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Abstract

This paper presents a learning scheme for data classification based on genetic programming. The proposed learning approact
consists of an adaptive incremental learning strategy and distance-based fitness functions for generating the discriminant
functions using genetic programming. To classify data using the discriminant functions effectively, the mechanism called
Z-value measure is developed. Based on Zhealue measure, we give two classification algorithms to resolve ambiguity
among the discriminant functions. The experiments show that the proposed approach has less training time than previous GP
learning methods. The learned classifiers also have high accuracy of classification in comparison with the previous classifiers.
© 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction and the unpredictability of data, it is a challenge for re-
searchers to learn an effective classifier efficiently.

Data classification is one of the important issues in the To reduce the |earning time and increase the classifica-
research area of machine learning. Many applications can tjon accuracy, many different methods for building effective
be viewed as extensions of classification problem. For ex- |assifiers have been proposed in the past decades. Typical
ample, pattern recognition, disease diagnosis, and businessyle-based classifiers like IDRL] and C4.5[2] construct
decision-making. The classification is a two-step process in- gecision trees and classification rules using entropy-based
cluding learning and classifying generally. In the first step, measure called information gain. Some of the previous meth-
we referred to a predetermined set of data as training data ods are based on some mathematical models or theories. For
set, which is used to build a classifier by a learning algo- example, the statistical classifiers are built on the Bayesian
rithm. The learned classifier is then used for classification. gecision theory[3-5]. The theory provides a probability
The task of classification is to assign an unknown object model for classification by minimizing the probability of
to one of the predefined classes based on the observed atotal misclassification rate. Another well-known approach is
tributes of the object. Since the versatility of human activities peyral networ6—9]. In neural network approach, a multi-
layered network withn inputs and: outputs is trained with
a given set of training data. We give an input vector to the
network, and am-dimensional output vector is obtained
from the outputs of the network. Then the given vector is

* Corresponding author. Tel.: +886-6-2133111; fax: +886-6-
2144409.
E-mail addressbcchien@ipx.ntntc.edu.t(B.-C. Chien).

0031-3203/$ - see front matt@ 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2004.03.016


http://www.elsevier.com/locate/patcog
mailto:bcchien@ipx.ntntc.edu.tw

1958

o

S

Objects —" 2

o °

o °

° °

™ fic > YIN

Fig. 1. A function-based classifier.
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Fig. 2. A function-based classifier with ambiguity resolution.

to the major class of the corresponding discriminant func-
tion; however, the accuracy was not improved so much by
SA measurg16].

In this paper, we present a new scheme for learning

assigned to the class with the maximum output. The other discriminant functions based on genetic programming
methods include distance-based classifiers and evolutionaryand an effective ambiguity resolution mechanism for the
approaches. Distance-based classifiers, like maximum like- discriminant functions of the classifier. In order to shorten
lihood classifier (MLC)[10] andk-nearest neighbor classi-  the training time of classifiers without losing accuracy of
fiers[10,11], evaluate distances among input vectors of ob- classification, we propose an adaptive incremental learning
jects, and then classify objects into the individual class with strategy and the distance-based fitness functions. The pro-
the smallest distance. The evolutionary approaches, gener-posed learning strategy partitions the training data of each
ally, include genetic algorithm (GAJ12,13] and genetic class into several small subsets with both positive and neg-
programming (GP)14-17] Genetic algorithm encodes a ative training samples in them first. The learning algorithm
set of classification rules to be a sequence of bit strings then learns a specific discriminant function for each class
called gene. The evolution operations such as reproduction, from the sample subsets stage by stage incrementally. After
crossover and mutation are used to generate the next gen-all discriminant functions are generated, we provide the
eration of classification rules with better fithess. The classi- resolution mechanism calle#@-value measure to resolve
fier with a set of classification rules will be obtained after the problem of ambiguity. Two types of distance-based fit-
the specified number of generations is evolved or the condi- ness functions: boundary division and interval division and
tion of the fitness function is satisfied. For genetic program- two Z-value ambiguity resolutions: the Algorithrd and
ming, there are two types of classifiers can be learned from the Algorithm Z_Min are proposed. Based on the proposed
the training data set. The first type is the rule-based classi- fitness functions and ambiguity resolutions, four alternative
fier consisting of classification rules as other methiddy. classifiers are produced. Several benchmarks of data sets
The other type is the function-based classifier in which the from UCI data repository are used to demonstrate and com-
discriminant functions are includgti5,16]. In the function- pare the accuracy of the proposed methods. We will discuss
based classifier, d5g. 1, each predefined class has a corre- the effectiveness of the GP learning strategies for distinct
sponding discriminant function to decide whether an object fitness functions and the suitability of variodsvalue am-
belongs to the class or not. The advantages of a function- biguity resolutions for the learned discriminant functions.
based classifier are concise and efficient, because each clas¥he experiments show that a well-designed fithess func-
has only one corresponding function and the functions are tions used in GP can improve the training time as well as
easy to compute. Nevertheless, thereare a few problems forthe accuracy of classification. In comparison with other

learning discriminant functions using genetic programming
and classifying using discriminant functions. One of the
main drawbacks of using GP methodology is the long train-
ing time. Although the more training time allowing the more

accurate the classifier can be trained, it is still relatively long
while comparing with other classification methods. Another
problem is the ambiguity that may occur when a new object
is recognized by two or more discriminant functions at the

same time or no discriminant function recognizes the object.

To resolve the problem of ambiguity, an effective discern-
ing mechanism should be provided, Bf. 2, otherwise,
the accuracy of classification will be decayed. Kishore pro-

classification methods, the classifiers learned by the fitness
function of interval division includindZ and7Z_min have
high accuracy of classification.

The remainder of this paper is organized as follows.
Section 2 reviews the methodology of genetic programming
and gives the algorithm in detail by steps. In Section 3, we
propose a GP-based adaptive incremental learning approach
and the distance-based fitness functions for learning a set
of discriminant functions. The ambiguity resolution mech-
anisms,Z-value measure, and the classification algorithms
are presented in Section 4. Section 5 shows the experimen-
tal results and makes some comparisons with the previous

posed the strength of association (SA) measure to solve themethods. Finally, we make conclusions and discuss some

problem of ambiguity by classifying an ambiguous object

prospects for future research.
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2. Genetic programming

The technique of genetic programming (GP) was
proposed by Koza[18,19] Genetic programming has
been applied to a wide range of areas, such as symbolic
regression, robot control programs and classifications, etc.
Genetic programming can discover underlying data rela-
tionships and presents these relationships by expressions.
The expression is constructed by terminals and functions.
There are several types of functions can be applied for
genetic programming:

1. Arithmetic operations: addition, subtraction, multiplica-
tion and division.

2. Trigonometric functions: Sine and Cosine, etc.

3. Conditional operators and Boolean operators: IF, ELSE
and OR, etc.

4. Other add-on operations: Absolution, negative and other
user-specific functions.

Genetic programming begins with a set of randomly cre-
ated individuals called population. Each individual is a po-
tential solution represented as a binary tree. Each binary tree
is constructed by all possible compositions of the sets of \X
functions and terminals. A suitable fitness function should
be given for evaluating the fithess value of each individual.
Then, a set of individuals with better fithess value will be
selected and used to generate new population of next gener-
ation by the predefined genetic operators. The purpose of ge-
netic operators is used to evolve individuals. The main opera-
tors generally include reproduction, crossover, and mutation.

