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Reinforcement Structureparameter Learning for 
Neural-Network-Based Fuzzy Logic Control Systems 

Chin-Teng Lin and C. S .  George Lee 

Abstruct- This paper proposes a reinforcement neural- 
network-based fuzzy logic control system (RNN-FLCS) for 
solving various reinforcement learning problems. The proposed 
RNN-FLCS is constructed by integrating two neural-network- 
based fuzzy logic controllers (NN-FLC’s), each of which is a 
connectionist model with a feedforward multilayered network 
developed for the realization of a fuzzy logic controller. One 
NN-FLC performs as a fuzzy predictor, and the other as a fuzzy 
controller. Using the temporal difference prediction method, the 
fuzzy predictor can predict the external reinforcement signal 
and provide a more informative internal reinforcement signal to 
the fuzzy controller. The fuzzy controller performs a stochastic 
exploratory algorithm to adapt itself according to the internal 
reinforcement signal. During the learning process, both structure 
learning and parameter learning are performed simultaneously 
in the two NN-FLC’s using the fuzzy similarity measure. The 
proposed RNN-FLCS can construct a fuzzy logic control and 
decision-making system automatically and dynamically through 
a reward/penalty signal (i.e., a “good” or “bad” signal) or 
through very simple fuzzy information feedback such as “high,” 
“too high,” “low,” and “too low.” The proposed RNN-FLCS 
is best applied to the learning environment, where obtaining 
exact training data is expensive. The proposed RNN-FLCS 
also preserves the advantages of the original NN-FLC, such as 
the ability to find proper network structure and parameters 
simultaneously and dynamically and to avoid the rule-matching 
time of the inference engine in the traditional fuzzy logic 
systems. Computer simulations were conducted to illustrate the 
performance and applicability of the proposed RNN-FLCS. 

I. INTRODUCTION 

OST of the supervised and unsupervised learning al- M gorithms for neural networks require precise training 
data sets for setting the link weights and link connectivity 
of the neurons for various applications [l], [2]. For some 
real-world applications, precise data for trainingfleaming are 
usually difficult and expensive, if not impossible, to obtain. 
For this reason, there has been a growing interest in rein- 
forcement learning algorithms for neural networks [l]. In this 
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paper, we are extending our previous work on neural-network- 
based fuzzy logic control systems (NN-FLC) [3], [4] to the 
reinforcement learning problem. 

For the reinforcement learning problem, training data are 
very rough and coarse, and are just “evaluative” as compared 
with the “instructive” feedback in the supervised learning 
problem. Training a network with this kind of evaluative 
feedback is called reinforcement learning, and this simple 
evaluative feedback, called reinforcement signal, is a scalar. 
In addition to the roughness and noninstructive nature of 
the reinforcement signal, a more challenging problem to the 
reinforcement learning is that a reinforcement signal may only 
be available at a time long after a sequence of actions has 
occurred. To solve the long time-delay problem, prediction 
capabilities are necessary in a reinforcement learning system. 
Reinforcement learning with prediction capabilities is much 
more useful than the supervised learning schemes in dynamic 
control problems and artificial intelligence, since the success 
or failure signal might only be known after a long sequence 
of control actions. From the biological and cognitive points 
of view, reinforcement learning is much closer to the modern 
animal learning theory [5 ]  than the supervised learning. This 
is also true to the learning of many high-level intelligent skills 
such as how to drive a car. 

The development of reinforcement learning can be roughly 
divided into two stages. The first stage began in the 1950’s, 
when mathematical psychologists developed computational 
models to explain the learning behavior of animals and human 
beings [6] .  They viewed learning as stochastic processes and 
developed the so-called stochastic learning model. At almost 
the same time, cyberneticians and control theorists made 
independent efforts on the study of stochastic learning. Their 
work basically used deterministic automata as a model for 
learning systems operating in stationary random environments, 
and later the model was generalized to use stochastic automata 
[7]. More details on the stochastic learning automata can be 
found in [9]. At this stage, most of the learning models were 
“nonassociative,” since there was no input to the learning 
system except the reinforcement signal. A typical example 
is the two-armed bandit problem [8]. Representative of the 
second stage development of reinforcement learning is the 
associative reinforcement learning, in which people tried to 
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associate an input pattem with output pattems according to 
a reinforcement signal. This was stimulated by the theory 
proposed by Klopf [lo]. Inspired by Klopf‘s work and earlier 
simulation results [ 111, Barto and his colleagues used neuron- 
like adaptive elements to solve difficult learning control prob- 
lems with only reinforcement signal feedback [ 121. They also 
proposed the associative reward penalty ( A R - P )  algorithm for 
adaptive elements called AR-P elements [ 131, and proposed 
several generalizations of the AR-P algorithm [ 141. Williams 
formulated the reinforcement learning problem as a gradient- 
following procedure [15], and identified a class of algorithms, 
called REINFORCE algorithms, that possess the gradient 
ascent property. However, these algorithms still do not include 
the full A R - ~  algorithms. 

In this paper, we shall apply the technique of associative re- 
inforcement learning to our proposed reinforcement NN-FLC 
learning system. The proposed learning system can construct 
a fuzzy logic control and decision system automatically and 
dynamically through a reward penalty signal (i.e., good/bad 
signal) or through very simple fuzzy feedback information 
such as “high,” “too high,” “low,” and “too low.” Moreover, 
there is a possibility of a long time delay between an action 
and the resulting reinforcement feedback information. To 
achieve the goal of solving reinforcement learning problems in 
fuzzy logic systems, a Reinforcement Neural-Network-Based 
Fuzzy Logic Control System (RNN-FLCS) is proposed which 
consists of two closely integrated NN-FLC’s. One NN-FLC, 
the action network, is used for the fuzzy logic controller, it 
can choose a proper action or decision according to the current 
input vector. Its functions are the same as those proposed in 
[3], [4], and the major difference is that there is no “teacher” 
to indicate output errors for the action network to learn in 
the reinforcement learning problem. The other NN-FLC, the 
evaluation network, is used as the fuzzy predictor, and it 
performs the single- or multistep prediction of the scalar 
extemal reinforcement signal. The fuzzy predictor provides the 
action network with more informative and beforehand intemal 
reinforcement signals for learning. Structurally, these two NN- 
E C ’ s  share the first two layers of the original NN-FLC in [3]; 
that is, they use the same distributed representation of input 
pattems. This representation is the overlapping type and is 
dynamically adjustable through the learning process. 

Associated with the proposed RNN-FLCS is the reinforce- 
ment structure/parameter learning algorithm, which uses the 
temporal difference technique on the evaluation network to 
decide the output errors for either the single- or multistep 
prediction. With the knowledge of output errors, the on-line 
supervised structure/parameter learning algorithm developed 
in [4] can be applied to train the evaluation network to obtain 
the proper membership functions and fuzzy logic rules. For the 
action network, the reinforcement structure/parameter learning 
algorithm allows its output nodes to perform stochastic explo- 
ration. With the intemal reinforcement signals from the fuzzy 
predictor, the output nodes of the action network can perform 
more effective stochastic searches with a higher probability of 
choosing a good action as well as discovering its output errors. 
Again, after finding the output errors, the whole action network 
can be trained by the on-line learning algorithm described 

in [4]. Thus, the proposed reinforcement structure/parameter 
learning algorithm basically utilizes the techniques of temporal 
difference, stochastic exploration, and the on-line supervised 
structure/parameter learning algorithm [4]. It can determine 
the proper network size, connections, and parameters of an 
RNN-FLCS dynamically through an extemal reinforcement 
signal. Moreover, learning can proceed even in the period 
without any extemal reinforcement feedback. The RNN-FLCS 
also maintains the human-understandable structure of the NN- 
FLC, such that IF-THEN type expert knowledge can be 
easily incorporated into the fuzzy logic controller or the fuzzy 
predictor, which is basically a model of the environment or the 
controlled plant. After learning, the action network becomes 
an independent fuzzy logic controller which can be used to 
control the plant in the original environment. 

In Section 11, the basic structure and functions of our 
previously proposed NN-FLC are described [3], 141. The 
structure of the proposed NN-FLCS and the correspond- 
ing reinforcement structure/parameter leaming algorithm with 
single-step prediction capability are presented in Section I11 
to solve simpler reinforcement learning problems. In Section 
IV, the multistep fuzzy predictor is proposed to perform 
multistep prediction in more complex reinforcement learning 
problems in which there is a long time delay between an 
action and the resultant reinforcement signal. In Section V, the 
cart-pole balancing problem is simulated to demonstrate the 
capabilities of the proposed RNN-FLCS. Finally, conclusions 
are summarized in Section VI. 

