the fired rules which have the same
consequent:

P

(7) f = c u q and a = min(1, f).
i=l

Hence, the link weight wf = 1.
.Layer 5: The nodes in this layer transmit the decision

signal out of the network. These nodes and the layer-five links
attached to them act as the defuzzifier. If mf’’s and u ;~ ’ s
are the centers and the widths of the membership functions,
respectively, then the following functions can be used to
simulate the center of area defuzzification method [161, [171 :

f = w:~u: = C(mi jg i j)u : anda = ~ . (8)
and the whole subnet is trained off-line to perform the desired aiju:
membership function by a standard learning algorithm (e.g.,
backpropagation [2]).

.Layer 3: The links in this layer are used to perform
precondition matching of fuzzy logic rules. Hence, the rule
nodes should perform the fuzzy AND operation

Here the link weight at layer five (w;’) is mijaij.

Two complementary learning schemes were proposed to
set up the NN-FLC in [3] and [4]. The on-line supervised
learning algorithm performs very well when the training data
are available on-line [4], while the two-phase hybrid learning
algorithm is superior when sets of training data are available f = min(u7, U:, . . . , U:) and a = f. (6)

50

off-line [3 1. However, both learning schemes require precise
training data to indicate the exact desired output, and then
use the precise training data to compute the output errors
for training the whole network. Unfortunately, such detailed
and precise training data may be very expensive or even
impossible to obtain in some real-world applications because
the controlled system may only be able to provide the learning
algorithm with a reinforcement signal such as a binary decision
of right/wrong of the current controller/decision maker. To
train a network with this kind of evaluative feedback, two NN-
FLC’s need to be integrated into the structure of the proposed
RNN-FLCS with the corresponding reinforcement learning
algorithm developed in the following sections. One NN-FLC in
the proposed R”-FLCS functions as a fuzzy controller, and
the other NN-FLC as a fuzzy predictor. The reinforcement
learning algorithm combines the structure learning and the
parameter learning to determine optimal centers (mij’s) and
widths (aij’s) of the term nodes in layers two and four. At
the same time, it will learn fuzzy logic rules by deciding the
connection types of the links at layers three and four: that is,
the precondition links and consequent links of the rule nodes.
All these learning algorithms will be performed on both NN-
FLC’s simultaneously and only conducted by a reinforcement
signal feedback from the extemal environment.

111. STRUCTURE/PARAMETER LEARNING ALGORITHM FOR
THE R”-FLCS WITH A SINGLE-STEP FUZZY PREDICTOR

Unlike the supervised learning problem in which the correct
“target” output values are given for each input pattem to
instruct the network’s learning, the reinforcement learning
problem has only very simple “evaluative” or “critic” in-
formation instead of “instructive” information available for
learning. In the extensive case, there is only a single bit of
information to indicate whether the output is right or wrong.
Fig. 4 shows how a network and its training environment
interact in a reinforcement learning problem. The environment
supplies a time-varying vector of input to the network, receives
its time-varying vector of output/actions, and then provides
a time-varying scalar reinforcement signal. In this paper,
the reinforcement signal r (t) can be one of the following
forms: 1) a two-valued number, r (t) E {-1, l}, such that
r (t) = 1 means “a success” and r (t) = -1 means “a failure”;
2) a multivalued discrete number in the range [-1,1], for
example, r (t) E {-1, -0.5,0,0.5, l} which corresponds to
different discrete degrees of failure or success; or 3) a real
number, r (t) E [-1,1], which represents a more detailed and
continuous degree of failure or success. We also assume that
r (t) is the reinforcement signal available at time step t and
is caused by the input and actions chosen at time step t - 1
or even affected by earlier input and actions. The objective
of learning is to maximize a function of this reinforcement
signal, such as the expectation of its value on the upcoming
time step or the expectation of some integral of its values
over all future time.

The precise computation of the reinforcement signal highly
depends on the nature of the environment and is assumed to be
unknown to the learning system. It could be a deterministic or

[EEE TRANSACTIONS ON FUZZY SYSYEMS, VOL. 2, NO. 1 , FEBRUARY 1994

PREDICTOR
Output Membership

RULE
M ATCHINC

Fig. 4. Proposed reinforcement neural-network-based fuzzy logic control
system (RNN-FLCS).

stochastic function of the input produced by the environment
and the output it receives from the network. There are three
classes of reinforcement learning problems. First, for the
simplest case, the reinforcement signal is always the same
for a given input/output pair; hence, the network can learn
a definite input/output mapping. Moreover, the reinforcement
signals and input patterns do not depend on previous network
output. For example, the parity learning problem and the
symmetry learning problem 1181 are in this class. Second,
in a stochastic environment, a particular inpudoutput pair
determines only the probability of positive reinforcement.
However, this probability is fixed for each inpudoutput pair
and, again, the reinforcement signal and input sequence do
not refer to past history. This class includes the nonassociative
reinforcement learning problem, in which there is no input, and
we need to determine the best output pattern with the highest
probability of positive reinforcement from only a finite set
of trials. A typical example is the two-armed bandit problem
[8]. Third, for the most general case, the environment is itself
govemed by a complicated dynamical process, and both the
reinforcement signal and input patterns may depend on the past
network output. For example, in a chess game, the environment
is actually another player, and the network only receives a
reinforcement signal (win or lose) after a long sequence of
moves.

To resolve the three different classes of reinforcement learn-
ing problems, a new structure, called the reinforcement neural-
network-based fuzzy logic control system (€2”-FLCS), is
proposed. The proposed RNN-FLCS, as shown in Fig. 4,
integrates two NN-FLC’s into a learning system: one NN-

LIN AND LEE: FUZZY LOGIC CONTROL SYSTEMS 51

FLC for the fuzzy controller and the other NN-FLC for
the fuzzy predictor. These two NN-FLC’s share the same
layers 1 and 2 and have individual layer 3 to layer 5 ,
which are not clearly shown in the fuzzy predictor in Fig.
4. Each network has exactly the same structure as shown in
Fig. 2. In other words, the fuzzy controller (action network)
and the fuzzy predictor (evaluation network) share the same
distributed representation of input states by using the same
input membership functions (i.e., the same fuzzifier), but they
have independent fuzzy logic rules (a different rule base and
decision-making process) and different output membership
functions (a different defuzzifier). The action network can
have multiple output as shown in Fig. 2, although only
one output node is shown in Fig. 4. In the multioutput
case, all the output nodes of the action network receive
the same intemal reinforcement signals from the evaluation
network. The evaluation network has only one output node
since it is used to predict the extemal scalar reinforcement
signal. The action network decides a best action to impose
onto the environment in the next time step according to the
current environment status. The evaluation network models the
environment such that it can perform a single- or multistep
prediction of the reinforcement signal that will eventually be
obtained from the environment for the current action chosen
by the action network. The predicted reinforcement signal can
provide the action network beforehand as well as more detailed
reward/penalty information (“intemal reinforcement signals”)
about the candidate action for the action network to learn and
to decrease the uncertainty it faces to speed up the learning.

In this section, a reinforcement structure/parameter learning
algorithm is proposed to solve the first and second classes
of the reinforcement learning problem on the proposed RNN-
FLCS using a single-step fuzzy predictor. Since the third class
of the reinforcement learning problem is more difficult, a
more powerful multistep fuzzy predictor is necessary for the
RNN-FLCS. This will be discussed in Section IV.

A . Stochastic Exploration

to be some source of randomness in the manner in which
output actions are chosen by the action network such that the
space of possible output can be explored to find a correct value.
Thus, the output nodes (layer 5) of the action network are now
designed to be stochastic units which compute their output as
a stochastic function of their input. The functions of nodes
in the other layers of the action network remain unchanged as
described in Section 11. Such an approach has also been used in
other reinforcement learning algorithms [121-[15], [181-[20]
and is consistent with the closely related theory of stochastic
learning automata[9].