The reproduction operator is the simplest one. This op-
erator copies the individuals with better fitness values to be @ @ @
the population of the next generation directly. Thus, the in- —
dividuals with better fithess values can be kept continuously
in offspring by the reproduction operator. The crossover op-
erator needs more action to generate new individuals. First,
two individuals are picked out as parents. Then two sub-trees
are randomly selected from the parents, respectively, and
swapped each other. After that, two new individuals are gen-
erated. For example, there are two individu@s- X) + X
and (X 4+ X) — 2 in Fig. 3. After the crossover operator is  of evolution could be continued until the specified condition
executed, two new individualgX + X)+ X and(5+ X) — 2, successes or the number of evolving generations is reached.
are generated. The mutation operator is usually used for We describe the main steps of genetic programming as
avoiding local optimum. There are two types of mutation follows:
operators: Single-node mutation and sub-tree mutation.
Single-node mutation is that a terminal or a function in an
individual will be replaced by another terminal or function.
The other type of mutation, sub-tree mutation, does the
same operation with a sub-tree instead of a terminal or a
function. For example, ifrig. 4, an individual(5+ X) + X
becomeq7 + X) by sub-tree mutation operator.

After the evolution of a number of generations, a set of
individuals with fine fithess value is usually contained in the the generatiogenand hfge”) stands for theth individual
population. We can take one of the individuals with the best in the setQ,,, of the generatiomen
fitness value as the requested result. However, if the fitness ~ Step2: Evaluate the fitness value of each individual in
values still do not satisfy the specified condition, the process the training set.

Fig. 3. An example of crossover operation.

Fig. 4. An example of sub-tree mutation.

Algorithm. Native genetic programming for objective
functions learning

Input The training set’.

Output The target function with the best fithess value.

Stepl: Initialize the population.
Let gen =1 and we generate the set of initial individuals
Q= {h%,h%,...,h;}, where Qg is the population in
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For all hgge") € Q(gen), We compute their fitness values

Ei(ge") :fitnes$h§gen),T), where the fitness evaluating

functionfitness) is dependent on the problem and is defined
by the user.

Step3: Does it satisfy the conditions of termination?
If the best fithess value oEl.(ge") satisfies the conditions
of termination or thegenis equal to the specified maxi-

mum generation, then the individuhfge") with the best
fitness value is returned and the algorithm halts; otherwise,
gen =gen + 1.

Step4: Generate the next generation of individuals and
go to Step 2.
The new population of next generati®h,,) is generated
by the ratio ofP,, P, andP,,, and then goes to Step 2, where
P., P. and P, represent the probabilities of reproduction,
crossover and mutation operations, respectively.

3. Learning discriminant functions by genetic
programming

This section presents the GP-based learning method of
discriminant functions for classification. First, we will give
a formal description for discriminant functions. Then, we
provide an adaptive incremental training strategy and pro-
pose two distance-based fitness functions to learn the dis-
criminant functions for classifiers. We also give a complete
example to explain the proposed learning method by a sub-
set of IRIS data set.

3.1. A formal description of discriminant functions for
classification

The notations of used symbols and a formal description
of discriminant functions for classification are described in
this subsection. Given a data set S, thereraaéributes for
each datar; € S. Letx; be represented as

Xj=j1,Vj2, .-, Vjr, .-, Vjp), 1<t

wherev, € R stands for theth attribute of data; in S. Let
C={C1,Co,...,Ck} be the set ofk predefined classes,
we say thatx;, ¢;) is a sample if the data; is assigned to
a specified class;, c; € C. We then define a training set

(T) on a set of samples such that
T={{xj,cj)lxj=(j1,vj2,...,vjn), cj € C, 1< j<m},

wherem is the number of samples i, denoted a$l'| = m.
Letm; be the number of samples Thbelonging to the class
Ci, 1<i<K,

m=(my+mp+---+m;+---+mg).

For classifying unknown data into th& predefined
classes, a function-based classifier maintains a sek of
discriminant functions-,

F={/ilfi :R" > R, 1<i<K}.
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Each discriminant functiorf; in the classifier is a function
mapping fromR” toR, 1<i < K. The task of the discrim-
inant functionf; is to determine whether an unknown data
x; belongs to a specified clags or not. Since the image
of a discriminant functionf; is a set of real numbers, we
partition R into two separate ranges and specify one of the
two ranges as the target range of the cl@sslIf the value
of fi(x;) locates in the target range, the datais an in-
stance of the clasé’;; otherwise, ther; does not belong
to the classC;. We give two types of division methods to
separateR into two ranges: the boundary division and the
interval division.

The boundary division simply specifies a constard R
to separate the real number into two half areas. For a sample
(xj,cj), the range based on the boundary division can be
defined as

fikxj)za if ¢;=C;,
fitxj)<a if c;j #C,

The interval division, instead of using a constant num-
ber to distinguish the target range from the other, defines
an interval to represent the target range for specific class
C;. A discriminant functionf; based on the interval divi-
sion defines two constant b € R andb > 0. For a sample
(xj,cj), the interval for distinguishing the clagy is de-
fined as follows:

a—b< filxj)<a+b
fikxj)<a—=bor fi(xj)>a+b
where 1<i < K and 1< j <m.

where IKi<K and 1< j <m.

if cj=0C,
if c; #C;

A good discriminant function can transform the data
belonging to the clas€’; to the valuesf;(x;) mapping
into the target range effectively. Thus, an effective function-
based classifier is built if we could find the set of effective
discriminant function$ including all K predefined classes.

3.2. The proposed learning strategy

We first prepare the training sét before the starting of
learning procedures. The samples in training Benclude
positive instances and negative instances usually. Consider
a specific clas€; and a sampléx;, c;) € T, we say that
(xj, cj) is apositive instance if; = C;; otherwise(x;, c;)
is a negative instance, whereclj <m, 1<i < K. After the
training setT” was prepared, we start the learning procedure
using genetic programming. Conventionally, all of the sam-
ples in the training set are fed to the learning procedure at
a time. However, when the size of the training set is large,
the number of evolving generations in genetic programming
will increase rapidly and spend much more time relatively
if we want to find an effective solution. Thus, for obtain-
ing effective solutions efficiently by genetic programming,
we proceed to learn from the training set using an adaptive
incremental learning strategy.

The proposed adaptive incremental learning strategy
organizes the training sets to be a sequence of subset of
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having T{1CT>C.--CTy =T and the learning procedure = {hi’l, h%’l,...,hf]’l}, where Qs .y is the population
is accomplished stage by stage. Ttielearning stage trains ¢ the generatiomenin the stages andh 8" stands for
the subset of samplel and runs the evolution operations  iha jth individual of the generatiogeninlstages.

up to the specified humber of generations to find solutions. Step5: Evaluate the fitness value for the training et
While a former learning stage completes the training task i, the learning stage.

using a less number of training samples, it propagates the

) ; . roall B8 ¢ m he fitness val
solutions to the latter stages. A latter learning stage inher- For all 4, € (s, gen), COMpUte the fitness values

iting the solutions from the previous stage then starts its E,-(S’gen) =fimes$h§s’g€"), Ty), where the fitness evaluat-
learning stage by increasing the number of training sam- ing function fitnes¢) defined by the user depends on the
ples. Since the learning stage with a larger traininglse{ problem.

is based on the solutions of the previous trainingZeind Stepé: Is the current learning stage completed?
increases only a few training samples iffto the solutions Casel: The best fitness value (El.(s’ge”) satisfies the con-
for the training set;;1 can be improved efficiently. dition w.