11. NEURAL-NETWORK-BASED FUZZY 
LOGIC CONTROLLER (NN-FLC) 

This section introduces the structure and functions of our 
previously proposed Neural-Network-Based Fuzzy Logic Con- 
troller (NN-FLC) [3], [4], which is a basic component of 
the proposed RNN-FLCS. The learned NN-FLC functions 
as a connectionist neural-network-based fuzzy logic control 
and decision-making system. Fig. 1 shows the basic con- 
figuration of a fuzzy logic controller which is composed 
of three major components: fuzzifier, fuzzy rule base and 
inference engine, and defuzzifier. The fuzzifier performs the 
function of fuzzification that converts input data from an 
observed input space into proper linguistic values of fuzzy 
sets through predefined input membership functions. The rule 
base consists of a set of fuzzy logic rules in the form of 
“&THEN” to describe the control policy of expert knowledge. 
The inference engine is to match the output of the fuzzifier 
with the fuzzy logic rules and perform fuzzy implication 
and approximate reasoning to decide a fuzzy control action. 
Finally, the defuzzifier performs the function of defuzzification 
to yield a nonfuzzy (crisp) control action from an inferred 
fuzzy control action through predefined output membership 
functions. More detailed descriptions of the concepts and 
definitions of a fuzzy logic controller can be found in [3], 
[4], [ 161, [ 171. A major problem of designing a fuzzy logic 
controller is determining the proper input/output membership 
functions and fuzzy logic rules. Based on the basic structure 
and concepts of the fuzzy logic controller, an NN-FLC with 
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Fig. 1. General model of a fuzzy logic controller and decision making system. 

a connectionist structure has been proposed [3] to realize 
the traditional fuzzy logic controller with learning abilities. 
The NN-FLC is a feedforward multilayered network that 
integrates the basic elements and functions of a traditional 
fuzzy logic controller (e.g., membership functions, fuzzy logic 
rules, fuzzification, defuzzification, and fuzzy implication) 
into a connectionist structure which has distributed learning 
abilities to learn the input/output membership functions and 
fuzzy logic rules. 

Fig. 2 shows the structure of our NN-FLC, which is de- 
scribed in [3]. The system has five layers. Nodes at layer 
one are input nodes (linguistic nodes) which represent input 
linguistic variables. Layer five is the output layer. Nodes at 
layers two and four are term nodes and act as membership 
functions to represent the terms of the respective linguistic 
variable. Actually, a layer-two node can be either a single node 
that performs a simple membership function (e.g., a triangular- 
shaped function or a bell-shaped function) or multilayered 
nodes (a subneural net) that perform a complex membership 
function (e.g., in an acoustic cue detector [4]). Hence, the 
total number of layers in this connectionist model could be 
more than five. Each node at layer three is a rule node 
which represents one fuzzy logic rule. Thus, all layer-three 
nodes form a fuzzy rule base. Links at layers three and four 
function as a connectionist inference engine [3], [4], which 
avoids the rule-matching process. Layer-three links define the 
preconditions of the rule nodes, and layer-four links define the 
consequences of the rule nodes. Therefore, for each rule node, 
there is at most one link (perhaps none) from some term node 
of a linguistic node. This is true both for precondition links 
and consequent links. The links at layers two and five are fully 
connected between linguistic nodes and their corresponding 
term nodes. The arrow on the link indicates the normal signal 
flow direction when this network is in use. We shall later 
indicate the signal propagation, layer by layer, according to 
the arrow direction. Signals may flow in the reverse direction 
in the learning process, as discussed below in Sections 111 and 
IV. 

With this five-layered structure of the proposed connection- 
ist model, a node’s basic functions can be defined. A typical 
network consists of a unit which has some finite fan-in of 

connections represented by weight values from other units and 
fan-out of connections to other units (see Fig. 3). Associated 
with the fan-in of a unit is an integration function, f, which 
serves to combine information, activation, or evidence from 
other nodes. This function provides the net input for this node: 

net - input = f (@, U! ,  . . . , U:; wf, tug, .. . , w,”) (1) 

where U: represents an ith input signal from the kth layer, w: 
represents the ith link weight of the kth layer, the superscript 
k indicates the layer number, and p represents the number of 
a node’s input connections. This notation will also be used in 
the following equations. A second action of each node is to 
output an activation value as a function of its net input: 

(2) output = of = a( f )  

where a(.) denotes the activation function. For example (in 
standard form), 

Y 

We shall next describe the functions of the nodes in each of 
the five layers of the proposed connectionist model. 

.Layer 1: The nodes in this layer transmit input values 
directly to the next layer. That is, 

f =ut and a= f. (4) 

From (4), the link weight at layer one (wd) is unity. 
.Layer 2 :  If we use a single node to perform a simple 

membership function, then the output function of this node 
should be this membership function. For example, for a bell- 
shaped function 

where m;j and a;j are, respectively, the center (or mean) and 
the width (or variance) of the bell-shaped function of the jth 
term of the ith input linguistic variable zi. Hence, the link 
weight at layer two can be interpreted as m;j. If we 
use a set of nodes to perform a membership function, then 
the function of each node can be in the standard form as (3), 
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Fig. 3. Basic structure of a node in a neural network. 

The link weight in layer three (w,”) is then unity. Other pos- 
sibilities for performing the fuzzy AND operation are “product” 
or “softmin” operator (a soft version of the min operator 
[33]). Although these operators require more computations 
than the min operator, they are differentiable and suitable for 
the derivation of a learning algorithm. 

.Layer 4: The links at layer four should perform the fuzzy 
OR operation to integrate the fired rules which have the same 
consequent: 

P 

(7) f = c u q  and a = min(1, f). 
i=l 

Hence, the link weight wf = 1. 
.Layer 5:  The nodes in this layer transmit the decision 

signal out of the network. These nodes and the layer-five links 
attached to them act as the defuzzifier. If mf’’s and u ;~ ’ s  
are the centers and the widths of the membership functions, 
respectively, then the following functions can be used to 
simulate the center of area defuzzification method [ 161, [ 171 : 

f = w:~u: = C(mi jg i j )u :  anda = ~ . (8) 
and the whole subnet is trained off-line to perform the desired aiju: 
membership function by a standard learning algorithm (e.g., 
backpropagation [2]). 

.Layer 3: The links in this layer are used to perform 
precondition matching of fuzzy logic rules. Hence, the rule 
nodes should perform the fuzzy AND operation 

Here the link weight at layer five (w;’) is mijaij. 

Two complementary learning schemes were proposed to 
set up the NN-FLC in [3] and [4]. The on-line supervised 
learning algorithm performs very well when the training data 
are available on-line [4], while the two-phase hybrid learning 
algorithm is superior when sets of training data are available f = min(u7, U:, . . . , U:) and a = f. (6) 
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off-line [3 1. However, both learning schemes require precise 
training data to indicate the exact desired output, and then 
use the precise training data to compute the output errors 
for training the whole network. Unfortunately, such detailed 
and precise training data may be very expensive or even 
impossible to obtain in some real-world applications because 
the controlled system may only be able to provide the learning 
algorithm with a reinforcement signal such as a binary decision 
of right/wrong of the current controller/decision maker. To 
train a network with this kind of evaluative feedback, two NN- 
FLC’s need to be integrated into the structure of the proposed 
RNN-FLCS with the corresponding reinforcement learning 
algorithm developed in the following sections. One NN-FLC in 
the proposed R”-FLCS functions as a fuzzy controller, and 
the other NN-FLC as a fuzzy predictor. The reinforcement 
learning algorithm combines the structure learning and the 
parameter learning to determine optimal centers (mij’s) and 
widths (aij’s) of the term nodes in layers two and four. At 
the same time, it will learn fuzzy logic rules by deciding the 
connection types of the links at layers three and four: that is, 
the precondition links and consequent links of the rule nodes. 
All these learning algorithms will be performed on both NN- 
FLC’s simultaneously and only conducted by a reinforcement 
signal feedback from the extemal environment. 

111. STRUCTURE/PARAMETER LEARNING ALGORITHM FOR 
THE R”-FLCS WITH A SINGLE-STEP FUZZY PREDICTOR 

Unlike the supervised learning problem in which the correct 
“target” output values are given for each input pattem to 
instruct the network’s learning, the reinforcement learning 
problem has only very simple “evaluative” or “critic” in- 
formation instead of “instructive” information available for 
learning. In the extensive case, there is only a single bit of 
information to indicate whether the output is right or wrong. 
Fig. 4 shows how a network and its training environment 
interact in a reinforcement learning problem. The environment 
supplies a time-varying vector of input to the network, receives 
its time-varying vector of output/actions, and then provides 
a time-varying scalar reinforcement signal. In this paper, 
the reinforcement signal r ( t )  can be one of the following 
forms: 1) a two-valued number, r ( t )  E {-1, l}, such that 
r ( t )  = 1 means “a success” and r ( t )  = -1 means “a failure”; 
2) a multivalued discrete number in the range [-1,1], for 
example, r ( t )  E {-1, -0.5,0,0.5, l} which corresponds to 
different discrete degrees of failure or success; or 3) a real 
number, r ( t )  E [-1,1], which represents a more detailed and 
continuous degree of failure or success. We also assume that 
r ( t )  is the reinforcement signal available at time step t and 
is caused by the input and actions chosen at time step t - 1 
or even affected by earlier input and actions. The objective 
of learning is to maximize a function of this reinforcement 
signal, such as the expectation of its value on the upcoming 
time step or the expectation of some integral of its values 
over all future time. 