In our learning algorithm, the gradient information, g,
is also estimated by the stochastic exploratory method [19].
In particular, the intuitive idea behind the multiparameter
distributions suggested by Williams [15] is used for the
stochastic search of network output units. In estimating the
gradient information, the output y of the action network does
not directly act on the environment. Instead, it is treated as
a mean (expected) action. The actual action, y, is chosen
by exploring a range around this mean point. This range
of exploration corresponds to the variance of a probability
function which is the normal distribution in our design. This
amount of exploration, a@), is chosen as:

k k o(t) = -[1 - tanh(p(t))] = ____ 2 1 + e 2 P (t)

where k is a search-range scaling constant which can be simply
set to 1, and p (t) is the predicted (expected) reinforcement
signal used to predict ~ (t) . Equation (10) is a monotonic de-
creasing function between k and 0, and a(t) can be interpreted
as the extent to which the output node searches for a better
action. Since p (t) is the expected reward signal, if p (t) is
small, the exploratory range, a(t) , will be large according to
(10). On the contrary, if p (t) is large, ~ (t) will be small.
This amounts to narrowing the search about the mean, y (t) ,
if the expected reinforcement signal is large. This can provide
a higher probability to choose an actual action, f (t) , which is - . . .

In this section, we first develop the learning algorithm very ‘lose to y (t) , since it is expected that the mean action y (t)

for the action network. The goal of the reinforcement strut- is very close to the best action possible for the current given
ture/parameter learning algorithm is to adjust the parameters input vector. On the other hand, the search range about the
(e.g., mi’s) of the action network, to change the connectionist mean y (t) is broadened expected reinforcement is

structure, or even to add new nodes if necessary, such that the
reinforcement signal is maximum; that is,

small such that the actual action can have a higher probability
of being quite different from the mean action y(t). Thus, if an
expected action has a smaller expected reinforcement signal,

Or
Om; Ami c(-. (9)

To determine &, we need to know k , where y is the output
of the action network. (For clarity, we discuss the single-output
case first.) Since the reinforcement signal does not provide
any hint as to what the right answer should be in terms of
a cost function, there is no gradient information. Hence, the
gradient $$ can only be estimated. If we can estimate g, then
the on-line supervised structure/parameter learning algorithm
[4] can be directly applied to the action network to solve
the reinforcement learning problem. To estimate the gradient
information in a reinforcement learning network, there needs

a?

we can have more novel trials. In terms of searching, the use
of multiparameter distributions in the stochastic nodes (the
output nodes of the action network) could allow independent
control of the location being searched and the breadth of the
search around that location. In the two-parameter distribution
approach, a predicted reinforcement signal is necessary to
decide the search range a(t) . This predicted reinforcement
signal can be obtained from the fuzzy predictor. If no such
prediction is available, the search range a(t) can be set as
a constant. Then, the multiparameter distribution approach
reduces to the single-parameter distribution approach, which
has been widely used in the reinforcement learning algorithms
[11]-[14]. Once the variance has been decided, the actual

52 IEEE TRANSACTIONS ON FUZZY SYSYEMS, VOL. 2, NO. 1 , FEBRUARY 1994

output of the stochastic node can be set as:

Y(t> = WY(t)> 4 t)) . (1 1)

That is, Q(t) is a normal or Gaussian random variable with
the density function:

1
f (Y) = (12)

For a real-world application, $(t) should be properly scaled to
the final output to fit the input specifications of the controlled
plant. This scaling factor or method is application-oriented.

The gradient information is estimated as:

where the subscript t - 1 represents the time displacement,
and g is a scaling factor. The time displacements in (13)
and the following equations reflect the assumption that the
reinforcement signal (which may be the “predicted” reinforce-
ment signal in the multistep fuzzy predictor) at time step t
depends on the input and actions chosen at time step t - 1.
In (13), the term 7 is the normalized difference between
the actual and expected actions, T (t) is the real reinforcement
feedback for the actual action y (t - l), andp(t) is the predicted
reinforcement signal for the expected action y(t - 1). Equation
(13) was derived based on the following intuitive concept. If
~ (t) > p (t) , then y(t - 1) is a better action than the expected
one, y(t - 1), and y(t - 1) should be moved closer to c(t - 1).
If ~ (t) < p (t) , then Y(t - 1) is a worse action than the
expected one, and y (t - 1) should be moved farther away
from y(t - 1). This idea also comes from the observations of
a discrete gradient descent method. The concept behind (13)
is frequently adopted in the stochastic exploration techniques

After the gradient information is available, we have trans-
formed the reinforcement learning problem to the supervised
learning problem and can apply the on-line supervised struc-
ture/parameter learning algorithm in [4] to develop the fol-
lowing reinforcement structure/parameter learning algorithm
for the action network in the proposed RNN-FLCS. A de-
tailed derivation and description of the on-line supervised
structure/parameter learning algorithm can be found in [4].

One important characteristic of the on-line supervised struc-
ture/parameter learning algorithm is that it can leam both the
network structure and parameters simultaneously. Learning the
network structure includes deciding the proper number of out-
put term nodes in Layer 4 and the proper connections between
the nodes in Layers 3 and 4 of an NN-FLC. This learning also
decides the coarse of the output fuzzy partitions and finds
the correct fuzzy logic rules. Learning the network parameters
includes adjusting the node parameters in Layers 2 and 4.
This corresponds to leaming input and output membership
functions. The flowchart of this on-line learning algorithm is
shown in Fig. 5 . Given the gradient error information in (13),
the proposed learning algorithm first decides whether or not

~ 9 1 .

to perform the structure learning based on the previously pro-
posed fuzzy similarity measures [4] of the output membership
functions. If structure learning is necessary, then the proposed
learning algorithm will further decide whether to add a new
output term node (a new membership function); it will also
change the consequenct of some fuzzy logic rules properly.
After the structure learning process, the parameter learning will
be performed to adjust the current membership functions. This
structure/parameter learning will be repeated for each real-
time incoming internal reinforcement signal, which appears
either with the same frequency as the external reinforcement
signal (in the single-step prediction problem) or with much
higher frequency than the extemal reinforcement signal (in the
multistep prediction problem). When the structure/parameter
training loop is complete, rule combination [3] is performed
to find the minimum node representation of fuzzy logic rules.
This is the final step in the process.

Before entering the structure/parameter learning loop, as
shown in Fig. 5, we need to perform two kinds of initial-
ization: structure initialization and parameter initialization. In
the structure initialization, the desired coarse of input fuzzy
partitions (i.e., the size of the term set of each input linguistic
variable) and the initial guess of output fuzzy partitions must
be provided from the outside world. Before this network is
trained, an initial form of the network is constructed and,
during the learning process, new nodes may be added and some
connections changed. Finally, after the learning process, some
nodes and links of the network will be deleted or combined
to form the final structure of the network. In its initial form
(see Fig. 2) , there are ni IT(xi)/ rule nodes with the input
of each rule node coming from one possible combination of
the terms of input linguistic variables with the constraint that
only one term in a term set can be a rule node’s input. Here,
IT(xi)l indicates the numberlof terms of xi (i.e., the number
of fuzzy partitions of input state linguistic variable xi). Thus,
the state space is initially divided into lT(x1)l x lT(x2)I x
. . . x IT(xn)l linguistically defined nodes (or fuzzy cells)
which represent the preconditions of fuzzy rules. Furthermore,
there is only one link between a rule node and an output
linguistic variable. This link is connected to a term node of the
output linguistic variable. The initial candidate (term node) of
the consequent of a rule node can be assigned by an expert
(if possible) or chosen randomly. A suitable term in each
output linguistic variable’s term set will be chosen for each
rule node after the learning process. With the initial network
structure, the parameters in this structure should be initialized.
The parameter initialization decides the initial membership
functions of input/output linguistic variables. Theoretically,
they can be set randomly; however, a more efficient way is to
use identical membership functions such that their domains can
cover the region of corresponding input/output space evenly
according to the given initial coarse of fuzzy partitions. This
initilization process is used for both the action network and the
evaluation network, which can be a single-step or multistep
fuzzy predictor.

After the initialization process, the learning algorithm enters
the training loop in which each loop corresponds to an
incoming internal reinforcement signal. Basically, the idea of

LIN AND LEE FUZZY LOGIC CONTROL SYSTEMS

Forward Signal Propagation
and

Stochastic Exploration
or

Temporal Difference Prediction

Change fuzzy
logic rules

+=r Parameter adjustment 4 Done ?