In the above training process, if a large-scale number of The individualhlf‘“ge”) with the best fithess value is propa-
samples are increased in each stage, an effective solutiongated to the next stage and double the incremental samples.
may not be generated during a learning stage. On the con-That is, letu =2, s =5+ 1 and go to Step 2. While two or
trary, if the incremental size of samples is too small, it will more individuals satisfy the conditian, the shortest one is
waste time on getting an effective intermediate solution. For treated as the best individual.
preventing waste of time and guaranteeing the effectiveness Case2: The best fitness value (ﬂ‘l.(s‘ge") does not satis-
of a solution, we have to handle the increment in each learn- fies the conditiony.
ing stage. We use the following parameters to control the If gen > g, the individualhfs’ge”) with the best fitness value

effectiveness of each learning stage: is propagated to the next stage but the increment is un-
g: The specified number of generations to be evolved for changed; thatis, let=1, s =s+1 and go to Step 2. Other-
each learning stage. wise, the current stage is to be continuedglet = gen + 1
p: The basic incremental rate,<Op < 1. and go to Step 7.
o: The adaptive factor > 1. Step7: Generate the next generation of individuals and
w: The condition of satisfying the effectiveness of fitness go to Step 5.
values. The new population of next generatiXy ,.,,) is generated
The detailed algorithm for the proposed adaptive incre- by the ratio ofP-, P. and P,,, then goes to Step 5, where
mental learning strategy is described in the following. P, P. and P, represent the probabilities of reproduction,

crossover and mutation operations given by the user, respec-

Algorithm. Genetic programming with adaptive in- tively.
cremental learning

Input The training se’, p, w andg.

Output The function with the best fitness value.

Stepl: Initialize the parameters. ) ) ) )
Lets=1,a=1,m =0, m=|T|, To=% andT = T+U In the above algorithm, the fitness evaluating function,
T—, whereTT and T~ represent the set of positive in- fitneSS(hfx’gen), Ts), is used to measure the effectiveness
stances and the set of negative instances in the training setgf an individualsz*'¢¢"’s behaving on the training sdt.

T, respectively. The denotes the current learning stage. A good fitness evaluating function should be able to mea-
Step2: Is the halting condition of learning satisfied? sure individuals precisely so as to improve not only effi-
If m’ =m, then the individuahgs’ge") with the best fitness  ciency but also effectiveness of the learning process. Based
value is returned and the algorithm halts. Otherwise, go to on the two range division methods presented in Section 3.1:
Step 3; a new learning stage is started. the boundary division and the interval division, we propose
Step3: Prepare the training s&t for the learning stage. two corresponding distance-based fithess evaluating func-
Let Tl.j:c and 7, . be the set of incremental posi- tions for learning the discriminant functions of a classifier.
tive instances and incremental negative instances, re- For the boundary division, considering a discriminant

spectively. |T;:C| is the number ole.:C selected from function f; for recognizing the clas€; in a classifier, we

3.3. The distance-based fitness functions

T+t — T,_q; similarly, IT.,.| is the number of T, give a specified constaatand urge thatf; (x;) > a if the

negative instances selected froff~ — T, 1. Let dataxj belpngs to the clas§;; at the same time, we urge

|Ti:1rc| =TT x p] xo and T, =LUT"| % p] x o fi(xj) <a if the datax; does not belong to the clagy,

Then, we haveTy = T,_1UT;} UT, and m’ = min{m, for all x; € Ty. Hence, for directing an individua’i?s’ge")

lm x p| x o+ m'}. in Qs gen) to achieve the goal of the boundary division, we
Step4: Initialize the population for the learning stage define the enforcement paramegeand letp > a. If a sam-

Let gen=1 and generate the set of individuaig 1 ple (x;, ¢;) is a positive instance arﬁf’gen) (xj)>a,isa
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correct result and no error. However, qu(ﬁ’ge")(xj) <a The fitness value of an individualg‘“ge") for the training
for a positive instancex;, c;), it results a wrong clas- setTy in stages is defined to be

sification. At this time, the error of the sample;, c;) (s.gen)
Fitness(h;" ", Ty)

m’

on the individualhlg‘“ge") is measured by the distance of
|h§s’ge")(xj) — al plus |p — al. The distance ofp — a| is

‘ = — ) (Dpxj,cj)+ Dnlxj, cj)), ©)
used to enlarge the error value while the vahgﬁ*egem(xj) Z:l 7 7
is close toa. The main purpose is to avoid selecting the in-
dividuals with many small distances Uf@»ge") (x;) —al wherem’ is the number of training samples in the current
1

as new individuals in the next generation of evolution, since leaming stage, (x;.c;) € Ty, 1< j<m'. _
our goal is to learn the function that can separate the ranges ~Since we use the negative of measure to be the fitness
between positive instances as far as possible. Thus, the fit- value of an individual, the best fitness value is zero. While

ness measure for a positive instance is defined as the fitness value of the indiViduall(S’ge") is zero, it means
poene |0 if ¢;=C; andh™*" (x)) >a, W
Xi, Ci)=
PR g = hS M ) if e = € and S (1) < a.

Similarly, the fitness measure for a negative instance is de-
fined as
S8 x4l if e # CrandhE) () > a,

Da(xj, ¢) = 2)
e {O if c; #C; andhgs’gen)(xj)<a.

The fitness evaluating function of an individdelff’ge") for

ne _ _ _ that the functionh,@’ge”) can discriminate all samples of
the training sef in stages is defined to be

the classC; from the others in the givem’ training sam-
, S ,gen)
Fitness(h8" T, p!es._ Hence, we can choose the |nd|V|dh,§fl as the
! discriminant functionf; for the classC;.

/

m
=~ Z (Dp(xj.cj) + Dn(xj, cj)), &) 3.4. An example
Jj=1
wherem’ is the number of training samples in the current For illustrating the proposed adaptive incremental learn-
learning stage, (x;, ;) € Ty, 1< j<m'. ing approaches, we give an example with the boundary di-

For the interval division, considering a discriminant func- vision.to show the learning of discriminant functions in the
tion f; for recognizing the class; in a classifier, we give  following.
two constants andb and urge thatf; (x;) —a| <b if the _ )
datax; is a positive instance; at the same time, we urge Example 1. In the Fisher's Iris datas¢20], there are four
|fi(x;) — al > b if the datax; is a negative instance, for numerical attributes in eag:h object: sepal length, sepal width,
all x;  Ty. That is, the fitness values of positive instances Petal length, and petal width. We denote these attributes as

should be located in the specified interyal— b, a + b]. SL, SW PL, andPW, respectively. In this example, we take
As the same reason of the boundary division, we also give & subset of 12 objects from the original Iris dataset as the
the enforcement parametgr p > 0, for pushing an indi-  training set7, asTable 1That is, |T| =m = 12. We now
vidual hlgs,gen) in Q(;.¢en) to achieve the goal of the in- begln_ the_ qdaptlve |n(_:remental learning procedure to find
terval division. If a samplex;, c;) is a positive instance the discriminant functionfs,;,s, for the Setosaclass as
’ follows:

(s,gen) g
and |h; (xj) —al <b, itis a correct result and no er- Input The training sef’, p = 0.3, w is “the fithess value
ror. However, whemhﬁs’ge”)(xj) —al| > b for a positive in- equals to 0”, ang = 100.