The precise computation of the reinforcement signal highly 
depends on the nature of the environment and is assumed to be 
unknown to the learning system. It could be a deterministic or 
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Fig. 4. Proposed reinforcement neural-network-based fuzzy logic control 
system (RNN-FLCS). 

stochastic function of the input produced by the environment 
and the output it receives from the network. There are three 
classes of reinforcement learning problems. First, for the 
simplest case, the reinforcement signal is always the same 
for a given input/output pair; hence, the network can learn 
a definite input/output mapping. Moreover, the reinforcement 
signals and input patterns do not depend on previous network 
output. For example, the parity learning problem and the 
symmetry learning problem 1181 are in this class. Second, 
in a stochastic environment, a particular inpudoutput pair 
determines only the probability of positive reinforcement. 
However, this probability is fixed for each inpudoutput pair 
and, again, the reinforcement signal and input sequence do 
not refer to past history. This class includes the nonassociative 
reinforcement learning problem, in which there is no input, and 
we need to determine the best output pattern with the highest 
probability of positive reinforcement from only a finite set 
of trials. A typical example is the two-armed bandit problem 
[8]. Third, for the most general case, the environment is itself 
govemed by a complicated dynamical process, and both the 
reinforcement signal and input patterns may depend on the past 
network output. For example, in a chess game, the environment 
is actually another player, and the network only receives a 
reinforcement signal (win or lose) after a long sequence of 
moves. 

To resolve the three different classes of reinforcement learn- 
ing problems, a new structure, called the reinforcement neural- 
network-based fuzzy logic control system (€2”-FLCS), is 
proposed. The proposed RNN-FLCS, as shown in Fig. 4, 
integrates two NN-FLC’s into a learning system: one NN- 
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FLC for the fuzzy controller and the other NN-FLC for 
the fuzzy predictor. These two NN-FLC’s share the same 
layers 1 and 2 and have individual layer 3 to layer 5 ,  
which are not clearly shown in the fuzzy predictor in Fig. 
4. Each network has exactly the same structure as shown in 
Fig. 2. In other words, the fuzzy controller (action network) 
and the fuzzy predictor (evaluation network) share the same 
distributed representation of input states by using the same 
input membership functions (i.e., the same fuzzifier), but they 
have independent fuzzy logic rules (a different rule base and 
decision-making process) and different output membership 
functions (a different defuzzifier). The action network can 
have multiple output as shown in Fig. 2, although only 
one output node is shown in Fig. 4. In the multioutput 
case, all the output nodes of the action network receive 
the same intemal reinforcement signals from the evaluation 
network. The evaluation network has only one output node 
since it is used to predict the extemal scalar reinforcement 
signal. The action network decides a best action to impose 
onto the environment in the next time step according to the 
current environment status. The evaluation network models the 
environment such that it can perform a single- or multistep 
prediction of the reinforcement signal that will eventually be 
obtained from the environment for the current action chosen 
by the action network. The predicted reinforcement signal can 
provide the action network beforehand as well as more detailed 
reward/penalty information (“intemal reinforcement signals”) 
about the candidate action for the action network to learn and 
to decrease the uncertainty it faces to speed up the learning. 

In this section, a reinforcement structure/parameter learning 
algorithm is proposed to solve the first and second classes 
of the reinforcement learning problem on the proposed RNN- 
FLCS using a single-step fuzzy predictor. Since the third class 
of the reinforcement learning problem is more difficult, a 
more powerful multistep fuzzy predictor is necessary for the 
RNN-FLCS. This will be discussed in Section IV. 

A .  Stochastic Exploration 

to be some source of randomness in the manner in which 
output actions are chosen by the action network such that the 
space of possible output can be explored to find a correct value. 
Thus, the output nodes (layer 5 )  of the action network are now 
designed to be stochastic units which compute their output as 
a stochastic function of their input. The functions of nodes 
in the other layers of the action network remain unchanged as 
described in Section 11. Such an approach has also been used in 
other reinforcement learning algorithms [ 121-[15], [ 181-[20] 
and is consistent with the closely related theory of stochastic 
learning automata[9]. 

In our learning algorithm, the gradient information, g, 
is also estimated by the stochastic exploratory method [19]. 
In particular, the intuitive idea behind the multiparameter 
distributions suggested by Williams [15] is used for the 
stochastic search of network output units. In estimating the 
gradient information, the output y of the action network does 
not directly act on the environment. Instead, it is treated as 
a mean (expected) action. The actual action, y, is chosen 
by exploring a range around this mean point. This range 
of exploration corresponds to the variance of a probability 
function which is the normal distribution in our design. This 
amount of exploration, a@), is chosen as: 

k k o(t) = -[1 - tanh(p(t))] = ____ 2 1 + e 2 P ( t )  

where k is a search-range scaling constant which can be simply 
set to 1, and p ( t )  is the predicted (expected) reinforcement 
signal used to predict ~ ( t ) .  Equation (10) is a monotonic de- 
creasing function between k and 0, and a( t )  can be interpreted 
as the extent to which the output node searches for a better 
action. Since p ( t )  is the expected reward signal, if p ( t )  is 
small, the exploratory range, a(t) ,  will be large according to 
(10). On the contrary, if p ( t )  is large, ~ ( t )  will be small. 
This amounts to narrowing the search about the mean, y ( t ) ,  
if the expected reinforcement signal is large. This can provide 
a higher probability to choose an actual action, f ( t ) ,  which is - .  . .  

In this section, we first develop the learning algorithm very ‘lose to y ( t ) ,  since it is expected that the mean action y ( t )  

for the action network. The goal of the reinforcement strut- is very close to the best action possible for the current given 
ture/parameter learning algorithm is to adjust the parameters input vector. On the other hand, the search range about the 
(e.g., mi’s) of the action network, to change the connectionist mean y ( t )  is broadened expected reinforcement is 

structure, or even to add new nodes if necessary, such that the 
reinforcement signal is maximum; that is, 

small such that the actual action can have a higher probability 
of being quite different from the mean action y(t). Thus, if an 
expected action has a smaller expected reinforcement signal, 

Or 
Om; Ami c( -. (9) 

To determine &, we need to know k ,  where y is the output 
of the action network. (For clarity, we discuss the single-output 
case first.) Since the reinforcement signal does not provide 
any hint as to what the right answer should be in terms of 
a cost function, there is no gradient information. Hence, the 
gradient $$ can only be estimated. If we can estimate g, then 
the on-line supervised structure/parameter learning algorithm 
[4] can be directly applied to the action network to solve 
the reinforcement learning problem. To estimate the gradient 
information in a reinforcement learning network, there needs 

a? 

we can have more novel trials. In terms of searching, the use 
of multiparameter distributions in the stochastic nodes (the 
output nodes of the action network) could allow independent 
control of the location being searched and the breadth of the 
search around that location. In the two-parameter distribution 
approach, a predicted reinforcement signal is necessary to 
decide the search range a(t) .  This predicted reinforcement 
signal can be obtained from the fuzzy predictor. If no such 
prediction is available, the search range a( t )  can be set as 
a constant. Then, the multiparameter distribution approach 
reduces to the single-parameter distribution approach, which 
has been widely used in the reinforcement learning algorithms 
[11]-[14]. Once the variance has been decided, the actual 
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output of the stochastic node can be set as: 

Y(t> = WY(t)> 4 t ) ) .  (1 1) 

That is, Q(t) is a normal or Gaussian random variable with 
the density function: 

1 
f ( Y )  = (12) 

For a real-world application, $( t )  should be properly scaled to 
the final output to fit the input specifications of the controlled 
plant. This scaling factor or method is application-oriented. 

The gradient information is estimated as: 

where the subscript t - 1 represents the time displacement, 
and g is a scaling factor. The time displacements in (13) 
and the following equations reflect the assumption that the 
reinforcement signal (which may be the “predicted” reinforce- 
ment signal in the multistep fuzzy predictor) at time step t 
depends on the input and actions chosen at time step t - 1. 
In (13), the term 7 is the normalized difference between 
the actual and expected actions, T ( t )  is the real reinforcement 
feedback for the actual action y ( t -  l), andp(t) is the predicted 
reinforcement signal for the expected action y(t - 1). Equation 
(13) was derived based on the following intuitive concept. If 
~ ( t )  > p ( t ) ,  then y(t - 1) is a better action than the expected 
one, y(t - 1), and y(t - 1) should be moved closer to c(t - 1). 
If ~ ( t )  < p ( t ) ,  then Y(t - 1) is a worse action than the 
expected one, and y ( t  - 1) should be moved farther away 
from y(t - 1). This idea also comes from the observations of 
a discrete gradient descent method. The concept behind (13) 
is frequently adopted in the stochastic exploration techniques 

After the gradient information is available, we have trans- 
formed the reinforcement learning problem to the supervised 
learning problem and can apply the on-line supervised struc- 
ture/parameter learning algorithm in [4] to develop the fol- 
lowing reinforcement structure/parameter learning algorithm 
for the action network in the proposed RNN-FLCS. A de- 
tailed derivation and description of the on-line supervised 
structure/parameter learning algorithm can be found in [4]. 