I Rule combination I

Fig. 5. Flowchart of the proposed reinforcement structure/parameter learning
algorithm.

backpropagation [2] is used here to find the errors of node
output in every layer except the output layer. These errors
are then analyzed by the fuzzy similarity measure to perform
structure and/or parameter adjustments. The detailed learning
rules are derived.

The goal is to maximize the reinforcement signal r(t) . For
each input vector from the environment, starting at the input
nodes, a forward pass computes the activity levels of all the
nodes in the network and, at the end, stochastic exploration
is performed at the output node to predict g. Then, starting
at the output nodes, a backward pass computes for all the

53

hidden nodes. Assuming that w is an adjustable parameter in
a node (e.g., the center of a membership function), the general
parameter learning rule used is:

d r
A W E -

d W

where 7 is the learning rate, and

- (16)
dr d(net - input) - dr d f _- - - -

d r
dw d(net - input) dw df aw

d r da df
da d f dw ’
__- - -

To show the learning rule, we shall show the computations
of 3, layer by layer, starting from the output layer; we use
the bell-shaped membership functions with centers mi’s and
widths oils as the adjustable parameters for these computa-
tions.

.Layer 5: Using (16), (13), and (8), the adaptive rule of the
center m; is derived:

Hence, the expected updated amount of the center is:

Similarly, using (6), (13), and (8), the adaptive rule of the
width CT~ is derived:

Hence, the expected updated amount of the width parameter is:

The error to be propagated to the preceding layer is:

[” y] . (21) ar dr aa
s5 (t) = = -~ = [r (t) - p (t)] -

afa dadf5 t-1

Fuzzy Similarity Measure: In this step, the system decides
whether the current structure should be changed according
to the exvected uvdated amount of the center and width

54 IEEE TRANSACTIONS ON FUZZY SYSYEMS, VOL. 2, NO. 1, FEBRUARY 1994

parameters [(18) and (20)].
and width are, respectively,

To do this, the expected center
computed:

From the current membership functions of output linguistic
variables, we want to find the one which is the most similar to
the expected membership function by measuring their fuzzy
similarity. The fuzzy similarity measure [4] determines the
similarity between two fuzzy sets. If A and B are two fuzzy
sets with bell-shaped membership functions, then:

The approximate fuzzy similarity measure of A and
B , E (A , B) , can be computed as follows: Assuming
ml 2 mz,

where (A n B (indicates the cardinality of A n B and it can
be easily computed from:

where h(z) = max(0,x).

tion with center mi and width ai. Let
Let M(mi, ai) represent the bell-shaped membership func-

where k = IT(y)l is the size of the fuzzy partition of the output
linguistic variable y(t). After the most similar membership
function M(mi-ciosest, ai-closest) to the expected membership
function M(mi-new, ai-new) has been found, the following
adjustment is made:

IF degree(i, t) < a(t) ,
THEN

create a new node M(mi-new, Oi-new) in
layer 4

node,
and denote this new node as the i-closest

do the structure learning process,
ELSE IF M(mi-closest, ai-closest) #

M(mi , ai)
THEN

do the structure learning process,

do the following parameter adjustments in
ELSE

layer 5 :

m;(t + 1) = mi-new

ai(t + 1) = ai-new

skip the structure learning process.
a(t) is a monotonically increasing scalar similarity criterion

such that the lower similarity is allowed in the initial stages of
the learning. According to this judgment, degree(i,t) is first
compared to the similarity criterion. If there is not enough
similarity, then a new term node (new membership function)
with the expected parameters is built because, in this case,
all the current membership functions are too different from
the expected one. A new node with the expected membership
function is necessary, and the output connections of some just
firing rule nodes should be changed to point to this new term
node through the structure learning process. If no new term
node is necessary, the learning algorithm will then check if
the ith term node is the i-closest node. If this is false, some of
the just fired fuzzy logic rules should have the i-closest (term)
node instead of the original ith term node as their consequent.
In this case, the structure learning process should be performed
to change the current structure properly. If the ith term node is
the i-closest node, then no structural change is necessary; only
the parameter learning should be performed by the standard
backpropagation algorithm. The structure learning process is
given later.

Structure Learning: When entering this process, it means
that the ith term node in Layer 4 is improperly assigned as
the consequent of some fuzzy logic rules which have just
been fired strongly. The more proper consequent for these
fuzzy logic rules should be the i-closest node. To find the
rules whose consequences should be changed, we set afiring
strength threshold p. Only the rules whose firing strengths
are higher than this threshold are treated as real frring rules.
Only the real firing rules are considered for changing their
consequent, since only these rules are fired strongly enough to
contribute to the results of judgment. Assuming that the term
node M(mi , ai) in layer 4 receives input from rule nodes
1 ... 1 in layer 3, whose corresponding firing strengths are
ag's,i = 1. . .1, then:

IF ag(t) 2 ,B, THEN change the consequent of the ith rule
node

from M(m; , a;) to M(m;-new, ai-new).
To utilize the error signal more efficiently, the following

fine tuning can be performed. Let

LIN AND LEE: FUZZY LOGIC CONTROL SYSTEMS 55

(Ami-closest)extra = V ’ ~ I (mi-new - mi-closest)
(Agi--closest)extra 1 $kl(ci--new - ci-closest)
where 0 5 77’ < 0 < 1. The subscript “extra” denotes
the updated amount in addition to those calculated from
other possible error signals. The cutoff value p is chosen
empirically. In most cases, a consequent label, which is found
to cause a large output error, is usually supported by one or
a few strongly fired rules. Hence, it is not too difficult to find
a proper p value. A p value in the range [O S , 0.81 usually
leads to good learning results. However, it is possible that
several weakly fired rules, which share one consequent label,
might affect the output substantially. In this extreme case,
the structure learning rule might not be able to change the
consequent of these rules properly. This case rarely happens
because it means that a set of rules sharing one consequent
is assigned to a wrong consequent label simultaneously in the
learning process. Three possible methods can be used to solve
this problem. First, the p value can be changed adaptively
such that it will be lowered when all the rules to a “wrong”
consequent label are fired weakly. Second, a cutoff is put on
the effect of the Layer 4 consequent label rather than using
such a cutoff at the Layer 3 output. Third, the cutoff p could be
eliminated by weighting the changes caused in a Layer 4 node
or by the sum of degrees of rules feeding into it with suitable
normalization. This weighting scheme will automatically cause
large changes in the important rules only and will do so in a
smooth and graceful manner. These suggested modifications
on the structure learning algorithm need further studies.

*Layer 4: There is no parameter to be adjusted in this
layer. Only the error signals (6:’s) need to be computed and
propagated. The error signal 6: is derived as in the following:

64 d~ d~ da; dT ---= - - - -
dfi dui d fi d(net - input)5
d(net - input)5

dai
where, from (8),

d(net - input)5 - df5
da; dU5

--

and, from (21),
dT

d f 5
- = s5 = [T @) - p (t)] - - dT

d(net - input)5 .[VI .
t -1

Hence, the error signal is:

In the multioutput case, the computations in layers five and
four are exactly the same as the ones using the same internal
reinforcement signals and proceed independently for each
output linguistic variable.

*Layer 3: As in layer four, only the error signals need to be
computed. According to (7), this error signal can be derived:

(33)
- 8~ d(net - input)4
-

d(net - input)4 dui

Hence, the error signal is 6f(t) = 64(t) . If there is more than
one output, then the error signal becomes 61(t) = XI, 6; (t) ,
where the summation is performed over the consequences of
a rule node; that is, the error of a rule node is the summation
of the errors of its consequent.

*Layer 2: Using (16) and (9, the adaptive rule of mij is
derived:

(34)
dr d~ dui dfi d~ 2(u; - mij) -- - - -eft

a?.
dmi j dui d f i dmi j dui 23

where, from (33),

(35)
dT - d~ d(net - input)k
- dui - k d(net - input)k dui

dT
d(net - input)k df,3

- = 62 - - dT

and, from (6),

d(net -input)k - df3 - -
da; 8.119

1 if = min (inputs of rule node I C) ;
0 otherwise.

(37)

Hence,

where the summation is performed over the rule nodes that
ai feeds into, and

q k (t) = 0 otherwise.