stance(x;, c;), it results a wrong classification. The fitness Step1: Initialize the parameters. We initially set=1,
measure for a positive instance and a negative instance iso =1, m' =0, m =12, and To=¢ for the learning
respectively defined as follows:

s en— | if ¢; =C; and %" (xj) —a| <b, @
Xi, Ci)= X
PR e+ hP P gy —al = b if ¢j=C; and A5 () —al > b,
Dyes e |12 = W@ —al =B ey £ Crand i —al<h, o
n 9’ -
7 0 if ¢; #C; and|h*%" (x;) —al > b.
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Table 1

The 12 training datd" for Example 1

Data SL SwW PL PW Class

Dy 6.3 2.7 4.9 1.8 Virginica
Do 4.9 3.0 1.4 0.2 Setosa
D3 6.7 3.1 4.4 1.4 Versicolor
Dy 51 3.5 1.4 0.2 Setosa
Ds 6.4 3.1 55 1.8 Virginica
Dg 5.6 3.0 4.1 1.3 Versicolor
D7 5.0 3.6 1.4 0.2 Setosa
Dg 7.2 3.2 6.0 1.8 Virginica
Dg 6.7 3.1 4.7 15 Versicolor
D1 6.1 3.0 4.9 1.8 Virginica
D11 6.0 3.4 45 1.6 Versicolor
D12 5.2 3.4 1.4 0.2 Setosa

algorithm. Moreover, we set =0 and p = 10 for the fit-
ness function of the boundary division. The set of positive
instances of the training st in Table 1for the Setosa
class is

T* ={Dy, D4, D7, D1},
and the set of negative instances is
T~ ={D1, D3, D5, D¢, Dg, Do, D10, D11}

Step 2: Since m'#m, a
Stage 1, is started and goes to Step 3.

Stagel

Step3: Prepare the training s@y for the first learning
stage.

new  stage,

ITT =TT x p] x o= 4x 03] x 1=1,

mc

1T |=T | xp] xa=[8x03] x1=2

mc

Assume that

— + -
= TOUTincUTinc

= PU{D2}U{D1, D3}
={D1, D2, D3}.

Let Ty be selected andn’ = min{m, |m x p] x o +
m'}) = min{12, [12x 0.3] x 1+ 0} = 3.

Step4: Let gen =1 and generate the set of individuals
Qu1=1(hyt nyt L ndh.

Step5: Evaluate the fitness valuégl’ge” on the training
setTy in the Stage 1.

Steps 5-7 are repeated until the best fitness value of -

1,gen
l' ’

El.l’g"” satisfies the condition dftnessh
gen > 100.

Step6: Assume thagen > 100 at this stage, the individual
with best fitness value after 100 generations is

T1) =0 or

W= s - pL - PW,

1963

Table 2
The fitness values of the individuaflooz SL— PL—PW

Data h Value Dy|Dp Class

Dy -0.4 D, =0 Virginica
Do 3.3 D, =0 Setosa
D3 0.9 D, =109 Versicolor

and the fitness value of the individual is

3
— > (Dp+ D)= —109.
j=1

Since the fithess value is not equal to zero after 100 gener-
ations, we sett=1 ands = 2, and the procedure goes to
Step 2. The values ab,, and D, of the training data irf’,
are listed inTable 2.

Step2: Sincem’ =3 # m =12, go to Step 3, Stage 2 is
started.

Stage2

Step3: Prepare the training s@b for the Stage 2. We
have
ITT |=||ITT| x p]l xu=14x0.3] x1=1,

nc

T |=LT | x p] xo=[8x0.3] x1=2

mnc

Assume thaf ;" = {D4} andT,_ = {Ds, Dg} are selected

inc inc

from T — Ty, thus
_ + =
Ip= T]-UTincUTinc
={D1, D2, D3}U{Dg4, Ds, Dg}
={D1, D2, D3, D4, Ds, Dg},

andm’ = min{12, [12 x 0.3] x 1+ 3} =6.

Step4: Let gen =1 and generate the set of individuals

21,21 2.1

Q1={h7". h5", ... hg")

Step5: Evaluate the fitness on the training #etin Stage
2.
Steps 5-7 are repeated until the best fitness value of
E>8" satisfies the condition d‘itnes$hi2’ge", T5) =0 or
gen > 100.

Step6: Assume that there is an individual satisfies the
condition offitnes$hl.2'50, To) = 0 while gen = 50:

W20 = 5L - PL - PW — PW.

The fitness value of the individual is

6
> (Dp+Dy)=0.

j=1

Since the conditionw is satisfied, we set =2, s =3 and
the procedure goes to Step 2. The value®pfand D), of
the training data are shown fable 3.

Step2: Sincem’ =6 # m =12, go to Step 3, and Stage
3 is started.
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Table 3 Table 4
The fitness values of the individuaf->° = SL— PL—PW—PW  The fitness values of the functigtf*?% = sw — PL
Data Valueh Dy|Dp Class Data h Value Dy|Dp Class
Dy —-2.2 D, =0 Virginica Dy —2.2 D, =0 Virginica
Do 3.1 D)= Setosa Do 1.6 D, =0 Setosa
D3 -0.5 D, = Versicolor D3 -1.3 D, =0 Versicolor
Dy 3.3 Dy = Setosa Dy 2.1 D, =0 Setosa
Ds 2.7 D, =0 Virginica Ds 2.4 D, =0 Virginica
Dg —-1.1 Dy, = \ersicolor Dg -1.1 D, =0 \ersicolor
D7 2.2 Dp=0 Setosa
Dg -2.8 D,=0 Virginica
Stage3 gg —ig gn = 8 xers.ic.olor
) - 10 —1. - irginica
. Step3: Prepare the training s&y for the Stage 3. We Diy _11 Dy —0 Versicolor
ave D12 2.0 D, =0 Setosa
IT 1 =UTT I x p] x0=14%x 03] x2=2,
T,/ =LUT" I xp] xa=[8x03] x2=4,
Table 5
Assume thatT,-j;C — (D7, D15} and Tl;c — {Dg, Do, D10, The values of training data for the discriminant functions
D1y} are selected fronf” — T, thus Data fsetosa HNersicolor Hirginica Class
T3=ToUT;} UT, Dy 22 ~68.0944 20.9091  Virginica
. Do 1.6 —0.8493 —2.7187 Setosa
= {D1. D2. D3. Ds. Ds. Dg}U{D7. D12} D -13 61413  —20.1754  Versicolor
U{Dg, Dg, D10, D11} Dy 2.1 —0.8327 —2.7316  Setosa
={D1, Dy, D3, D4, Ds, Dg, D7, Dg, Do, Dsg —2.4 —6.7874 20.5357 \ﬁrginica
D10, D11, D12} Dg -1.1 5.9744 —11.8557 Versicolor
10, #11. 125 D7 2.2 —0.8054 27251  Setosa
P N Dg —-2.8 —15.2502 17.9688  Virginica
a”‘;’” o m'”;’”’ Lm x p) x oatm’} = min{12, [12x 0.3] Dy -16 88143  —41.0714  Versicolor
x 2+ 6} =12. o Do —19 —22.9747 21.6981 \Virginica
Step4:3Llet gge}il =1 agoi generate the set of individuals D11 11 11.5634 _191.6669  Versicolor
Qa1={hy" hy™, ... hy ™} D12 2.0 —0.8607 —2.7381  Setosa

Step5: Evaluate the fitness on the training #gtin Stage
3.
Steps 5-7 are repeated until the best fitness value of