One important characteristic of the on-line supervised struc- 
ture/parameter learning algorithm is that it can leam both the 
network structure and parameters simultaneously. Learning the 
network structure includes deciding the proper number of out- 
put term nodes in Layer 4 and the proper connections between 
the nodes in Layers 3 and 4 of an NN-FLC. This learning also 
decides the coarse of the output fuzzy partitions and finds 
the correct fuzzy logic rules. Learning the network parameters 
includes adjusting the node parameters in Layers 2 and 4. 
This corresponds to leaming input and output membership 
functions. The flowchart of this on-line learning algorithm is 
shown in Fig. 5 .  Given the gradient error information in (13), 
the proposed learning algorithm first decides whether or not 

~ 9 1 .  

to perform the structure learning based on the previously pro- 
posed fuzzy similarity measures [4] of the output membership 
functions. If structure learning is necessary, then the proposed 
learning algorithm will further decide whether to add a new 
output term node (a new membership function); it will also 
change the consequenct of some fuzzy logic rules properly. 
After the structure learning process, the parameter learning will 
be performed to adjust the current membership functions. This 
structure/parameter learning will be repeated for each real- 
time incoming internal reinforcement signal, which appears 
either with the same frequency as the external reinforcement 
signal (in the single-step prediction problem) or with much 
higher frequency than the extemal reinforcement signal (in the 
multistep prediction problem). When the structure/parameter 
training loop is complete, rule combination [3] is performed 
to find the minimum node representation of fuzzy logic rules. 
This is the final step in the process. 

Before entering the structure/parameter learning loop, as 
shown in Fig. 5, we need to perform two kinds of initial- 
ization: structure initialization and parameter initialization. In 
the structure initialization, the desired coarse of input fuzzy 
partitions (i.e., the size of the term set of each input linguistic 
variable) and the initial guess of output fuzzy partitions must 
be provided from the outside world. Before this network is 
trained, an initial form of the network is constructed and, 
during the learning process, new nodes may be added and some 
connections changed. Finally, after the learning process, some 
nodes and links of the network will be deleted or combined 
to form the final structure of the network. In its initial form 
(see Fig. 2 ) ,  there are ni IT(xi)/ rule nodes with the input 
of each rule node coming from one possible combination of 
the terms of input linguistic variables with the constraint that 
only one term in a term set can be a rule node’s input. Here, 
IT(xi)l indicates the numberlof terms of xi (i.e., the number 
of fuzzy partitions of input state linguistic variable xi). Thus, 
the state space is initially divided into lT(x1)l x lT(x2)I x 
. . .  x IT(xn)l linguistically defined nodes (or fuzzy cells) 
which represent the preconditions of fuzzy rules. Furthermore, 
there is only one link between a rule node and an output 
linguistic variable. This link is connected to a term node of the 
output linguistic variable. The initial candidate (term node) of 
the consequent of a rule node can be assigned by an expert 
(if possible) or chosen randomly. A suitable term in each 
output linguistic variable’s term set will be chosen for each 
rule node after the learning process. With the initial network 
structure, the parameters in this structure should be initialized. 
The parameter initialization decides the initial membership 
functions of input/output linguistic variables. Theoretically, 
they can be set randomly; however, a more efficient way is to 
use identical membership functions such that their domains can 
cover the region of corresponding input/output space evenly 
according to the given initial coarse of fuzzy partitions. This 
initilization process is used for both the action network and the 
evaluation network, which can be a single-step or multistep 
fuzzy predictor. 

After the initialization process, the learning algorithm enters 
the training loop in which each loop corresponds to an 
incoming internal reinforcement signal. Basically, the idea of 
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Fig. 5.  Flowchart of the proposed reinforcement structure/parameter learning 
algorithm. 

backpropagation [2]  is used here to find the errors of node 
output in every layer except the output layer. These errors 
are then analyzed by the fuzzy similarity measure to perform 
structure and/or parameter adjustments. The detailed learning 
rules are derived. 

The goal is to maximize the reinforcement signal r( t ) .  For 
each input vector from the environment, starting at the input 
nodes, a forward pass computes the activity levels of all the 
nodes in the network and, at the end, stochastic exploration 
is performed at the output node to predict g. Then, starting 
at the output nodes, a backward pass computes for all the 
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hidden nodes. Assuming that w is an adjustable parameter in 
a node (e.g., the center of a membership function), the general 
parameter learning rule used is: 

d r  
A W E -  

d W  

where 7 is the learning rate, and 

- (16) 
dr d(net - input) - dr d f  _- - - - 

d r  
dw d(net - input) dw df aw 

d r  da df 
da d f  dw ’ 
__- - - 

To show the learning rule, we shall show the computations 
of 3, layer by layer, starting from the output layer; we use 
the bell-shaped membership functions with centers mi’s and 
widths oils as the adjustable parameters for these computa- 
tions. 

.Layer 5: Using (16), (13), and (8), the adaptive rule of the 
center m; is derived: 

Hence, the expected updated amount of the center is: 

Similarly, using (6), (13), and (8), the adaptive rule of the 
width CT~ is derived: 

Hence, the expected updated amount of the width parameter is: 

The error to be propagated to the preceding layer is: 

[” y]  . (21) ar dr aa 
s5 ( t )  = = -~ = [ r ( t )  - p ( t ) ]  - 

afa dadf5  t-1 

Fuzzy Similarity Measure: In this step, the system decides 
whether the current structure should be changed according 
to the exvected uvdated amount of the center and width 
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parameters [(18) and (20)]. 
and width are, respectively, 

To do this, the expected center 
computed: 

From the current membership functions of output linguistic 
variables, we want to find the one which is the most similar to 
the expected membership function by measuring their fuzzy 
similarity. The fuzzy similarity measure [4] determines the 
similarity between two fuzzy sets. If A and B are two fuzzy 
sets with bell-shaped membership functions, then: 

The approximate fuzzy similarity measure of A and 
B , E ( A , B ) ,  can be computed as follows: Assuming 
ml 2 mz, 

where ( A  n B (  indicates the cardinality of A n B and it can 
be easily computed from: 

where h(z)  = max(0,x). 

tion with center mi and width ai. Let 
Let M(mi,  ai) represent the bell-shaped membership func- 

where k = IT(y)l is the size of the fuzzy partition of the output 
linguistic variable y(t). After the most similar membership 
function M(mi-ciosest, ai-closest) to the expected membership 
function M(mi-new, ai-new) has been found, the following 
adjustment is made: 

IF degree(i, t )  < a(t) ,  
THEN 

create a new node M(mi-new, Oi-new) in 
layer 4 

node, 
and denote this new node as the i-closest 

do the structure learning process, 
ELSE IF M(mi-closest, ai-closest) # 

M(mi ,  ai) 
THEN 

do the structure learning process, 

do the following parameter adjustments in 
ELSE 

layer 5 :  

m;(t + 1) = mi-new 

ai(t + 1) = ai-new 

skip the structure learning process. 
a( t )  is a monotonically increasing scalar similarity criterion 

such that the lower similarity is allowed in the initial stages of 
the learning. According to this judgment, degree(i,t) is first 
compared to the similarity criterion. If there is not enough 
similarity, then a new term node (new membership function) 
with the expected parameters is built because, in this case, 
all the current membership functions are too different from 
the expected one. A new node with the expected membership 
function is necessary, and the output connections of some just 
firing rule nodes should be changed to point to this new term 
node through the structure learning process. If no new term 
node is necessary, the learning algorithm will then check if 
the ith term node is the i-closest node. If this is false, some of 
the just fired fuzzy logic rules should have the i-closest (term) 
node instead of the original ith term node as their consequent. 
In this case, the structure learning process should be performed 
to change the current structure properly. If the ith term node is 
the i-closest node, then no structural change is necessary; only 
the parameter learning should be performed by the standard 
backpropagation algorithm. The structure learning process is 
given later. 