So, the adaptive rule of mij’s is:

{ 6 z (t) if ai is minimum in lcth rule node’s input;

(39)

(40)
1 t -1

Similarly, using (16), (3, and (35)-(39), the adaptive rule of
aij is derived:

d~ d~ dui d f i

daij dui d f i dci j

(41)

56 IEEE TRANSACTIONS ON FUZZY SYSYEMS, VOL. 2, NO. 1, FEBRUARY 1994

Hence, the adaptive rule of a;j becomes: predictor is exactly the same as the on-line supervised learning
algorithm proposed in [4] for the NN-FLC with a single output
node. The goal to train the single-step fuzzy predictor is to
minimize the squared error prediction:

. (42) 1 t -1

Since the min operator used in layer 3 is nondifferentiable,
the learning rule [(37) and (39)] will cause a Dirac delta type
of function. This can be avoided if the softmin operator [33]
is adopted. In this case, a form of leaky learning will take
place at the antecedent level of the network and may lead to a
faster learning with a less number of iterations. However, due
to more complex computations of the softmin operator, the
actual learning time in each iteration will be longer. Hence,
for practical considerations, the min operator is selected for
performing the fuzzy AND operation in layer 3.

The whole learning procedure is summarized by the flow-
chart in Fig. 5 . The proposed reinforcement learning algorithm
provides a novel on-line scheme to combine the structure
learning and the parameter learning such that they can be
performed simultaneously. Finally, it should be noted that this
backpropagation algorithm can be easily extended to train the
membership function implemented by a subneural net instead
of a single-term node in layer two since, from the analysis,
the error signal can be propagated to the output node of the
subneural net. Then, using a similar backpropagation rule in
this subneural net, the parameters in this subneural net can be
adjusted.

B. Sinale-Ster, Fuzzv Predictor

We shall use an NN-FLC to develop a single-step fuzzy
predictor (evaluation network) as shown in Fig. 4. It shares
the same fuzzifier as the action network; that is, both use
the same intemal representation, which is an overlapping
type of distributed representation of input pattems. The fuzzy
predictor receives an extemal reinforcement signal from the
environment and produces intemal reinforcement signals to
the action network. The function of the single-step fuzzy
predictor is to predict the extemal reinforcement signal, ~ (t) ,
one time step ahead; that is, at time t - 1. Here, ~ (t) is the
real reinforcement signal resulting from the inputs and actions
chosen at time step t - 1, but it can only be known at time step
t in the first and second classes of the reinforcement leaming
problem. If the fuzzy predictor can produce a signal p (t) ,
which is the prediction of r (t) but available at time step t - 1,
then the time delay problem can be solved. With a correct
predicted signal p (t) , a better action can be chosen by the
action network at time step t- 1 and the corresponding leaming
can be performed on the action network at time step t upon
receiving the extemal reinforcement signal T (t) . As indicated
in the last subsection, p (t) is necessary for the stochastic
exploration with multiparameter probability distribution (10).
The other intemal reinforcement signal, ?(t) , in Fig. 4 is set as

(43)

where ~ (t) represents the desired output (real extemal rein-
forcement signal), and p (t) is the current output (predicted
reinforcement signal). Then, the gradient information can be
easily derived:

1
E = 5 (T (t) - P (W 2

- d E = p (t) - r (t) .
a P

(44)

Similar to the leaming rule developed in the last subsection,
we can derive the structure/parameter learning algorithm for
the single-step fuzzy predictor using the following general
parameter learning rule:

w(t + 1) = w(t) + 77 -- (E) (45)

where w is the adjustable parameters in the fuzzy predictor.
The leaming equations are the same as (16)-(42) if is

replaced by (-g) and the effects caused by this replace-
ment are properly updated; that is, all the terms [~ (t) -

p (t)] [e],_, in (16)-(42) are replaced with the term [~ (t) -

In the RNN-FLCS, the action and evaluation networks are to
be trained together. In principle, we could perform the learning
for both networks at the same time since they can be treated
individually. Although they share the same fuzzifier, they
can find a common input intemal distributed representation
(i.e., the same input membership functions) suitable for them.
However, since the action network relies on the accurate
prediction of the evaluation network, it seems practical to train
the fuzzy predictor first, at least partially, or to let the fuzzy
predictor have a higher leaming rate than the action network.

After the consequents of rule nodes are determined for both
the action and evaluation networks (i.e., when the structure
leaming process is done and the structure will not be changed
any further, but the parameter refinement may still be per-
formed), the rule combination in [3], [4] is performed to find
the minimum node representation of current fuzzy logic rules.
The criteria for a set of rule nodes to be combined into a single
rule node are: 1) that they have exactly the same consequents;
2) some preconditions are common to all the rule nodes in
this set; and 3) the union of other preconditions of these rule
nodes composes the whole term set of some input linguistic
variables. If a set of nodes meets these criteria, a new rule
node with only the common preconditions can replace this set
of rule nodes.

P (t) l .

- , , -
?(t) = r (t) - p (t) , which is the prediction error for computing
(13) by the action network. The single-step prediction is
the extreme case of the multistep prediction which will be
presented in the next section. Basically, the training of a single-
step predictor is a simple supervised learning problem. Thus,
the reinforcement learning algorithm for the single-step fuzzy

IV. MULTISTEP FUZZY PREDICTOR
When both the reinforcement signal and input pattems from

the environment may depend arbitrarily on the past history
of the network output and the network may only receive a
reinforcement signal after a long sequence of outputs, the

LIN AND LEE: FUZZY LOGIC CONTROL SYSTEMS 51

credit assignment problem becomes severe. This temporal
credit assignment problem results because we need to assign
credit or blame to each step individually in such a long
sequence for an eventual success or failure. Hence, for this
class of reinforcement learning problem, we need to solve the
temporal credit assignment problem together with the original
structure credit assignment problem of attributing network
error to different connections or weights. The solution to
the temporal credit assignment problem in the RNN-FLCS is
to design a multistep fuzzy predictor, which can predict the
reinforcement signal at each time step within two successive
external reinforcement signals which may be separated by
many time steps. This multistep fuzzy predictor can assure
that both the evaluation network and the action network do
not have to wait until the actual outcome is known, and they
can update their parameters and structures within the period
without any evaluative feedback from the environment. To
solve the temporal credit assignment problem, the technique
based on the temporal difference methods, which are often
closely related to the dynamic programming techniques [22],
is used [12], [21]. Unlike the single-step prediction or the
supervised learning method which assigns credit according to
the difference between the predicted and actual output, the
temporal difference methods assign credit according to the
difference between temporally successive predictions. Some
important temporal difference equations of three different
cases are summarized below.

C a s e 1--Prediction of final outcome: Given the
observation-outcome sequences of the form x1 , 2 2 , . . . , x, , z ,
where each xt is an input vector available at time step t from
the environment and z is the external reinforcement signal
available at time step m + 1. For each observation-outcome
sequence, the fuzzy predictor produces a corresponding
sequence of predictions p l r p 2 , . . . , p m , each of which is an
estimate of z . Since pt is the output of the evaluation network
at time t , p t is a function of the network's input xt and the
network's adjustable parameters wt and can be denoted as
p(xt,wt), where wt can be mz(t) (center of membership
function) or oi(t) (width of membership function). For this
prediction problem, the learning rule, which is called TD(X)
family of learning procedures, is:

t - 1

where p,+l z,O 5 X 5 1, and q is the leaming rate. X
is the recency weighting factor with which alternations to the
predictions of observation vectors occurring k steps in the past
are weighted by Xk. In the extreme case that X = 1, all the
proceeding predictions, p l , p a , . . . , pt- 1, are altered properly
according to the current temporal difference, pt - p t - l , to
an "equal" extent. In this case, (46) reduces to a supervised-
learning approach and, if pt is a linear function of xt and
wt, then it is the same as the Widrow-Hoff procedure [23].
In the other extreme case that X = 0, the increment of the
parameter w is determined only by its effect on the prediction
associated with the most recent observation. A theorem about

the convergence of TD(0) when pt is a linear function of xt
and wt can be found in [21].