E>8¢" satisfies the condition ditnes$hl.3’ge", T3) =0 or
gen > 100. Ssetosa= SW — PL,
Step6: Assume that there is an individual satisfies the

the following three discriminant functions are learned:

condition offitnes$hl.3’20, T3) = 0 while gen = 20: Fercicolor = PL x SL — %9 - w
RS+ sw S
hi‘ =SW—-PL,
N 115
and the fitness value of the individual is Nirginica = 29%x PW + SL — 53’
12 The values of training data with the three discriminant func-
- Z (Dp + Dy) =0. tions are shown iffable 5
j=1
Since the conditiom is satisfied, we sei =2, s =4 and 4. The Z-value measure and the classification methods
the procedure goes to Step 2. The value®gpfand D, of
the training data are shown Tfable 4. In general, since the training set does not consist of all
Step2: Sincem’ =m = 12, the individualSW — PL is possible samples, a classifier cannot recognize all objects
returned and the algorithm halts. The individual will be used correctly in real applications. The traditional rule-based clas-
to be the discriminant function of theetoseaclass fsetosa sifiers need high accurate rules to achieve the effectiveness

By the same learning procedure, we can obtain the of recognition. However, the recognition rate of the pro-
classifier F = { fsetosa fVersicolor: fvirginica}. In this case, posed function-based classifier is dependent on not only
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one discriminant function itself but also others discriminant
functions in the classifier, since the misjudgment of a dis-
criminant function will make the classifier misclassified or
ambiguous. Misclassification occurs only when an object is
recognized by a single discriminant function in the classi-
fier and the recognized class is a wrong one. The ambigu-

1965

Z and the AlgorithmZ_min. The detailed algorithms are
shown in the following.

Algorithm Z. Classification by the Z-value measure
on ambiguous cases
Input An unknown datay; and the sef of K learned

ous cases are more complicated than misclassification, thusdiscriminant functions.

we discuss the problem of ambiguity in the following two
situations:

Casel: Conflict An unknown data is recognized by two
or more discriminant functions in the classifier at the same
time.

Case 2: Rejection An unknown data is recognized
by no discriminant function in the classifier. Generally,
the probability of misclassification is much less than
ambiguity. Hence, for improving the recognition rate of a
function-based classifier, an effective ambiguity resolution
mechanism is needed. Here, we prop@sealue measure
to handle the problem of ambiguity. Tt#value is defined
and described in the following.

Let T¢, be the set of positive instances for claSs
belonging to the training sel’, T¢, = {x;[(xj,c;) € T
and ¢; =C;,1<j<m} and |T¢;|=m;. We consider
a classC; and its corresponding discriminant function
fi € F, 1<i < K. We define thaj; is the mean of values
of fi(x;) for x; € T¢,. That is,

_ ijeTCi fl(x/)

p=——
m;

1<i<K.

()

For each y;, the standard deviation of values of
fi(xp), xi € Tc,, is defined as

Yujere, (fix) = 1)?
g; = o s

1<i<K.

8)

Now, for ann-attribute datases, let x; € S and a dis-
criminant functionf; € F, 1<i < K, the Z-value of data
xy, for f; is defined as

_ il = gl

L

Zi(xg) 9)
wherex;, € S, 1<i < K. If the datax; is only recognized

by a unique discriminant functiong; in F, the x; is as-
signed to the clas§; and the task of classification is done.
However, once a data is not recognized by any discriminant
function or a data is recognized by two or more discrimi-
nant functions irF, the mechanism of -value measure is
applied to resolve the problem of ambiguity. For a discrim-
inant functionf; and a datay, since theZ-value ofx; for

fi,» Z; (x), represents the variance between the datand

the classC;, this variance can be used to decide the class
to which thex; should belongs. We propose two classifica-
tion methods based on th&value measure, the Algorithm

Output the assigned class; for x

Stepl: Initially, i =1 and there exists a s&tsuch that
Z=4.

Step 2: If the data x; is recognized by f;, then
Z={f; Uz

Step3: If i < K, theni =i + 1, go to Step 2; otherwise,
go to Step 4.

Step4: Let|Z| be the number of functions in. If |Z] =1,
the unique clas€’; corresponding to the functioy in Z
will be returned and stop; otherwise, go to Step 5.

Step5: If |Z| =0, Z=F.

Step6: Compute allZ; (x;), wheref; € Z.

Step7: Find thel = arg ming ¢z {Z; (x;)} and assign the
dataxy to the clas<C;.

Algorithm Z_min. Classification by the minimum Z-
value measure

Input An unknown datax; and the sef of K learned
discriminant functions.

Output the assigned clags; for x

Stepl: Compute allZ; (x;), wheref; € F.

Step2: Find thel = arg ming ¢ £{Z; (x;)} and assign the
datax; to the classCy.

For cases of conflict, the mechanism used in the Algorithm
Z collects the conflicting discriminant functions on daja
into the set ofZ. Then, we compute th&-value Z; (x;) on
each discriminant function iZ and assign data; to the
class with the smallest-value. For the case of rejection,
since there is no discriminant function in the setZgfthe
Algorithm Z puts all discriminant functions i into Z
and resolves the case as all discriminant functions conflict.
However, the algorithnZ_mindoes not recognize data by
individual discriminant function in the classifi€. Instead
of resolving ambiguity as in the Algorithrd, the algorithm
Z_min directly assigns the datg, to the class with the
smallestZ-value. If the number of the smallegtvalues is
more than one, although the probability of such situation is
very small, we dedicate the data to the major class when
once it happens.

Example 2. We use the discriminant functiongsetosa
Hersicolor @nd fvirginica Obtained from Example 1 to
construct a classifier and classify the test data. Let
F = {fsetosa fVersicolor, fVirginica}, the x; and ¢; of the

discriminant functions fsetosa fversicolor @nd fvirginica
can be calculated fromable § as follows:

(16+21+22+2)
4

Hsetosa— =1975
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Table 6
The test data set for Example 2
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Data SL SW PL PW Real class fsetosa Jfversicolor Nirginica Assigned class
TDy 5.1 3.8 1.6 0.2 Setosa 2.2 —0.4791 —2.7316 Setosa
T Dy 4.6 3.2 14 0.2 Setosa 1.8 —0.7734 —2.6995 Setosa
TD3 5.3 3.7 15 0.2 Setosa 2.2 —0.6694 —2.7446 Setosa
TDy 5.0 3.3 14 0.2 Setosa 1.9 —0.8355 —2.7251 Setosa
T D5 6.7 3.0 5.0 1.7 Versicolor -2.0 22.7246 38.3333  \Versicolorand Virginica
T Dg 6.2 2.9 4.3 1.3 Versicolor -14 6.0521 —12.6374 Versicolor
T D7 5.1 25 3.0 1.1 Versicolor -0.5 2.0693 —7.1875 Versicolor
T Dg 5.4 3.0 4.5 15 Versicolor -15 —20.8712 —28.0488 None
T Dg 6.8 3.2 5.9 2.3 Virginica 2.7 —4.0444 5.6098 Virginica
TD1o 6.5 3.0 5.2 2.0 Virginica 2.2 —15.1911 10.0000  Virginica
TD11 6.2 34 5.4 2.3 Virginica -2.0 —3.2506 5.7789 Virginica
TD12 5.9 3.0 5.1 1.8 Virginica 21 —5.1028 22.5490 Virginica
. _ (6.1413+ 5.9744+ 8.8143+ 11.5634 Table 7
Hversicolor = 4 The Z-values of T D5 and T Dg
=8.1234
Data Z-value Z-value Z-value
(20.9091+ 20.5357+ 17.9688+ 21.6981) of fsetosa of fversicolor of fvirginica
IVirginica = 4
T Dg 6.3942 12.9179
=202779 T Dg 15.2572 12.6973 34.5769
osetosa= 0.2278