Structure Learning: When entering this process, it means 
that the ith term node in Layer 4 is improperly assigned as 
the consequent of some fuzzy logic rules which have just 
been fired strongly. The more proper consequent for these 
fuzzy logic rules should be the i-closest node. To find the 
rules whose consequences should be changed, we set afiring 
strength threshold p. Only the rules whose firing strengths 
are higher than this threshold are treated as real frring rules. 
Only the real firing rules are considered for changing their 
consequent, since only these rules are fired strongly enough to 
contribute to the results of judgment. Assuming that the term 
node M(mi ,  ai) in layer 4 receives input from rule nodes 
1 ... 1 in layer 3, whose corresponding firing strengths are 
ag's,i = 1. . .1, then: 

IF ag(t)  2 ,B, THEN change the consequent of the ith rule 
node 

from M(m; ,  a;) to M(m;-new, ai-new). 
To utilize the error signal more efficiently, the following 

fine tuning can be performed. Let 
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(Ami-closest)extra = V ’ ~ I  (mi-new - mi-closest ) 
(Agi--closest)extra 1 $kl(ci--new - ci-closest) 
where 0 5 77’ < 0 < 1. The subscript “extra” denotes 
the updated amount in addition to those calculated from 
other possible error signals. The cutoff value p is chosen 
empirically. In most cases, a consequent label, which is found 
to cause a large output error, is usually supported by one or 
a few strongly fired rules. Hence, it is not too difficult to find 
a proper p value. A p value in the range [ O S ,  0.81 usually 
leads to good learning results. However, it is possible that 
several weakly fired rules, which share one consequent label, 
might affect the output substantially. In this extreme case, 
the structure learning rule might not be able to change the 
consequent of these rules properly. This case rarely happens 
because it means that a set of rules sharing one consequent 
is assigned to a wrong consequent label simultaneously in the 
learning process. Three possible methods can be used to solve 
this problem. First, the p value can be changed adaptively 
such that it will be lowered when all the rules to a “wrong” 
consequent label are fired weakly. Second, a cutoff is put on 
the effect of the Layer 4 consequent label rather than using 
such a cutoff at the Layer 3 output. Third, the cutoff p could be 
eliminated by weighting the changes caused in a Layer 4 node 
or by the sum of degrees of rules feeding into it with suitable 
normalization. This weighting scheme will automatically cause 
large changes in the important rules only and will do so in a 
smooth and graceful manner. These suggested modifications 
on the structure learning algorithm need further studies. 

*Layer 4: There is no parameter to be adjusted in this 
layer. Only the error signals (6:’s) need to be computed and 
propagated. The error signal 6: is derived as in the following: 

64 d~ d~ da; dT ---= - - - -  
dfi dui d fi d(net - input)5 
d(net - input)5 

dai 
where, from (8), 

d(net - input)5 - df5 
da; dU5 

-- 

and, from (21), 
dT 

d f 5 
- = s5 = [ T @ )  - p ( t ) ]  - - dT 

d(net - input)5 .[VI . 
t -1  

Hence, the error signal is: 

In the multioutput case, the computations in layers five and 
four are exactly the same as the ones using the same internal 
reinforcement signals and proceed independently for each 
output linguistic variable. 

*Layer 3: As in layer four, only the error signals need to be 
computed. According to (7), this error signal can be derived: 

(33) 
- 8~ d(net - input)4 
- 

d(net - input)4 dui 

Hence, the error signal is 6f(t) = 64(t) .  If there is more than 
one output, then the error signal becomes 61( t )  = XI, 6; ( t ) ,  
where the summation is performed over the consequences of 
a rule node; that is, the error of a rule node is the summation 
of the errors of its consequent. 

*Layer 2: Using (16) and (9, the adaptive rule of mij is 
derived: 

(34) 
dr d~ dui dfi d~ 2(u; - mij) -- - - -eft 

a?. 
dmi j  dui d f i  dmi j  dui 23 

where, from (33), 

(35) 
dT - d~ d(net - input)k 
- dui - k d(net - input)k dui 

dT 
d(net - input)k df,3 

- = 62 - - dT 

and, from (6), 

d(net -input)k - df3 - - 
da; 8.119 

1 if = min (inputs of rule node I C ) ;  
0 otherwise. 

(37) 

Hence, 

where the summation is performed over the rule nodes that 
ai feeds into, and 

q k ( t )  = 0 otherwise. 

So, the adaptive rule of mij’s is: 

{ 6 z ( t )  if ai is minimum in lcth rule node’s input; 

(39) 

(40) 
1 t -1  

Similarly, using (16), (3, and (35)-(39), the adaptive rule of 
aij is derived: 

d~ d~ dui d f i  

daij  dui d f i  dci j  

(41) 
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Hence, the adaptive rule of a;j becomes: predictor is exactly the same as the on-line supervised learning 
algorithm proposed in [4] for the NN-FLC with a single output 
node. The goal to train the single-step fuzzy predictor is to 
minimize the squared error prediction: 

. (42) 1 t -1  

Since the min operator used in layer 3 is nondifferentiable, 
the learning rule [(37) and (39)] will cause a Dirac delta type 
of function. This can be avoided if the softmin operator [33] 
is adopted. In this case, a form of leaky learning will take 
place at the antecedent level of the network and may lead to a 
faster learning with a less number of iterations. However, due 
to more complex computations of the softmin operator, the 
actual learning time in each iteration will be longer. Hence, 
for practical considerations, the min operator is selected for 
performing the fuzzy AND operation in layer 3. 

The whole learning procedure is summarized by the flow- 
chart in Fig. 5 .  The proposed reinforcement learning algorithm 
provides a novel on-line scheme to combine the structure 
learning and the parameter learning such that they can be 
performed simultaneously. Finally, it should be noted that this 
backpropagation algorithm can be easily extended to train the 
membership function implemented by a subneural net instead 
of a single-term node in layer two since, from the analysis, 
the error signal can be propagated to the output node of the 
subneural net. Then, using a similar backpropagation rule in 
this subneural net, the parameters in this subneural net can be 
adjusted. 

B.  Sinale-Ster, Fuzzv Predictor 

We shall use an NN-FLC to develop a single-step fuzzy 
predictor (evaluation network) as shown in Fig. 4. It shares 
the same fuzzifier as the action network; that is, both use 
the same intemal representation, which is an overlapping 
type of distributed representation of input pattems. The fuzzy 
predictor receives an extemal reinforcement signal from the 
environment and produces intemal reinforcement signals to 
the action network. The function of the single-step fuzzy 
predictor is to predict the extemal reinforcement signal, ~ ( t ) ,  
one time step ahead; that is, at time t - 1. Here, ~ ( t )  is the 
real reinforcement signal resulting from the inputs and actions 
chosen at time step t - 1, but it can only be known at time step 
t in the first and second classes of the reinforcement leaming 
problem. If the fuzzy predictor can produce a signal p ( t ) ,  
which is the prediction of r ( t )  but available at time step t - 1, 
then the time delay problem can be solved. With a correct 
predicted signal p ( t ) ,  a better action can be chosen by the 
action network at time step t- 1 and the corresponding leaming 
can be performed on the action network at time step t upon 
receiving the extemal reinforcement signal T ( t ) .  As indicated 
in the last subsection, p ( t )  is necessary for the stochastic 
exploration with multiparameter probability distribution (10). 
The other intemal reinforcement signal, ?(t) ,  in Fig. 4 is set as 

(43) 

where ~ ( t )  represents the desired output (real extemal rein- 
forcement signal), and p ( t )  is the current output (predicted 
reinforcement signal). Then, the gradient information can be 
easily derived: 

1 
E = 5 ( T ( t )  - P ( W 2  

- d E  = p ( t )  - r ( t ) .  
a P  

(44) 

Similar to the leaming rule developed in the last subsection, 
we can derive the structure/parameter learning algorithm for 
the single-step fuzzy predictor using the following general 
parameter learning rule: 

w(t + 1) = w(t) + 77 -- ( E) (45) 

where w is the adjustable parameters in the fuzzy predictor. 
The leaming equations are the same as (16)-(42) if is 

replaced by (-g) and the effects caused by this replace- 
ment are properly updated; that is, all the terms [ ~ ( t )  - 

p ( t ) ]  [e],_, in (16)-(42) are replaced with the term [ ~ ( t )  - 

In the RNN-FLCS, the action and evaluation networks are to 
be trained together. In principle, we could perform the learning 
for both networks at the same time since they can be treated 
individually. Although they share the same fuzzifier, they 
can find a common input intemal distributed representation 
(i.e., the same input membership functions) suitable for them. 
However, since the action network relies on the accurate 
prediction of the evaluation network, it seems practical to train 
the fuzzy predictor first, at least partially, or to let the fuzzy 
predictor have a higher leaming rate than the action network. 

After the consequents of rule nodes are determined for both 
the action and evaluation networks (i.e., when the structure 
leaming process is done and the structure will not be changed 
any further, but the parameter refinement may still be per- 
formed), the rule combination in [3], [4] is performed to find 
the minimum node representation of current fuzzy logic rules. 
The criteria for a set of rule nodes to be combined into a single 
rule node are: 1 )  that they have exactly the same consequents; 
2) some preconditions are common to all the rule nodes in 
this set; and 3) the union of other preconditions of these rule 
nodes composes the whole term set of some input linguistic 
variables. If a set of nodes meets these criteria, a new rule 
node with only the common preconditions can replace this set 
of rule nodes. 

P ( t ) l .  