C a s e 2--Prediction of finite cumulative outcomes: In this
case, pt predicts the remaining cumulative cost given the tth
observation, x t , rather than the overall cost for the sequence.
This case happens when we are more concerned with the
sum of future predictions than the prediction of what will
happen at a specific future time. Let rt be the actual cost
incurred between time steps t - 1 and t. Then, pt-1 is to
predict zt-l = E m f l r k . Hence, the prediction error is

m+"Ft m+l
Zt-1 - pt-1 = C k = t Tk - pt-1 = Ck=t (Tk -k pk - p k - l) ,
where p,+l is defined as 0. Thus, the learning rule is:

t-1

Awt = q(.t + Pt-- Pt-1) Xt-k-lVwpk. (47)
k=l

.Case 3--Prediction of infinite discounted cumulative out-
comes: In this case, pt-l 'predicts zt- l = EEoykrt+rc =
rt + ypt , where the discount-rate parameter y,O 5 y < 1,
determines the extent to which we are concerned with short- or
long-range prediction. This is used for prediction problems in
which exact success or failure may never become completely
known. In this case, the prediction error is (rt + yp t) - p t -1 ,
and the learning rule is:

t-1

Awt = ~ (r t + ypt - pt-1) X t - k - l V w ~ k . (48)

In applying the temporal difference procedures to the proposed
RNN-FLCS, we let X = 0 due to its efficiency and accuracy
[21]. A general learning rule used for the three cases is:

k=l

Awt = v(rt + ypt - Pt-1)VwPt-1 (49)

where y, 0 5 y < 1, is a discount-rate parameter and q is the
learning rate.

We shall next derive the learning rule of the multistep
fuzzy predictor according to (49). In this case, p (t) is the
single output of the fuzzy predictor (evaluation network)
for the network's current parameter w(t) and current given
input vector x (t) at time step t. Here, p (t) can be any kind
of prediction output in the various cases of the multistep
prediction problem stated. According to (49), let:

?(t) = ~ (t) + y p (t) - p (t - l), 0 5 y < 1. (50)

Then, ?(t) is the error signal of the output node of the multistep
fuzzy predictor. The general parameter learning rule, then, is:

Aw(t) = q?(t) - El t--l

where w is the network parameter (i.e., mi or ai). The learning
rule for each layer in the fuzzy predictor can be computed
as in (16)-(42). The only exception is that the error signal
is different. Thus, the learning equations for the multistep
fuzzy predictor are the same as in (16)-(42) but with the
term [~ (t) - p (t)] [5] t - l replaced by the term ?(t) in
(50). Also, the multistep fuzzy predictor will provide two
internal reinforcement signals, the prediction output p (t) , and

5 8

the prediction error ?(t) to the action network for its learning
(see Fig. 4).

The learning algorithm for the action network is the same
as that derived in section 111-A. However, due to the different
nature of the intemal reinforcement signal ?(t) , the learning
algorithm of the action network with the multistep fuzzy
predictor will be different. The goal of the action network
is to maximize the extemal reinforcement signal r (t) . Thus,
we need to estimate the gradient information z, as we did
previously. With the intemal reinforcement signals p (t) and
?(t) , from the evaluation network, the action network can
perform the stochastic exploration and learning. The prediction
signal p (t) is used to decide the variance of the normal
distribution function in the stochastic exploration in (10).
Then, the actual output y (t) can be determined according to
(1 1). Since ?(t) is the prediction error, the gradient information
is estimated as:

dr

t -1

In (50), the predictionerroris ?(t) = r (t) + y p (t) - p (t - 1) =
r(t)--[p(t-1)-yp(t)]. Since p(t-1) predicts the accumulated
reinforcement signal in the future [i.e., r (t) + y p (t)] , p (t - 1) -
y p (t) predicts the next reinforcement signal [i.e., ~ (t)] . Thus,
r (t) is the reinforcement signal with respect to the actual action
y(t - l), and [p(t - 1) - y p (t)] is the reinforcement signal with
respect to the expected action y(t- 1). Then, from the equation

we can observe that if ~ (t) > [p(t - 1) - y p (t)] , the actual
action ij(t - 1) is better than the expected action y(t - 1). So,
y(t - 1) should be moved closer to y(t- 1). On the other side,
if r (t) < [p(t - 1) - ~ p (t)] , then the actual action Y (t - 1) is
worse than the expected action y(1 - 1). So, y(t - 1) should
be moved further away from Y(t - 1).

Having the gradient information [(53)], the leaming
algorithm of the action network can be determined in the same
way as in the previous section. The exact learning equations
are the same as in (14)-(42), except that [r (t) - p (t)] [G]
has been replaced by the new error term [r (t) + y p (t) - p (t -

Until now, we have developed the reinforcement learning
algorithm for the action network with the multistep fuzzy
predictor in the multistep prediction problem. The issues of
learning rate and learning order for both the action and eval-
uation networks and the final step to find the minimum node
representation of fuzzy logic rules using the rule combination
technique are the same as discussed in Section 111.

One interesting advantage of using the NN-FLC as a pre-
dictor is attributed to the high-level, human-understandable
meaning of the NN-FLC [3],[4]. When the RNN-FLCS works
in a learning environment, the fuzzy predictor attempts to
model the status-reaction relation of the environment, and this
relation can be interpreted as the “IF-THEN” rules on the in-
put/output linguistic variables. For example, the interpretation
may resemble “IF the load is a little light and the power is

t-1

1)1 [e] t-l‘

[EEE TRANSACTIONS ON FUZZY SYSYEMS, VOL. 2, NO. 1, FEBRUARY 1994

I e

I I
I . I
I -1
I I

I X I

Fig. 6. The cart-pole balancing system.

very high, THEN the machine is easily over-running.” Using NN-
FLC as a predictor is more interesting when there are human
factors in the learning environment. For example, if we use
the RNN-FLCS to design an air conditioner, then the fuzzy
predictor can model the user’s sensitivity of feeling like this:
“IF the temperature is warm and the humidity is high, THEN

I feel a little uncomfortable.” Moreover, the learned fuzzy
predictor can tell us exactly what the user means by “warm,”
“high humidity,” and “a little uncomfortable” via the learned
inpudoutput membership function, though such feelings may
vary from person to person.

A classic application of the reinforcement learning is in
game theory where the “environment” is another player
or players. For example, considering the RNN-FLCS for a
chess game, the fuzzy predictor can leam its opponent’s
skill by explaining its opponent’s thinking rules. The human-
understandable meaning of the NN-FLC can also easily
make the RNN-FLCS incorporate existent or obvious expert
knowledge. This not only benefits the design of a fuzzy logic
controller, but is also a great help to the fuzzy predictor in
some applications. Although the membership functions are
always difficult to find, the fuzzy logic rules may be obvious
in some cases. Considering the air conditioner example, the
rules of users’ reactions to a room’s status are much alike,
but the standards of the feeling for highbow temperature may
be quite different. In such a case, we can set up the structure
of the fuzzy predictor manually according to the known fuzzy
logic rules and let the input/output membership functions
leam to fit different users.

V. AN ILLUSTRATIVE EXAMPLE

The proposed RNN-FLCS with multistep fuzzy predictor
has been simulated on a Sun SPARC station for the cart-
pole balancing problem or the so-called inverted pendulum-
balancing problem. This problem is often used as an example
of inherently unstable and dynamic systems to demonstrate
both modern and classic control techniques [24], [25], as well
as the learning control techniques of neural networks using
supervised learning methods [26] or reinforcement learning
methods [12], [27], [28].

As shown in Fig. 6, the cart-pole balancing problem is
the problem of learning how to balance an upright pole. The

LIN AND LEE: FUZZY LOGIC CONTROL SYSTEMS

2

59

-. .
0 -20.0 20.0 -15.42 17.21
1 0.0 10.0 -0.21 7.39
2 20.0 20.0 17.25 16.01
0 -12.0 6.0 -10.22 7.39

0.0 -5.01 4.81 1 -6.0
2 -3.0 3.0 -1.82 2-12

bottom of the pole is hinged to a cart that travels along a finite-
length track to its right or left. Both the cart and the pole
can move only in the vertical plane; that is, each has only
one degree of freedom. There are four input state variables
in this system: 0, the. angle of the pole from an upright
position (in degrees); 19, the angular velocity of the pole (in
degrees/second); Z, the horizontal position of the cart's center
(in meters); and k , the velocity of the cart (in d s) . The only
control action is f , which is the amount of force (N) applied
to the cart to move it toward its left or right. The system fails
and receives a penalty signal of -1 when the pole falls past
a certain angle (* 12 degrees is used here) or the cart runs
into the bounds of its track (the distance is 2.4m from the
center to both bounds of the track). The goal of this control
problem is to train the RNN-FLCS such that it can determine
a sequence of forces with proper magnitudes to apply to the
cart to balance the pole for as long as possible without failure.