OVersicolor = 2.2833
U\ﬂrginica = 13977

After y; and ¢g; are generated, assume that we have
12 test data denoted d9'D1, T Do, ..., T D12}, which
is shown in the columns ofSL SW PL, and PW in
Table 6. The values of the corresponding discriminant
functions are listed as the columns $§etosa fversicolon
and fvirginica in Table 6 respectively. Owing to the dis-
criminant functions in Example 1 are learned using the
boundary division, while we apply the Algorith to clas-
sify the test data iTable 6 the test data will be assigned
to the class whose function value is larger than or equal to
zero. InTable 6 we found that most of the test data can be
assigned to the correct class exceptTh@s and theT Dg.
The T Ds is recognized byfversicolor 2Nd fvirginica at the
same time; thus, the conflict occurs in this case. The Algo-
rithm Z resolves this conflict case by calculating the values
of Zversicolor and Zvjirginica and assigns th@ Ds to the
class ofVersicolor, since Zyersicolor IS less thanZyrginica
as shown in the first row ofable 7. For theT Dg, it is
a case of rejection because no discriminant function rec-
ognizes such object. The Algorithmd must calculate the
Z-values of all discriminant functions for th& Dg. The
second row inTable 7shows thatZvgsicolor = 126973 is
the smallest, hence, thEDg is assigned to the class of
\ersicolor, too.

While the AlgorithmZ_minis applied to classify the data,
we will calculate theZ-values of all discriminant functions

for eachT D; and assign thd D; to the class having the
smallestZ-value like the rejection case of tleDg.

5. Experimental results and comparisons

In this section, we demonstrate and compare the perfor-
mance of the proposed classifiers. The classifiers proposed
in this paper consist of sets of discriminant functions learned
by genetic programming and the ambiguity resolutions. We
refer to the learning methods using the boundary division
and the interval division as GP-B and GP-I, respectively. For
demonstrating the effectiveness and efficiency of the pro-
posed classifiers, we modify the GP Quick 221] to fit
the requirements of the proposed approaches and perform
the experiments since the source code of GP Quick is well
known and easily accessible from the web. The experiments
are done by using a PC with 866 MHz CPU and 128 MB
RAM.

We select 11 datasets with all numeric attributes as our
test datasets from UCI data depositf29], which are well-
known benchmark for evaluating the accuracy of classifiers.
These selected datasets have many distinct features includ-
ing the number of attributes, the number of classes and the
size of each dataset. All selected datasets are summarized in
Table 8 . Some of the datasets containing miss values are
modified, such as the Wisconsin breast cancer dataset (bcw)
and PIMA Indian diabetes datasg@irhalandpimad. The
original Wisconsin breast cancer dataset contains 699 cases
separated into two classes calMdlignantandBenignwith
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Table 8 accuracy of a discriminant functioAcg, is defined to be
The test datasets
K K

Datasets Number of Number of Number of 4 .. _ Z n: Z m;

attributes cases classes = ! = b
bew 9 683 2 wherem; is the number of cases in the clags andn; is the
bupa 6 345 2 number of cases recognized only by the discrminant function
glass 9 214 ! fi and belonging to the class;. The results are shown as
iris 4 150 3 i gng i )
ionosphere 34 351 2 the column ofAc_cm Table 11. Since _the amblg_uogs cases
pimal 8 768 2 happened, we list the rates of conflict and rejection in the
pima2 7 532 2 columns ofreyfiicr @ndryejecy OF Table 11 respectively.
sonar 60 229 2 Then, the classification algorithms, the Algorithzh and
vehicle 18 846 4 the Algorithm Z_min, are applied to resolve the ambiguous
waveform 21 5000 3 cases for the discriminant functions learned from the GP-
wine 13 178 3 B and the GP-I. The final classification results are shown

in the columns ofBZ, BZ-min 1Z and IZ_min of Table

11. The BZ method means using the GP-B to learn the

discriminant functions and classifying data by the Algorithm
241 cases and 458 cases, respectively. Each object in theZ. The BZ_min method uses the GP-B and the Algorithm
bcw dataset has nine numerical attributes. However, 16 casesZ_min. Similarly, the methods dZ and/Z_minare the GP-
in the bcw dataset consist of missing values. The 683 casesl in combination with the AlgorithmZ and the Algorithm
without missing values are used to evaluate classifiers af- Z_min, respectively.
ter removing the 16 incomplete data. The remaining dataset The training time of a discriminant function is mainly
contains 239 data dffalignantand 444 data ofBenigri. dependent on datasets and fitness functions used in genetic
The PIMA Indian diabetes dataset contains 768 cases thatprogramming. We discuss the reasons in the following. For
are separated into two classes: tested positive for diabetes orthe reason of datasets, first, it is obvious that we need spend
not. Each case has eight numerical attributes. However, the more training time on learning discriminant functions from
attribute, namely 2-h serum insulin, contains many zero val- a larger dataset. Nevertheless, the training time is indepen-
ues, which are physically impossibj22]. Hence, we pre- dent of the number of attributes in datasets. Secondly, since
pare two versions of the PIMA Indian diabetes dataset: the the adaptive incremental learning will start a new learn-
pimaland thepima2 The original dataset is denoted as the ing stage once the current learning stage gets a good dis-
pimal The pimalcontains 500 cases in the positive class criminant function, it will take less training time if the in-
and 268 cases in the negative class. Then, we remove the atstances belonging to the corresponding class are easy to
tribute of 2-h serum insulin and some records that have im- be distinguished from the others in the dataset. For exam-
possible values in other attributes from the original dataset. ple, we knew that classifying the clagersicolorin the iris
The remaining dataset is denoted as pivea2 which con- dataset is more difficult than classifying the clé®stosa
tains 532 cases and each case has only seven attributes. IIThe training time forf\ersicolor iS longer thanfsetosa An-
pima2 the number of cases in the positive class is 355 and other example is that although the number of instances in
the number of cases in the negative class is 177. The oth- the ionosphere dataset (351 cases) is more than the bupa’s
ers datasets are unchanged. All datasets is tested in 10-fold(345 cases), the training time of the ionosphere dataset is

cross validation for ten run@3]. shorter than the bupa’s because of its higher recognition
The proposed classifiers first learn the discriminant rate. Hence, the difficulty of classification about the classes
function f; for each corresponding cla€g using genetic in datasets will reflect the training time. For another reason
programming. The parameters used in GP Quick and the of fithess functions, a good fitness function is able to find
adaptive incremental learning are seffable 9. The maxi- out effective discriminant functions so that the adaptive in-
mum generation for each stages set to be 1000, = 0.2, cremental learning can be halt earlier. At the same time, the
andw is set as “the fitness value equals to 0”. The parame- advantage of the adaptive incremental learning strategy can
ters of fitness function for the GP-B ape= 10 anda =0, make an effective fitness function be performed more effi-
and for the GP-l arep = 10,a =0, andb = 10. We experi- ciently. Hence, a well-defined fitness function will improve

ence these values by experiments in this paper. The training the effectiveness and efficiency of learning process. From
times of each discriminant function for all selected datasets Tables 10and11, we found that the mean training time of
are shown inTable 10. The table shows the minimum, the  GP-I is shorter than the GP-B’s generally, and the accuracy
maximum and the average learning time for each discrimi- of discriminant functions learned by GP-| is better than the
nant function during the ten runs of 10-fold validation test. GP-B'’s for the same class. That is to say, the interval divi-
After the discriminant functions of a dataset are learned, sion is more effective and efficient than the boundary divi-
we test the accuracy for each discriminant function. The sion in the learning process.
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Table 9