- , ,  - 
?(t)  = r ( t )  - p ( t ) ,  which is the prediction error for computing 
(13) by the action network. The single-step prediction is 
the extreme case of the multistep prediction which will be 
presented in the next section. Basically, the training of a single- 
step predictor is a simple supervised learning problem. Thus, 
the reinforcement learning algorithm for the single-step fuzzy 

IV. MULTISTEP FUZZY PREDICTOR 
When both the reinforcement signal and input pattems from 

the environment may depend arbitrarily on the past history 
of the network output and the network may only receive a 
reinforcement signal after a long sequence of outputs, the 
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credit assignment problem becomes severe. This temporal 
credit assignment problem results because we need to assign 
credit or blame to each step individually in such a long 
sequence for an eventual success or failure. Hence, for this 
class of reinforcement learning problem, we need to solve the 
temporal credit assignment problem together with the original 
structure credit assignment problem of attributing network 
error to different connections or weights. The solution to 
the temporal credit assignment problem in the RNN-FLCS is 
to design a multistep fuzzy predictor, which can predict the 
reinforcement signal at each time step within two successive 
external reinforcement signals which may be separated by 
many time steps. This multistep fuzzy predictor can assure 
that both the evaluation network and the action network do 
not have to wait until the actual outcome is known, and they 
can update their parameters and structures within the period 
without any evaluative feedback from the environment. To 
solve the temporal credit assignment problem, the technique 
based on the temporal difference methods, which are often 
closely related to the dynamic programming techniques [22], 
is used [12], [21]. Unlike the single-step prediction or the 
supervised learning method which assigns credit according to 
the difference between the predicted and actual output, the 
temporal difference methods assign credit according to the 
difference between temporally successive predictions. Some 
important temporal difference equations of three different 
cases are summarized below. 

C a s e  1--Prediction of final outcome: Given the 
observation-outcome sequences of the form x1 , 2 2 ,  . . . , x, , z ,  
where each xt is an input vector available at time step t from 
the environment and z is the external reinforcement signal 
available at time step m + 1. For each observation-outcome 
sequence, the fuzzy predictor produces a corresponding 
sequence of predictions p l r p 2 ,  . . .  , p m ,  each of which is an 
estimate of z .  Since pt  is the output of the evaluation network 
at time t , p t  is a function of the network's input xt and the 
network's adjustable parameters wt and can be denoted as 
p(xt,wt), where wt can be mz(t) (center of membership 
function) or oi(t) (width of membership function). For this 
prediction problem, the learning rule, which is called TD(X) 
family of learning procedures, is: 

t - 1  

where p,+l z,O 5 X 5 1, and q is the leaming rate. X 
is the recency weighting factor with which alternations to the 
predictions of observation vectors occurring k steps in the past 
are weighted by Xk. In the extreme case that X = 1, all the 
proceeding predictions, p l  , p a ,  . . . , pt- 1, are altered properly 
according to the current temporal difference, pt - p t - l ,  to 
an "equal" extent. In this case, (46) reduces to a supervised- 
learning approach and, if pt  is a linear function of xt and 
wt, then it is the same as the Widrow-Hoff procedure [23]. 
In the other extreme case that X = 0, the increment of the 
parameter w is determined only by its effect on the prediction 
associated with the most recent observation. A theorem about 

the convergence of TD(0) when pt  is a linear function of xt 
and wt can be found in [21]. 

C a s e  2--Prediction of finite cumulative outcomes: In this 
case, pt predicts the remaining cumulative cost given the tth 
observation, x t ,  rather than the overall cost for the sequence. 
This case happens when we are more concerned with the 
sum of future predictions than the prediction of what will 
happen at a specific future time. Let rt be the actual cost 
incurred between time steps t - 1 and t. Then, pt-1 is to 
predict zt-l = E m f l r k .  Hence, the prediction error is 

m+"Ft m+l  
Zt-1 - pt-1 = C k = t  Tk - pt-1 = Ck=t (Tk -k pk - p k - l ) ,  
where p,+l is defined as 0. Thus, the learning rule is: 

t-1 

Awt = q(.t + Pt-- Pt-1) Xt-k-lVwpk. (47) 
k=l 

.Case 3--Prediction of infinite discounted cumulative out- 
comes: In this case, pt-l 'predicts zt- l  = EEoykrt+rc = 
rt + ypt ,  where the discount-rate parameter y,O 5 y < 1, 
determines the extent to which we are concerned with short- or 
long-range prediction. This is used for prediction problems in 
which exact success or failure may never become completely 
known. In this case, the prediction error is (rt + yp t )  - p t -1 ,  
and the learning rule is: 

t-1 

Awt = ~ ( r t  + ypt - pt-1) X t - k - l V w ~ k .  (48) 

In applying the temporal difference procedures to the proposed 
RNN-FLCS, we let X = 0 due to its efficiency and accuracy 
[21]. A general learning rule used for the three cases is: 

k=l 

Awt = v(rt + ypt - Pt-1)VwPt-1 (49) 

where y, 0 5 y < 1, is a discount-rate parameter and q is the 
learning rate. 

We shall next derive the learning rule of the multistep 
fuzzy predictor according to (49). In this case, p ( t )  is the 
single output of the fuzzy predictor (evaluation network) 
for the network's current parameter w(t) and current given 
input vector x ( t )  at time step t. Here, p ( t )  can be any kind 
of prediction output in the various cases of the multistep 
prediction problem stated. According to (49), let: 

?(t)  = ~ ( t )  + y p ( t )  - p ( t  - l), 0 5 y < 1. (50) 

Then, ?(t)  is the error signal of the output node of the multistep 
fuzzy predictor. The general parameter learning rule, then, is: 

Aw(t) = q?(t) - El t--l 

where w is the network parameter (i.e., mi or ai). The learning 
rule for each layer in the fuzzy predictor can be computed 
as in (16)-(42). The only exception is that the error signal 
is different. Thus, the learning equations for the multistep 
fuzzy predictor are the same as in (16)-(42) but with the 
term [ ~ ( t )  - p ( t ) ] [ 5 ] t - l  replaced by the term ?(t)  in 
(50). Also, the multistep fuzzy predictor will provide two 
internal reinforcement signals, the prediction output p ( t ) ,  and 
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the prediction error ?(t)  to the action network for its learning 
(see Fig. 4). 

The learning algorithm for the action network is the same 
as that derived in section 111-A. However, due to the different 
nature of the intemal reinforcement signal ?( t ) ,  the learning 
algorithm of the action network with the multistep fuzzy 
predictor will be different. The goal of the action network 
is to maximize the extemal reinforcement signal r ( t ) .  Thus, 
we need to estimate the gradient information z, as we did 
previously. With the intemal reinforcement signals p (  t )  and 
?(t) ,  from the evaluation network, the action network can 
perform the stochastic exploration and learning. The prediction 
signal p ( t )  is used to decide the variance of the normal 
distribution function in the stochastic exploration in (10). 
Then, the actual output y ( t )  can be determined according to 
(1 1). Since ?(t)  is the prediction error, the gradient information 
is estimated as: 

dr 

t -1 

In (50), the predictionerroris ?(t)  = r ( t ) + y p ( t ) - p ( t - 1 )  = 
r(t)--[p(t-1)-yp(t)]. Since p(t-1) predicts the accumulated 
reinforcement signal in the future [i.e., r ( t )  + y p ( t ) ] , p ( t -  1) - 
y p ( t )  predicts the next reinforcement signal [i.e., ~ ( t ) ] .  Thus, 
r ( t )  is the reinforcement signal with respect to the actual action 
y(t - l), and [p(t - 1) - y p ( t ) ]  is the reinforcement signal with 
respect to the expected action y(t- 1). Then, from the equation 

we can observe that if ~ ( t )  > [p(t - 1) - y p ( t ) ] ,  the actual 
action ij(t - 1) is better than the expected action y(t - 1). So, 
y(t - 1) should be moved closer to y(t- 1). On the other side, 
if r ( t )  < [p(t - 1) - ~ p ( t ) ] ,  then the actual action Y ( t  - 1) is 
worse than the expected action y(1 - 1). So, y(t - 1) should 
be moved further away from Y(t - 1). 

Having the gradient information [(53)], the leaming 
algorithm of the action network can be determined in the same 
way as in the previous section. The exact learning equations 
are the same as in (14)-(42), except that [ r ( t )  - p ( t ) ]  [ G] 
has been replaced by the new error term [r ( t )  + y p ( t )  - p ( t  - 

Until now, we have developed the reinforcement learning 
algorithm for the action network with the multistep fuzzy 
predictor in the multistep prediction problem. The issues of 
learning rate and learning order for both the action and eval- 
uation networks and the final step to find the minimum node 
representation of fuzzy logic rules using the rule combination 
technique are the same as discussed in Section 111. 

One interesting advantage of using the NN-FLC as a pre- 
dictor is attributed to the high-level, human-understandable 
meaning of the NN-FLC [3],[4]. When the RNN-FLCS works 
in a learning environment, the fuzzy predictor attempts to 
model the status-reaction relation of the environment, and this 
relation can be interpreted as the “IF-THEN” rules on the in- 
put/output linguistic variables. For example, the interpretation 
may resemble “IF the load is a little light and the power is 

t-1 

1)1 [e] t-l‘ 
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Fig. 6. The cart-pole balancing system. 

very high, THEN the machine is easily over-running.” Using NN- 
FLC as a predictor is more interesting when there are human 
factors in the learning environment. For example, if we use 
the RNN-FLCS to design an air conditioner, then the fuzzy 
predictor can model the user’s sensitivity of feeling like this: 
“IF the temperature is warm and the humidity is high, THEN 

I feel a little uncomfortable.” Moreover, the learned fuzzy 
predictor can tell us exactly what the user means by “warm,” 
“high humidity,” and “a little uncomfortable” via the learned 
inpudoutput membership function, though such feelings may 
vary from person to person. 