The model and corresponding parameters of the cart-pole
balancing system for our computer simulation are adopted
from [29] with additional consideration of friction effects. This
model and its parameters are also used by Barto, Sutton, and
Anderson [12], [28]. The equations of motion that we used
are shown below, where

1) g = -9.8m/s2, acceleration due to the gravity
2) m = 1.1 kg, combined mass of the pole and the cart
3) mp = 0.1 kg, mass of the pole
4) I = 0.5 m, half-pole length
5) pc = 0.0005, coefficient of friction of the cart on the

6) p p = 0.000002, coefficient of friction of the pole on the

7) A = 0.02, sampling interval

track

Cart

The constraints on the variables are -12' 5 O 5
12",-2.4m 5 x 5 2.4m, and -lON 5 f 5 ION. In
designing the controller, the equations of motion of the
cart-pole balancing system are assumed to be unknown to the
controller. A more challenging part of this problem is that
the only available feedback is a failure signal that notifies the
controller when a failure occurs; that is, either 181 > 12" or
1x1 > 2.4m. This is a typical reinformation learning problem,
and the feedback failure signal serves as the reinforcement
signal. Since a reinforcement signal may only be available
after a long sequence of time steps in this failure avoidance

e

TABLE I
INPUT/oUTPUT MEMBERSHIP FUNCTIONS BEFORE AND &TER LEARNING

~~ ~ ~~ ~ ~~

3 1 0.0 I 3.0 I 0.21 I 1.92
4 1 3.0 I 3.0 I 2.19 I 1.89
5 1 fin I fin I ,531 I 3 x7

U 1 4 .4 1 2.6 I -1.YX

2 1 2 4 I 9 f i I 9 1 7 I
X 1 1 0.0 I 1.5 I 0.13 , 1.281

4 13

-.-
I 6 I 12.0 I 6.0 I 8.82 I 8.01 I ~ ~~

0 I -100.0 I 100.0 I -84.29 I 84.62
e 1 1 0.0 50.0 I -0.32 1 39.42

2 I 1no.n I

task, this cart-pole balancing problem belongs to the third
class of the reinforcement learning problems discussed in
Section 111. Thus, a multistep fuzzy predictor is required for
the RNN-FLCS. Moreover, since the goal is to avoid failure
for as long as possible, there is no exact success in finite
time. Also, we hope that the RNN-FLCS can balance the
pole for as long as possible for infinite trials, not just for
one particular trial, where a "trial" is defined as the time
steps from an initial state to a failure. Hence, this cart-pole
balancing problem is further categorized as the third case of
the multistep prediction problem discussed in Section IV,
and (49) must be used for the temporal difference prediction
method. The reinforcement signal is defined as:

(55)

and the goal is to maximize the sum y ' ~ (t + k), where
y is the discount rate.

In our computer simulation, the learning system was tested
for ten runs by trying to use the same learning parameter values
in [12]. Each run consisted of a sequence of trials; each trial

T (t) = { -1 if IO(t)l > 12" or Jz(t)l > 2 . 4 ~ ~ ;
0 otherwise

O(t + 1) = O(t) + Ae(t) (54)

mgsinB(t) - cosO(t) [f (t) + m,Z(e(t)~/180)~sinO(t) - pcsgn(j.(t))] - ppgpe/t)
(4/3)mZ - mpZ cos2 O (t)

e(t + 1) = e (t) + A

z(t + 1) = ~ (t) + Ak(t) ,

f (t) + mpl[(~(t)7r/180)2 sinO(t) - j(t)~/180cosO(t)] - p,sgn[i(t)]
m

k(t + 1) = k (t) + A

60

began with the same initial condition O(0) = e(0) = z(0) =
i (0) = 0 or with a randomized initial condition, and ended
with a failure signal indicating that either le (t) (> 12” or
Iz(t)l > 2.4m. The randomized initial condition means that,
after each failure, the initial configuration was independently
and randomly chosen such that -10 < O(0) < 10,-50 <
O(0) < 50, -2 < z(0) < 2, and -10 < i (0) < 10. The input
fuzzy partitions were set as IT(z)I = 3 , (T (i) (= 3, IT(O)l =
7, and IT(0)l = 3 for all runs. For each run, the input
(output) membership functions were initialized so that they
covered the whole input (output) space evenly, and the output
fuzzy partition was initialized as IT(f)l = 7. The membership
functions were chosen to be the bell-shaped functions (5)
with initial centers and widths shown in Table I. Also, in the
initiation of each run, each rule was assigned with a consequent
term randomly. There is a total of 189 rules in the beginning.
Here, we assumed that no expert knowledge (in the form of
IF-THEN rules) is available to this control problem. If expert
knowledge is available in advance, then the initial rules can
be set up correctly. In this case, we can even skip the structure
learning portion in our learning algorithm, and this will greatly
shorten the learning time. A study on this issue has been
reported in [4]. Runs consisted of at most 50 trials, unless the
duration of each run exceeded 500 000 time steps. The results
of two “trials” are shown in Fig. 7. A run was successful and
terminated after 500 000 time steps before all 50 trials took
place; otherwise, it was called “a failure” and terminated at
the end of its 50th trial. The two trials shown in Fig. 7 are
two failure trials. The status of system parameters in the cart-
pole balancing problem is also shown in this figure. The first
example in Fig. 7 is a trial in the early stage of a “run,” so it
failed in only about 450 time steps. From the figure showing
the deviation angle, we can see that this trial failed because
the pole fell outside the desired range (the pole’s deviation
angle is greater than 12”). At this stage, the FLC had learned
to some extent in the area around the zero state of the input
space since the FLC did try to decrease the pole’s deviation
angle before the failure occurred (see the figure showing the
force). However, it still needs extensive learning in the other
portion of the input space. The second example in Fig. 7 is
a trial in the later stage of a “run,” so it keeps the pole in
the desired position longer. The system failed at around the
2800th time steps because the cart bumped into the right wall.
At this stage, the FLC had learned quite well in some areas
close to the zero state of the input space and it could control
the pole in the correct position well. However, more leaming
is still necessary for the FLC to control the position of the cart.
It seems that more training data from some “desired” regions
of the input space (especially training data corresponding to
the far ends of the track) were necessary for further training
of the FLC.

In our computer simulations, a total of ten runs were
performed. Among these ten runs, five of them started with
zero initial conditions and the others started with randomized
initial conditions. The simulation results (see Fig. 8) showed
that the RNN-FLCS can leam to balance the pole within 20
trials. In most of the ten runs, the leaming was completed
before ten trials. It was observed that the runs starting with

IEEE TRANSACTIONS ON FUZZY SYSYEMS, VOL. 2, NO. 1, FEBRUARY 1994

-0 100 m 300 400

Time steps

x o fq 1 hgl;fz
2 -10

-0 100 200 ux) 400 -0 100 m 300 400

Time fteps rune sreps

I ‘$1

Fig. 7. Two trials in the leaming process of the NN-FLCS on the cart-pole
balancing problem.

a randomized initial condition usually took more trials. Fig.
9 shows the angle deviation of the pole about the center
point when the cart-pole system was controlled by a well-
trained RNN-FLCS. This performance is better than the results
presented in [12], [28] and compatible to those in 1201. In most
runs, the final number of leamed output membership functions
is less than 15, as compared to 189 output membership
functions that were used in [20] for each run; that is, one output
membership function for each (overlapping) grid of input
space. One learned fuzzy logic controller (action network) in
a run is shown in Fig. 10. It has a total of 35 fuzzy logic
rules. Each node in the third layer corresponds to one rule;
the links to and from a rule node specify the preconditions
and conclusion of the corresponding rule. The parameters of
the leamed input membership functions in the fuzzifier (the
second layer of the action network), and the learned output
membership functions in the defuzzifier (the fourth layer of
the action network) are tabulated in Table I.