The used parameters of experiments

Parameters Values Parameter Values
Node mutate weight 43.5% Mutation weight annealing 40%
Mutate constant weight 43.5% Generations per stage 1000
Mutate shrink weight 13% Incremental rgte 0.2
Selection method Tournament Criterion number Fitness=0
Tournament size 7 Function set +, - X, +
Crossover weight 28% Population size 1000
Crossover weight annealing 20% a, p for GP-B 0, 10
Mutation weight 8% a, b, p for GP-I 0, 10, 10
Max tree depth 7

To explain the reason why the interval division is better, may be too large or too small. It results in interference of
we should discuss the properties of their fitness functions the computation om; andg;. The confidence of-values
used first. The difference between the boundary division and thus is relatively low in comparison with the boundary
the interval division is the mapped ranges of positive in- condition of the discriminant function. That is to say, the
stances. The boundary division maps the positive instancesAlgorithm Z is more suitable than the Algorith@_min for
to an unlimited half area. While the adaptive incremental GP-B. The experiments iflable 11show such result that
learning strategy is learning, the function learned from the the methodBZ is more accurate and more stable than the
initial subset in the training set may be too loose to map the methodBZ_min. On the other hand, the discriminant func-
most part of the training set to the correct area. For instance, tions learned by GP-I restrict the range of positive instances
the learned function only contains one of the attributes that in the training set to be located in a specified interval. In
can distinguish positive instances and negative instances by statistical, the mean values of positive instances mapped
multiplying a minus. However, this rule may be true only for by a discriminant function will be a normal distribution if
the subset of training data in initial learning stages. While the the data in training sets reflect uniform sampling of the real
training data is increasing, such function is not fit to the next domain. Thus, theZ-value Z; (x;) of an instancex; for a
learning stage any more. Thus, the larger training set must discriminant functionf; for the classC; can be used to rep-
take more time for evolving accurate discriminant functions. resent the degree of the instangebelonging to the class
On the contrary, the interval division maps the positive in- C;. In Table 11 the experiments demonstrate tAevalue
stances to a limited interval. Any positive instance located can resolve the cases of conflict and rejection effectively in
outside the interval or negative instance located inside the the methodlZ. Furthermore, we found that the classifica-
interval will produce error. Thus, the learned function must tion method/ Z_min determining the class of an unknown
consider more attributes in order to represent the character-instance using theZ-values directly is even more accu-
istics of the initial subset of the training set. Such function, rate than the methot¥Z for most of datasets. The method
generally, will be conducive to evolve an effective discrim- 1Z_min is superior tolZ in 7 datasets for the selected 11
inant function for the complete training set in later learning datasets. Three of them including the buge®.36%), the
stages efficiently. A§able 11shows, the accuracy of the  pimal(4+8.90% and thepima2(+8.93%) improve a lot
discriminant functions learned by GP-I are better than GP- especially. However, in the methdd&_min, the four data-

B’s for most of the datasets except the bcw dataset and the sets with less accuracy do not drop the accuracies too
bupa dataset. However, the decreases of accuracy are smalmuch (iris~ — 0.54% sonar~ — 3.63% waveform:

(Acc —1.5% for the bcw and-0.9% for the bupa) and the  — 1.94% wine~ — 2.21%). Hence, theZ-value measure
main reason of decreasing is not caused by the decreasingprovides either a good measurement in the metizodr
rate of rejections¢jec,: —0.3% for the bcw and-0.5% for thel Z_min. The experimental results show that the classifi-
the bupa) but the increasing rate of confliciobfiict: +1.7% cation results of both thiZ and thel Z_min are better than

for the bcw and +2.9% for the bupa). It means that the dis- theBZ and theBZ_min obviously. Such results correspond
criminant functions learned by GP-I still can recognize more to the discussions of fitness functions in learning process.
cases than the GP-B'’s though some cases may conflict. = We also found that both of the conflict rate and the rejec-
From the above explanation, also, we can easily realize tion rate of discriminant functions are independent of the
that the results of the classification meth8& will be number of classification classes but depends on the features
better than the metho®&Z_min. Since GP-B only urges in datasets. Froriable 11 the vehicle dataset contains four
the training set to map to two half unlimited area, the func- classes with high rejection rate and the bupa dataset has
tion values of some exceptions or noise in the training set two classes with high conflict rate relatively. However, the
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Table 10
The training time of discriminant functions (in s)
Datasets Classification functions GP-B GP-|
Average min max stddev Average min max stddev
bew Fmatignant 32.41 23.10 39.31 4.83 15.02 10.90 18.98 2.50
Soenign 33.34 25.61 39.61 4.20 8.39 4.53 15.01 3.31
bupa fi 14.78 11.81 18.73 2.32 13.00 7.92 17.67 3.04
f2 14.89 11.39 18.60 2.27 13.71 8.80 17.46 2.71
glass fowsp 7.37 4.77 13.67 3.33 5.89 3.87 8.31 1.01
Fownfp 9.38 5.56 14.63 3.69 7.02 4.54 9.04 151
Jowp 8.82 478 1351  4.16 6.31 4.19 553 134
Fownfp 8.57 3.31 11.40 2.71 6.18 4.14 5.51 2.07
Frontainers 7.83 4.44 11.89 3.67 5.21 3.16 9.67 1.74
Frableware 7.62 4.48 11.09 3.10 5.15 3.04 8.19 1.46
Fneadiamps 7.98 4.18 13.84 4.40 4.92 3.85 9.04 1.73
ionosphere  fgo0a 13.19 9.33 19.57 3.63 10.32 8.10 12.34 1.17
Foad 10.14 8.76 19.08 411 7.51 4.92 10.05 157
iris fsetosa 2.07 1.78 2.35 0.18 1.64 1.31 2.02 0.22
Aersicolor 3.10 2.10 3.73 0.49 2.96 1.86 3.82 0.60
Nirginica 2.40 1.63 3.46 0.57 2.38 1.59 3.55 0.62
pimal Fpositive 32.51 21.17 42.25 6.40 22.31 10.72 35.30 7.84
Fegative 32.93 22.26 49.38 8.91 26.08 12.91 39.59 8.15
pima2 Fpositive 25.87 18.40 33.06 454 16.52 5.73 3171  10.28
Sregative 24.66 18.48 31.62 4.24 17.76 6.22 33.95 10.61
sonar fu 7.56 4.67 12.18 2.71 5.36 3.68 10.04 1.48
fr 7.10 4.05 11.88 3.03 6.13 4.11 9.06 1.77
vehicle Jopel 33.71 25.80 41.31 4.50 30.80 16.75 50.34 9.73
Feaab 34.45 26.18 48.04 6.46 30.21 15.98 41.04 7.77
Sfvan 34.91 21.16 49.43 8.39 29.59 12.46 48.50 11.87
Tous 33.61 23.62 48.15 7.48 33.73 17.19 49.17 9.58
waveform Fuwo 200.49 181.45 226.30  10.55 157.44 144.75  168.13 6.98
Sfwi 197.62 177.59 232.14 12.33 122.73 101.83 143.93 9.74
Sw2 226.11 189.44 240.75 10.09 167.39 136.87 185.80 13.26
wine Fuwinel 5.45 4.41 7.99 1.46 453 3.67 5.59 0.52
fwine2 7.30 4.84 10.13 2.62 4.71 3.43 6.11 0.77
Fuine3 6.19 471 7.10 0.97 3.85 3.74 4.01 0.08

glass has seven classes but the rates of rejection and conflictmeasure was reported in Ref6]. Their experimental
are not so high as the vehicle’s and the bupa’s respectively. results are mainly completed in holdout method and
Finally, we compare our results with some well- compared with some effective methods. The research of
known previous research¢3,6,22,24,25]in Table 12. In Ref. [22] evaluated and compared thirty-three classifica-
Ref. [3], Friedman proposed a Bayesian network learn- tion algorithms including twenty-two decision tree, nine
ing method to build tree augmented Naive Bayes(TAN) statistical and two neural network algorithms in 10-fold
for classification. They also compared the method with cross validation. The other two researches including CBA
Naive Bayes with 25 datasets via five-fold cross valida- [24] and SNNB [25] were also done by 10-fold cross
tion. An efficient fuzzy classifier based on fuzzy entropy validation and made a comparison with the methods of