A classic application of the reinforcement learning is in 
game theory where the “environment” is another player 
or players. For example, considering the RNN-FLCS for a 
chess game, the fuzzy predictor can leam its opponent’s 
skill by explaining its opponent’s thinking rules. The human- 
understandable meaning of the NN-FLC can also easily 
make the RNN-FLCS incorporate existent or obvious expert 
knowledge. This not only benefits the design of a fuzzy logic 
controller, but is also a great help to the fuzzy predictor in 
some applications. Although the membership functions are 
always difficult to find, the fuzzy logic rules may be obvious 
in some cases. Considering the air conditioner example, the 
rules of users’ reactions to a room’s status are much alike, 
but the standards of the feeling for highbow temperature may 
be quite different. In such a case, we can set up the structure 
of the fuzzy predictor manually according to the known fuzzy 
logic rules and let the input/output membership functions 
leam to fit different users. 

V. AN ILLUSTRATIVE EXAMPLE 

The proposed RNN-FLCS with multistep fuzzy predictor 
has been simulated on a Sun SPARC station for the cart- 
pole balancing problem or the so-called inverted pendulum- 
balancing problem. This problem is often used as an example 
of inherently unstable and dynamic systems to demonstrate 
both modern and classic control techniques [24], [25], as well 
as the learning control techniques of neural networks using 
supervised learning methods [26] or reinforcement learning 
methods [12], [27], [28]. 

As shown in Fig. 6, the cart-pole balancing problem is 
the problem of learning how to balance an upright pole. The 
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2 -3.0 3.0 -1.82 2-12 

bottom of the pole is hinged to a cart that travels along a finite- 
length track to its right or left. Both the cart and the pole 
can move only in the vertical plane; that is, each has only 
one degree of freedom. There are four input state variables 
in this system: 0,  the. angle of the pole from an upright 
position (in degrees); 19, the angular velocity of the pole (in 
degrees/second); Z, the horizontal position of the cart's center 
(in meters); and k ,  the velocity of the cart (in d s ) .  The only 
control action is f ,  which is the amount of force ( N )  applied 
to the cart to move it toward its left or right. The system fails 
and receives a penalty signal of -1 when the pole falls past 
a certain angle (* 12 degrees is used here) or the cart runs 
into the bounds of its track (the distance is 2.4m from the 
center to both bounds of the track). The goal of this control 
problem is to train the RNN-FLCS such that it can determine 
a sequence of forces with proper magnitudes to apply to the 
cart to balance the pole for as long as possible without failure. 

The model and corresponding parameters of the cart-pole 
balancing system for our computer simulation are adopted 
from [29] with additional consideration of friction effects. This 
model and its parameters are also used by Barto, Sutton, and 
Anderson [12], [28]. The equations of motion that we used 
are shown below, where 

1) g = -9.8m/s2, acceleration due to the gravity 
2) m = 1.1 kg, combined mass of the pole and the cart 
3) mp = 0.1 kg, mass of the pole 
4) I = 0.5 m, half-pole length 
5) pc = 0.0005, coefficient of friction of the cart on the 

6 )  p p  = 0.000002, coefficient of friction of the pole on the 

7) A = 0.02, sampling interval 

track 

Cart 

The constraints on the variables are -12' 5 O 5 
12",-2.4m 5 x 5 2.4m, and -lON 5 f 5 ION. In 
designing the controller, the equations of motion of the 
cart-pole balancing system are assumed to be unknown to the 
controller. A more challenging part of this problem is that 
the only available feedback is a failure signal that notifies the 
controller when a failure occurs; that is, either 181 > 12" or 
1x1 > 2.4m. This is a typical reinformation learning problem, 
and the feedback failure signal serves as the reinforcement 
signal. Since a reinforcement signal may only be available 
after a long sequence of time steps in this failure avoidance 

e 

TABLE I 
INPUT/oUTPUT MEMBERSHIP FUNCTIONS BEFORE AND &TER LEARNING 

~~ ~ ~~ ~ ~~ 

3 1  0.0 I 3.0 I 0.21 I 1.92 
4 1  3.0 I 3.0 I 2.19 I 1.89 
5 1  fin I fin I ,531 I 3 x7 

U 1 4 .4  1 2.6 I -1.YX 

2 1  2 4  I 9 f i  I 9 1 7  I 
X 1 1  0.0 I 1.5 I 0.13 , 1.281 

4 13 

-.- 
I 6 I 12.0 I 6.0 I 8.82 I 8.01 I ~ ~~ 

0 I -100.0 I 100.0 I -84.29 I 84.62 
e 1 1  0.0 50.0 I -0.32 1 39.42 

2 I 1no.n I 

task, this cart-pole balancing problem belongs to the third 
class of the reinforcement learning problems discussed in 
Section 111. Thus, a multistep fuzzy predictor is required for 
the RNN-FLCS. Moreover, since the goal is to avoid failure 
for as long as possible, there is no exact success in finite 
time. Also, we hope that the RNN-FLCS can balance the 
pole for as long as possible for infinite trials, not just for 
one particular trial, where a "trial" is defined as the time 
steps from an initial state to a failure. Hence, this cart-pole 
balancing problem is further categorized as the third case of 
the multistep prediction problem discussed in Section IV, 
and (49) must be used for the temporal difference prediction 
method. The reinforcement signal is defined as: 

(55 )  

and the goal is to maximize the sum y ' ~ ( t  + k), where 
y is the discount rate. 

In our computer simulation, the learning system was tested 
for ten runs by trying to use the same learning parameter values 
in [12]. Each run consisted of a sequence of trials; each trial 

T ( t )  = { -1 if IO(t)l > 12" or Jz(t)l > 2 . 4 ~ ~ ;  
0 otherwise 

O(t + 1) = O(t) + Ae(t) (54) 

mgsinB(t) - cosO( t ) [ f ( t )  + m,Z(e(t)~/180)~sinO(t) - pcsgn(j.(t))] - ppgpe/t) 
(4/3)mZ - mpZ cos2 O ( t )  

e(t + 1) = e ( t )  + A 

z( t  + 1) = ~ ( t )  + Ak( t ) ,  

f ( t )  + mpl[(~(t)7r/180)2 sinO(t) - j( t)~/180cosO(t)]  - p,sgn[i(t)] 
m 

k( t  + 1) = k ( t )  + A 
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began with the same initial condition O(0) = e(0) = z(0) = 
i ( 0 )  = 0 or with a randomized initial condition, and ended 
with a failure signal indicating that either le ( t ) (  > 12” or 
Iz(t)l > 2.4m. The randomized initial condition means that, 
after each failure, the initial configuration was independently 
and randomly chosen such that -10 < O(0) < 10,-50 < 
O(0) < 50, -2 < z(0) < 2, and -10 < i ( 0 )  < 10. The input 
fuzzy partitions were set as IT(z)I = 3 ,  ( T ( i ) (  = 3,  IT(O)l = 
7, and IT(0)l = 3 for all runs. For each run, the input 
(output) membership functions were initialized so that they 
covered the whole input (output) space evenly, and the output 
fuzzy partition was initialized as IT(f)l = 7. The membership 
functions were chosen to be the bell-shaped functions (5) 
with initial centers and widths shown in Table I. Also, in the 
initiation of each run, each rule was assigned with a consequent 
term randomly. There is a total of 189 rules in the beginning. 
Here, we assumed that no expert knowledge (in the form of 
IF-THEN rules) is available to this control problem. If expert 
knowledge is available in advance, then the initial rules can 
be set up correctly. In this case, we can even skip the structure 
learning portion in our learning algorithm, and this will greatly 
shorten the learning time. A study on this issue has been 
reported in [4]. Runs consisted of at most 50 trials, unless the 
duration of each run exceeded 500 000 time steps. The results 
of two “trials” are shown in Fig. 7. A run was successful and 
terminated after 500 000 time steps before all 50 trials took 
place; otherwise, it was called “a failure” and terminated at 
the end of its 50th trial. The two trials shown in Fig. 7 are 
two failure trials. The status of system parameters in the cart- 
pole balancing problem is also shown in this figure. The first 
example in Fig. 7 is a trial in the early stage of a “run,” so it 
failed in only about 450 time steps. From the figure showing 
the deviation angle, we can see that this trial failed because 
the pole fell outside the desired range (the pole’s deviation 
angle is greater than 12”). At this stage, the FLC had learned 
to some extent in the area around the zero state of the input 
space since the FLC did try to decrease the pole’s deviation 
angle before the failure occurred (see the figure showing the 
force). However, it still needs extensive learning in the other 
portion of the input space. The second example in Fig. 7 is 
a trial in the later stage of a “run,” so it keeps the pole in 
the desired position longer. The system failed at around the 
2800th time steps because the cart bumped into the right wall. 
At this stage, the FLC had learned quite well in some areas 
close to the zero state of the input space and it could control 
the pole in the correct position well. However, more leaming 
is still necessary for the FLC to control the position of the cart. 
It seems that more training data from some “desired” regions 
of the input space (especially training data corresponding to 
the far ends of the track) were necessary for further training 
of the FLC. 