Similar to the simulations in [20], the adaptation capability
of the proposed RNN-FLCS was tested. In a series of tests,
the proposed RNN-FLCS was required to adapt to changes in
the length and mass of the pole. Six tests were performed. The
first two tests were to increase the original mass of the pole by
a factor of 10 and 20, respectively. In the next two tests, the
original pole was shortened, respectively, to 213 and 113 of the

LIN AND LEE: FUZZY LOGIC CONTROL SYSTEMS 61

4 1

Time r e p

Tum sep

Fig. 7. Continued.

5 10 I 5

Trial\

Fig. 8. Performance of the RNN-FLCS on the cart-pole balancing problem.

original pole length. The last two tests were to simultaneously
reduce the length and weight of the pole to 213 and 113 of its
original values, respectively. We found that the RNN-FLCS
with pretrained knowledge was able to complete the control
task of balancing the pole without further trainindearning.

In addition to keeping the capability that learning can
perform at each time step within a trial without waiting
to know the actual outcome by using the multistep fuzzy
predictor, the proposed RNN-FLCS has some important fea-
tures over the previous work. First, distributed representation
is used to represent the input vectors in the RNN-FLCS.
This is achieved by the fuzzification process through the

Angk 0

I
-2 -I I

t I I I I
4 50 I00 150 200

The (&)

Fig. 9. Variations in B produced by the learned RNN-FLCS.

adaptive input membership functions. With the adaptive input
membership functions, the input space can be considered
to be divided into overlapping smaller regions and, more
importantly, this partition is not performed in advance but
is dynamically and appropriately adjusted during the learning
process. As a result, each smaller region varies in size and the
degree of overlapping is also adjustable. This is in contrast
to the localized storage scheme of the BOXES system [12],
[27], in which the input space is divided into disjoint regions
(boxes) and no generalization occurs beyond the confines of
a given box. The fuzzification process in the RNN-FLCS also
avoids the necessity of partitioning the input space into disjoint
[12], [27] or overlapping [20], [30] small regions in advance.
The drawback of this process is that it requires the learning
control designer to know how to quantify or partition the input
space properly according to the knowledge of the control task;
otherwise, the input space can be easily partitioned in such a
way that the controller will not work at all. In most cases, a
priori selection of a sufficiently fine representation is required.
However, a representation that is too fine may result in poor
generalization capabilities and unnecessarily slow learning.

The second most important feature of the proposed RNN-
FLCS is its dynamic structurelparameter learning ability and
the rule combination process. The former can add new nodes
to the RNN-FLCS properly, while the latter can combine
some nodes with the same or a very similar control ac-
tion. These functions realize the concept of “splitting” and
“lumping” boxes in [31], where the authors tried to improve
their BOXES system without much success. The third feature
of the proposed RNN-FLCS is its stochastic search with
multiparameter distribution functions. This results in the action
network having a higher probability of finding a better action
via the prediction signal from the evaluation network instead
of performing random searches around the expected action
using only single-parameter distribution functions. The fourth
important feature of the proposed RNN-FLCS is the ease of
incorporating expert knowledge into the fuzzy logic controller
or the fuzzy predictor of the RNN-FLCS to greatly shorten
the learning time. The continuous control scheme is another
important feature of the RNN-FLCS. By performing fuzzy
inference and defuzzification, the action network of the RNN-

-

62

L a y e r 5 r
(Output
I lnguis t l
nodes)

L a y e r 4

term
nodes)

(Output

L a y e r 3
(ru le
nodes)

L a y e r 2
(Input
term
node51

L a y e r I
(Inou t
t inguls t l
nodes)

IEEE TRANSACTIONS ON FUZZY SYSYEMS, VOL. 2, NO. 1 , FEBRUARY 1994

Fig. 10. The learned fuzzy logic controller on the cart-pole balancing problem.

FLCS determines an analog output control signal. This is in
contrast to the bang-bang control scheme used in [12], [27],
[28], where the output can only have two values: &lON. Thus,
the angle deviation of the pole about the center point, as shown
in Fig. 9, is rather small in our computer simulation.

Recently, Berenji and Khedkar [32], [33] independently
proposed a FLC structure and its associated learning algorithm
which are similar to what we propose here. They constructed
a model, called Generalized Approximate Reasoning-based
Intelligent Control (GARIC) architecture, for learning and
tuning a fuzzy logic controller based on reinforcement signals
from a dynamic system. Their architecture extends Anderson’s
method [28] by including apriori control knowledge of expert
operators in terms of fuzzy control rules. In GARIC, a three-
layer feedforward neural network, called Action Evaluation
Network (AEN), was used to predict the external reinforce-
ment signals and produce internal reinforcement signals. The
role of the AEN can be considered to be parallel to our fuzzy
predictor in the RNN-FLCS. They also adopted a five-layer
feedforward neural network, called Action Selection Network
(ASN), to implement a FLC as we did. Moreover, a stochastic
action modifier was used to stochastically generate an actual
action according to the expected action suggested by the ASN
and the internal reinforcement signals from the AEN. The
ASN, along with the stochastic action modifier, play the same
role as the action network in our RNN-FLCS. Hence, there are
two major differences between the structures of RNN-FLCS
and GARIC. First, the RNN-FLCS uses a fuzzy predictor while
the GARIC uses a general multilayer neural network for the re-
inforcement signal prediction. Second, in the RNN-FLCS, the
action network (fuzzy controller) and the evaluation network
(fuzzy predictor) share the same internal input representation.
However, in GARIC, the corresponding two networks, the
ASN and AEN, are structured independently. The learning
algorithm in the AEN of GARIC used Sutton’s AHC algorithm

[12], [28] for the output units and the error backpropagation
algorithm for the hidden units. The stochastic exploration
technique and the error backpropagation algorithm were used
to find the proper parameters in the ASN. This corresponds
to the adjustment of the input/output membership functions
of a fuzzy logic controller. Although these techniques are
also adopted in the RNN-FLCS, our learning algorithms for
the evaluation network and the action network are developed
based on our previously proposed on-line structure/parameter
learning algorithm [4]. Hence, in addition to the parameter
learning, they can perform the structure learning and find the
proper fuzzy logic rules dynamically. This can be consid-
ered the major difference between RNN-FLCS and GARIC.
Furthermore, we have developed both the single-step and
multistep fuzzy predictors to incorporate three different cases
of reinforcement learning problems. This makes the RNN-
FLCS a much more general structure than the GARIC. The
learning speed of the GARIC for the cart-pole balancing
problem was faster than that of the RNN-FLCS. However,
a set of correct fuzzy logic rules must be given in advance by
experts before initiating training of the GARIC.

VI. CONCLUSION

This paper described the development of integrating two
NN-FLC’s into an integrated Reinforcement Neural-Network-
Based Fuzzy Logic Control System for solving various re-
inforcement learning problems. By combining the techniques
of temporal difference, stochastic exploration, and the previ-
ously proposed on-line supervised structure/parameter learn-
ing algorithm, a reinforcement structure/parameter learning
algorithm was derived for the RNN-FLCS. Using the pro-
posed connectionist structure and learning algorithm, a fuzzy
logic controller to control a plant and a fuzzy predictor to
model the plant can be set up dynamically through simul-
taneous structure/parameter learning for various classes of

LIN AND LEE: FUZZY LOGIC CONTROL SYSTEMS 63

reinforcement learning problems. The proposed RNN-FLCS
makes the design of fuzzy logic controllers more practical
for real-world applications since it greatly lessens the quality
and quantity requirements of the feedback training signals.
Computer simulations of the cart-pole balancing problem
satisfactorily verified the validity and performance of the
proposed reinforcement structure/parameter learning algorithm
for RNN-FLCS. Future work will focus on an interesting
problem of regulating the cart’s position from an initial
position to a set point, in addition to keeping the pole balance.
This problem has multiple goals with different priorities. A
hierarchical FLC design approach is needed. This is a topic of
our ongoing research which will be discussed in a future paper.

ACKNOWLEDGMENT
The authors would like to thank the reviewers for their

helpful suggestions in improving the quality of the final
manuscript.