Table 11

The results of classification

0L6T

Datasets Accuracy GP-B GP-l
(%) Acc Tconflict I'eject BZ BZ min Acc Teonflict Treject 1z 1Z_min
bcw average 94.57 1.41 1.82 96.94 94.52 93.06 3.10 1.52 97.17 97.53
stddev 211 1.07 2.02 0.42 1.92 2.58 2.73 0.52 0.45 0.47
bupa average 57.28 11.83 8.61 69.54 69.86 56.38 14.72 8.12 74.70 84.06
stddev 3.57 4.60 2.34 1.67 2.77 3.02 3.63 1.59 2.05 2.31
[vs]
glass average 65.23 10.73 4.31 70.08 71.27 70.32 8.57 7.49 75.47 76.81 O
stddev 3.06 2.68 2.76 1.53 2.24 2.74 1.08 0.93 0.42 094 Q
=
=}
ionosphere average 77.43 10.24 6.50 88.44 86.11 85.43 7.80 4.91 92.33 94.47 o
stddev 1.97 3.26 2.73 2.15 2.62 1.77 0.71 0.88 1.01 232
iris (2-fold) average 94.00 3.27 1.60 98.13 93.60 96.53 0.93 1.20 98.27 98.13 E
stddev 1.49 1.70 1.53 0.65 2.80 1.45 0.68 1.02 0.53 083 @
S5
iris (10-fold) average 90.53 3.31 4.00 95.67 91.87 91.87 3.20 2.40 96.07 95.53 g
stddev 1.83 2.13 1.79 0.95 1.73 1.78 2.15 1.12 1.31 1.19 §
5
pimal average 66.34 7.59 6.38 75.03 72.01 66.56 8.14 5.48 76.41 85.31 §
stddev 0.94 2.78 1.96 0.99 3.07 1.57 1.80 1.97 0.79 1.95 @
~
pima2 average 69.06 7.24 5.70 77.54 77.07 56.20 18.12 10.36 79.08 88.01 8
stddev 1.68 2.04 1.21 0.73 2.80 2.77 4.57 2.44 1.43 164 &
=
(]
sonar average 70.51 8.59 4,76 80.98 81.58 80.59 9.06 1.11 88.96 85.33 Iﬂ
stddev 1.84 1.53 2.16 2.39 3.80 1.17 0.99 0.46 0.64 0.88 2
N
vehicle average 32.52 13.13 39.09 61.78 59.07 36.82 2.57 48.43 73.72 75.24 m
stddev 2.46 4.68 6.14 4.20 2.73 1.85 0.68 2.23 1.25 1.79
waveform average 60.56 14.93 7.73 83.21 82.92 76.46 15.70 6.02 85.50 83.56
stddev 1.78 2.82 211 1.59 2.21 1.09 3.31 1.54 1.14 1.26
wine average 81.72 6.67 4.72 90.91 89.17 90.08 5.66 3.20 95.69 93.48
stddev 2.75 1.08 1.33 1.12 2.84 1.26 0.96 1.18 0.29 0.44
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Table 12

The comparison of the proposed classifiers and the best results summarized i[88¢#2,24,25]

Datasets Bz BZ min 1z 1Z_min Previous methods

bcw 96.94 94.52 97.17 97.53 97.22 (Lv@®2]
bupa 69.54 69.86 74.70 84.06 72.10 (ocnee]
glass 70.08 71.27 75.47 76.81 73.90 (CBR4]
ionosphere 88.44 86.11 92.33 94.47 92.10 (CBI24]
iris(2-fold) 98.13 93.60 98.27 98.13 97.12 (FEBH®)
iris (10-fold) 95.67 91.87 96.07 95.53 95.30 (C4[2H]
pimal 75.03 72.01 76.41 85.31 75.52 (TANB]
pima2 77.54 77.07 79.08 88.01 77.90 (LDA2]
sonar 80.98 81.58 88.96 85.33 83.20 (SNNEB]
vehicle 61.78 59.07 73.72 75.24 85.50 (QDR2]
waveform 83.21 82.92 85.50 83.56 83.90 (NBTrd&p]
wine 90.91 89.17 95.69 93.48 98.30 (NB5]

Naive Bayes and C4.5. Although these researches are donecriminant function and the mechanism of ambiguity resolu-

under different environments, the rank of classification rate tion calledZ-value measure to resolve not only the cases of
is consistent. For simplicity, we summarize the classifi- conflict but also rejections.

cation accuracies from the above researches and list only The advantages of classification functions are concise and
the best results of different datasets in the last column of efficient. The longer training time will produce a classifier

Table 12 The classification results ¢Z and 7 Z_min have with better accuracy without increasing the number of dis-
the best recognition rates for most of the datasets except criminant functions. Hence, the classification rate of a clas-
the vehicle and the wine. EspeciallyZ_min improves sifier can be easily preserved and improved. However, the

classification accuracies so much in some medical diag- main disadvantage of generating a good solution for clas-
nosis datasets such as the bupa and the pima. For the irissification by evolutionary algorithms like genetic algorithm
dataset, since the experiment using holdout method is better or genetic programming is time consuming. It usually needs
than 10-fold cross validation, we compare the accuracies much time for the evolution step to learn classification rules
of 2- and 10-fold cross validation with the corresponding or discriminant functions. As we know, the GP learning ap-
previous experimental results, respectively. The research proaches proposed in RgR6] take more than one hour
results in Ref[22] show that, for the vehicle dataset, only to generate the classification rules on the same datasets we
statistical-based algorithms have higher classification ac- used. However, our experiments show that the proposed GP-
curacy but it cannot be well classified by other methods. B and GP-I learning approaches take only a few seconds or
Although the accuracies dZ and I Z_min on the vehicle few minutes. They are even faster in comparison with some
dataset are about ten percent lower than QDA in 2], of the previous methods. We also show that #healue
they are still better than other methods like NB, C4.5, TAN measure is effective and the obtained classifiers have high
and CBA. At last, we found that the wine dataset can be classification rates in comparison with previous methods. Fi-
well classified by Naive Bayes-based classifiers. Except nally, we found that the features selected from the functions
Naive Bayes-based classifietZ, and 7 Z_min outperform can be used to reduce the dimensions of the features of the
the other methods for the wine dataset. problem. The feature selection using genetic programming
approach thus is an interesting issue for further studying of
researchers. Other future extensions on classifying data with
6. Conclusions symbolic values and missing values using function-based
classifier are also worth investigating.
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