In our computer simulations, a total of ten runs were 
performed. Among these ten runs, five of them started with 
zero initial conditions and the others started with randomized 
initial conditions. The simulation results (see Fig. 8) showed 
that the RNN-FLCS can leam to balance the pole within 20 
trials. In most of the ten runs, the leaming was completed 
before ten trials. It was observed that the runs starting with 
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Fig. 7. Two trials in the leaming process of the NN-FLCS on the cart-pole 
balancing problem. 

a randomized initial condition usually took more trials. Fig. 
9 shows the angle deviation of the pole about the center 
point when the cart-pole system was controlled by a well- 
trained RNN-FLCS. This performance is better than the results 
presented in [12], [28] and compatible to those in 1201. In most 
runs, the final number of leamed output membership functions 
is less than 15, as compared to 189 output membership 
functions that were used in [20] for each run; that is, one output 
membership function for each (overlapping) grid of input 
space. One learned fuzzy logic controller (action network) in 
a run is shown in Fig. 10. It has a total of 35 fuzzy logic 
rules. Each node in the third layer corresponds to one rule; 
the links to and from a rule node specify the preconditions 
and conclusion of the corresponding rule. The parameters of 
the leamed input membership functions in the fuzzifier (the 
second layer of the action network), and the learned output 
membership functions in the defuzzifier (the fourth layer of 
the action network) are tabulated in Table I. 

Similar to the simulations in [20], the adaptation capability 
of the proposed RNN-FLCS was tested. In a series of tests, 
the proposed RNN-FLCS was required to adapt to changes in 
the length and mass of the pole. Six tests were performed. The 
first two tests were to increase the original mass of the pole by 
a factor of 10 and 20, respectively. In the next two tests, the 
original pole was shortened, respectively, to 213 and 113 of the 
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Fig. 8. Performance of the RNN-FLCS on the cart-pole balancing problem. 

original pole length. The last two tests were to simultaneously 
reduce the length and weight of the pole to 213 and 113 of its 
original values, respectively. We found that the RNN-FLCS 
with pretrained knowledge was able to complete the control 
task of balancing the pole without further trainindearning. 

In addition to keeping the capability that learning can 
perform at each time step within a trial without waiting 
to know the actual outcome by using the multistep fuzzy 
predictor, the proposed RNN-FLCS has some important fea- 
tures over the previous work. First, distributed representation 
is used to represent the input vectors in the RNN-FLCS. 
This is achieved by the fuzzification process through the 

Angk 0 

I 
-2 -I I 

t I I I I 
4 50 I00 150 200 

The (&) 

Fig. 9. Variations in B produced by the learned RNN-FLCS. 

adaptive input membership functions. With the adaptive input 
membership functions, the input space can be considered 
to be divided into overlapping smaller regions and, more 
importantly, this partition is not performed in advance but 
is dynamically and appropriately adjusted during the learning 
process. As a result, each smaller region varies in size and the 
degree of overlapping is also adjustable. This is in contrast 
to the localized storage scheme of the BOXES system [12], 
[27], in which the input space is divided into disjoint regions 
(boxes) and no generalization occurs beyond the confines of 
a given box. The fuzzification process in the RNN-FLCS also 
avoids the necessity of partitioning the input space into disjoint 
[12], [27] or overlapping [20], [30] small regions in advance. 
The drawback of this process is that it requires the learning 
control designer to know how to quantify or partition the input 
space properly according to the knowledge of the control task; 
otherwise, the input space can be easily partitioned in such a 
way that the controller will not work at all. In most cases, a 
priori selection of a sufficiently fine representation is required. 
However, a representation that is too fine may result in poor 
generalization capabilities and unnecessarily slow learning. 

The second most important feature of the proposed RNN- 
FLCS is its dynamic structurelparameter learning ability and 
the rule combination process. The former can add new nodes 
to the RNN-FLCS properly, while the latter can combine 
some nodes with the same or a very similar control ac- 
tion. These functions realize the concept of “splitting” and 
“lumping” boxes in [31], where the authors tried to improve 
their BOXES system without much success. The third feature 
of the proposed RNN-FLCS is its stochastic search with 
multiparameter distribution functions. This results in the action 
network having a higher probability of finding a better action 
via the prediction signal from the evaluation network instead 
of performing random searches around the expected action 
using only single-parameter distribution functions. The fourth 
important feature of the proposed RNN-FLCS is the ease of 
incorporating expert knowledge into the fuzzy logic controller 
or the fuzzy predictor of the RNN-FLCS to greatly shorten 
the learning time. The continuous control scheme is another 
important feature of the RNN-FLCS. By performing fuzzy 
inference and defuzzification, the action network of the RNN- 
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Fig. 10. The learned fuzzy logic controller on the cart-pole balancing problem. 

FLCS determines an analog output control signal. This is in 
contrast to the bang-bang control scheme used in [12], [27], 
[28], where the output can only have two values: &lON. Thus, 
the angle deviation of the pole about the center point, as shown 
in Fig. 9, is rather small in our computer simulation. 

Recently, Berenji and Khedkar [32], [33] independently 
proposed a FLC structure and its associated learning algorithm 
which are similar to what we propose here. They constructed 
a model, called Generalized Approximate Reasoning-based 
Intelligent Control (GARIC) architecture, for learning and 
tuning a fuzzy logic controller based on reinforcement signals 
from a dynamic system. Their architecture extends Anderson’s 
method [28] by including apriori control knowledge of expert 
operators in terms of fuzzy control rules. In GARIC, a three- 
layer feedforward neural network, called Action Evaluation 
Network (AEN), was used to predict the external reinforce- 
ment signals and produce internal reinforcement signals. The 
role of the AEN can be considered to be parallel to our fuzzy 
predictor in the RNN-FLCS. They also adopted a five-layer 
feedforward neural network, called Action Selection Network 
(ASN), to implement a FLC as we did. Moreover, a stochastic 
action modifier was used to stochastically generate an actual 
action according to the expected action suggested by the ASN 
and the internal reinforcement signals from the AEN. The 
ASN, along with the stochastic action modifier, play the same 
role as the action network in our RNN-FLCS. Hence, there are 
two major differences between the structures of RNN-FLCS 
and GARIC. First, the RNN-FLCS uses a fuzzy predictor while 
the GARIC uses a general multilayer neural network for the re- 
inforcement signal prediction. Second, in the RNN-FLCS, the 
action network (fuzzy controller) and the evaluation network 
(fuzzy predictor) share the same internal input representation. 
However, in GARIC, the corresponding two networks, the 
ASN and AEN, are structured independently. The learning 
algorithm in the AEN of GARIC used Sutton’s AHC algorithm 

[12], [28] for the output units and the error backpropagation 
algorithm for the hidden units. The stochastic exploration 
technique and the error backpropagation algorithm were used 
to find the proper parameters in the ASN. This corresponds 
to the adjustment of the input/output membership functions 
of a fuzzy logic controller. Although these techniques are 
also adopted in the RNN-FLCS, our learning algorithms for 
the evaluation network and the action network are developed 
based on our previously proposed on-line structure/parameter 
learning algorithm [4]. Hence, in addition to the parameter 
learning, they can perform the structure learning and find the 
proper fuzzy logic rules dynamically. This can be consid- 
ered the major difference between RNN-FLCS and GARIC. 
Furthermore, we have developed both the single-step and 
multistep fuzzy predictors to incorporate three different cases 
of reinforcement learning problems. This makes the RNN- 
FLCS a much more general structure than the GARIC. The 
learning speed of the GARIC for the cart-pole balancing 
problem was faster than that of the RNN-FLCS. However, 
a set of correct fuzzy logic rules must be given in advance by 
experts before initiating training of the GARIC. 

VI. CONCLUSION 

This paper described the development of integrating two 
NN-FLC’s into an integrated Reinforcement Neural-Network- 
Based Fuzzy Logic Control System for solving various re- 
inforcement learning problems. By combining the techniques 
of temporal difference, stochastic exploration, and the previ- 
ously proposed on-line supervised structure/parameter learn- 
ing algorithm, a reinforcement structure/parameter learning 
algorithm was derived for the RNN-FLCS. Using the pro- 
posed connectionist structure and learning algorithm, a fuzzy 
logic controller to control a plant and a fuzzy predictor to 
model the plant can be set up dynamically through simul- 
taneous structure/parameter learning for various classes of 
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reinforcement learning problems. The proposed RNN-FLCS 
makes the design of fuzzy logic controllers more practical 
for real-world applications since it greatly lessens the quality 
and quantity requirements of the feedback training signals. 
Computer simulations of the cart-pole balancing problem 
satisfactorily verified the validity and performance of the 
proposed reinforcement structure/parameter learning algorithm 
for RNN-FLCS. Future work will focus on an interesting 
problem of regulating the cart’s position from an initial 
position to a set point, in addition to keeping the pole balance. 
This problem has multiple goals with different priorities. A 
hierarchical FLC design approach is needed. This is a topic of 
our ongoing research which will be discussed in a future paper. 
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