REFERENCES

[22] 22. P. J. Werbos, “A menu of design for reinforcement learning over
time,” in Neural Nemorks for Control, W. T. Miller, 111, R. S. Sutton,
and P. J. Werbos, Eds.

[23] 23. B. Widrow and M. E. Hoff, “Adaptive switching circuits,” I960
WESCON Convent. Rec., part IV, pp. 96-104.

[24] 24. R. H. Cannon, Jr., Dynamics of Physical Systems. New York:
McGraw-Hill, 1967.

[25] 25. K. C. Cheok and N. K. Loh, “A ball-balancing demonstration of
optimal and disturbance-accommodating control,” IEEE Contr. Syst.
Mag., pp. 54-57, Feb. 1987.

[26] 26. B. Widrow, “The original adaptive neural net broom-balancer,” in
Proc. Int. Symp. Circ. and Syst., May 1987, pp. 351-357.

[27] 27. D. Michie and R. A. Chambers, “BOXES: An experiment in adaptive
control,” in Much. Intell., E. Dale and D. Michie, Eds. Edinburgh,
Scotland: Oliver and Boyd, 1968, vol. 2, pp. 137-152.

[28] 28. C. W. Anderson, “Strategy learning with multilayer connectionist
representations,” in Proc. Fourth Int. Workshop on Mach. Learn., Irvine,
CA, June 1987, pp. 103-114.

[29] 29. C. W. Anderson and W. T. Miller 111, “Challenging control prob-
lems,” in Neural Networks for Control, W. T. Miller, III, R. S. Sutton,
and P. J. Werbos, Eds.

[30] 30. J. S. Albus, “Mechanisms of planning and problem solving in the
brain,” Math. Biosci., vol. 45, pp. 247-293, 1979.

1311 31. D. Michie and R. A. Chambers, ‘Vhinspace ‘Boxes’ as a model of
pattern-formation,” in Towards a Theoretical Biology, I. Prolegomena
and C. H. Waddington, Eds. Edinburgh: Edinburgh Univ. Press, 1968,

Cambridge, MA: M.I.T. Press, 1990, ch. 3.

Cambridge, MA: M.I.T. Press, 1990, ch. A.

vol. 1, pp. 206215. 1. G . E. Hinton, ‘‘Connectionist learning procedures,” Art. I n t e k vol.
40 no. 1 pp 143-150, 1989.
2. ’D. E.’Ruhelhart, G . E, Hinton, and R, J, Williams,
internal representations by err& propagation,” Parallel Distrib. Proces.
Cambridge, MA: M.I.T. Press 1986, vol. 1, pp. 318-362.
3, C, T, L~~ and C, S, G, L ~ ~ , “Neural-netwoTk-based fuzzy logic control
and decision swtem,” IEEE Trans. Comout.. vol. C-40. no. 12. DD.

[321 32, H, R, Berenji, architecture for designing fuzzy controllers using
neural networks,” Int. J. Approx. Reason., vol. 6, no. 2, pp. 267-292,
Feb. 1992.

[33] 33. H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic
controllers through reinforcements,” IEEE Trans. Neural Netw., vol. 3,
no. 5, pp. 724-740, 1992.

1320-1336, Dec. 1991.
4. C. T. Lin and C. S. G . Lee, “Real-time supervised structure/parameter
learning for Fuzzy Neural Network,” in Proc. IEEE Int. Con$ Fuzzy
Syst., San Diego, CA, Mar. 1992, pp. 1283-1290.
5. A. Dickinson, Contemporary Animal Learning Theory. Cambridge,
MA: Cambridge Univ. Press, 1980.
6. W. K. Estes, “Toward a statistical theory of learning,” Psych. Rev.,
vol. 57, pp. 94-107, 1950.
7. M. L. Tsetlin, Automation Theory and Modeling of Biological Systems.
New York: Academic, 1973.
8. T. M. Cover and M. E. Hellman, “The two-armed bandit problem
with time-invariant finite memory,” IEEE Trans. Inform. Theory, vol.

9. K. S. Narendra and M. A. L. Thathachar, Learning Automata: An
Introduction.
10. A. H. Klopf, The Hedonistic Neuron: A Theory of Memory, Learning,
and Intelligence.
11. A. G. Barto and R. S. Sutton, “Landmark learning: an illustration
of associative search,” Biol. Cybern., vol. 42, pp. 1-8, 1981.
12. A. G . Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE Trans.
Syst. Man Cybern., vol. SMC-13, no. 5, pp. 834-847, 1983.
13. A. G . Barto and P. Anandan, “Pattern-recognizing stochastic learning
automata,” IEEE Trans. Syst. Man Cybern., vol. SMC-15, no. 3, pp.
360-375, 1985.
14. A. G . Barto and M. I. Jordan, “Gradient following without back-
propagation in layered networks,” in Proc. 1987 Int. Joint Conf Neural
Nem., San Diego, CA, vol. 11, pp. 629-636.
15. R. J. Williams, “A class of gradient-estimating algorithms for
reinforcement learning in neural networks,” in Proc. 1987 Int. Joint
Conf Neural Nem., San Diego, CA, vol. 11, pp. 601-608.
16. C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller--
Parts I and 11,” IEEE Trans. Syst. Man Cybern., vol. SMC-20, no. 2,
pp. 404-435, 1990.
17. L. A. Zadeh, “Fuzzy logic,” IEEE Compur., pp. 83-93, Apr. 1988.
18. J. Hertz, A. Krogh, and R. G . Palmer, Introduction to the Theory of
Neural Computation. New York: Addison-Wesley, 1991, pp. 188-189.
19. J. A. Franklin, “Input space representation for reinforcement learning
control,” in Proc. IEEE Int. Con8 Intell. Mach., 1989, pp. 115-122.
20. C. C. Lee and H. R. Berenji, “An intelligent controller based on
approximate reasoning and reinforcement learning,’’ in Proc. IEEE Int.
Conf. Intell. Mach., 1989, pp. 20C~205.
21. R. S. Sutton, “Learning to predict by the methods of temporal
difference,” Mach. Learning, vol. 3, pp. 9-44, 1988.

IT-16, pp. 185-195, 1970.

Englewood Cliffs, NJ: Prentice Hall, 1989.

Washington, DC: Hemisphere, 1982.

Chin-Teng Lin received the B.S. degree in control
engineering from the National Chiao-Tung Univer-
sity, Taiwan, R.O.C., in 1986 and the M.S.E.E. and
Ph.D. degrees in electrical engineering from Purdue
University, West Lafayette, IN, in 1989 and 1992,
respectively.

Since August 1992, he has been with the Depart-
ment of Computer Information Science, National
Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
His current research interests are neural networks,
fuzzy systems, learning systems, intelligent control,

and artificial intelligence.
Dr. Lin is a member of Tau Beta Pi and Eta Kappa Nu. He is also a

member of the IEEE Computer Society, the IEEE Robotics and Automation
Society, and the IEEE Systems, Man, and Cybernetics Society.

C. S. George Lee received the B.S. and M.S.
degrees in electrical engineering from Washington
State University in 1973 and 1974, respectively,
and the Ph.D. degree from Purdue University, West
Lafayette, IN, in 1978.

In 1978-1979, he taught at Purdue University
and, in 1979-1985, at the University of Michi-
gan. Since 1985, he has been with the School of
Electrical Engineering, Purdue University, where
he is currently Professor of Electrical Engineering.
His current research interests include computational

robotics, intelligent robotic assembly systems, and neural-network-based fuzzy
logic control systems. He was an IEEE Computer Society Distinguished
Visitor in 1983-1986, the Organizer and Chairman of the 1988 NATO
Advanced Research Workshop on Sensor-Based Robots: Algorithms and
Architectures, and the Secretary of the IEEE Robotics and Automation Society
in 1988-1990. Currently, he is Vice-President for Technical Affairs and an
AdCom member of the IEEE Robotics and Automation Society, and an
Associate Editor of the International Journal of Robotics and Automation.
He is a co-author of Robotics: Control, Sensing, Vision, and Intelligence
(McGraw-Hill), and co-editor of Tutorial on Robotics (IEEE Computer Society
Press).

Dr. Lee is a member of Sigma Xi and Tau Beta Pi.

