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Abstract

This paper presents a learning scheme for data classification based on genetic programming. The proposed learning approach
consists of an adaptive incremental learning strategy and distance-based fitness functions for generating the discriminant
functions using genetic programming. To classify data using the discriminant functions effectively, the mechanism called
Z-value measure is developed. Based on theZ-value measure, we give two classification algorithms to resolve ambiguity
among the discriminant functions. The experiments show that the proposed approach has less training time than previous GP
learning methods. The learned classifiers also have high accuracy of classification in comparison with the previous classifiers.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Data classification is one of the important issues in the
research area of machine learning. Many applications can
be viewed as extensions of classification problem. For ex-
ample, pattern recognition, disease diagnosis, and business
decision-making. The classification is a two-step process in-
cluding learning and classifying generally. In the first step,
we referred to a predetermined set of data as training data
set, which is used to build a classifier by a learning algo-
rithm. The learned classifier is then used for classification.
The task of classification is to assign an unknown object
to one of the predefined classes based on the observed at-
tributes of the object. Since the versatility of human activities
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and the unpredictability of data, it is a challenge for re-
searchers to learn an effective classifier efficiently.

To reduce the learning time and increase the classifica-
tion accuracy, many different methods for building effective
classifiers have been proposed in the past decades. Typical
rule-based classifiers like ID3[1] and C4.5[2] construct
decision trees and classification rules using entropy-based
measure called information gain. Some of the previous meth-
ods are based on some mathematical models or theories. For
example, the statistical classifiers are built on the Bayesian
decision theory[3–5]. The theory provides a probability
model for classification by minimizing the probability of
total misclassification rate. Another well-known approach is
neural network[6–9]. In neural network approach, a multi-
layered network withm inputs andn outputs is trained with
a given set of training data. We give an input vector to the
network, and ann-dimensional output vector is obtained
from the outputs of the network. Then the given vector is
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Fig. 1. A function-based classifier.

assigned to the class with the maximum output. The other
methods include distance-based classifiers and evolutionary
approaches. Distance-based classifiers, like maximum like-
lihood classifier (MLC)[10] andk-nearest neighbor classi-
fiers [10,11], evaluate distances among input vectors of ob-
jects, and then classify objects into the individual class with
the smallest distance. The evolutionary approaches, gener-
ally, include genetic algorithm (GA)[12,13] and genetic
programming (GP)[14–17]. Genetic algorithm encodes a
set of classification rules to be a sequence of bit strings
called gene. The evolution operations such as reproduction,
crossover and mutation are used to generate the next gen-
eration of classification rules with better fitness. The classi-
fier with a set of classification rules will be obtained after
the specified number of generations is evolved or the condi-
tion of the fitness function is satisfied. For genetic program-
ming, there are two types of classifiers can be learned from
the training data set. The first type is the rule-based classi-
fier consisting of classification rules as other methods[14].
The other type is the function-based classifier in which the
discriminant functions are included[15,16]. In the function-
based classifier, asFig. 1, each predefined class has a corre-
sponding discriminant function to decide whether an object
belongs to the class or not. The advantages of a function-
based classifier are concise and efficient, because each class
has only one corresponding function and the functions are
easy to compute. Nevertheless, thereare a few problems for
learning discriminant functions using genetic programming
and classifying using discriminant functions. One of the
main drawbacks of using GP methodology is the long train-
ing time. Although the more training time allowing the more
accurate the classifier can be trained, it is still relatively long
while comparing with other classification methods. Another
problem is the ambiguity that may occur when a new object
is recognized by two or more discriminant functions at the
same time or no discriminant function recognizes the object.
To resolve the problem of ambiguity, an effective discern-
ing mechanism should be provided, asFig. 2; otherwise,
the accuracy of classification will be decayed. Kishore pro-
posed the strength of association (SA) measure to solve the
problem of ambiguity by classifying an ambiguous object
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Fig. 2. A function-based classifier with ambiguity resolution.

to the major class of the corresponding discriminant func-
tion; however, the accuracy was not improved so much by
SA measure[16].

In this paper, we present a new scheme for learning
discriminant functions based on genetic programming
and an effective ambiguity resolution mechanism for the
discriminant functions of the classifier. In order to shorten
the training time of classifiers without losing accuracy of
classification, we propose an adaptive incremental learning
strategy and the distance-based fitness functions. The pro-
posed learning strategy partitions the training data of each
class into several small subsets with both positive and neg-
ative training samples in them first. The learning algorithm
then learns a specific discriminant function for each class
from the sample subsets stage by stage incrementally. After
all discriminant functions are generated, we provide the
resolution mechanism calledZ-value measure to resolve
the problem of ambiguity. Two types of distance-based fit-
ness functions: boundary division and interval division and
two Z-value ambiguity resolutions: the AlgorithmZ and
the AlgorithmZ_Min are proposed. Based on the proposed
fitness functions and ambiguity resolutions, four alternative
classifiers are produced. Several benchmarks of data sets
from UCI data repository are used to demonstrate and com-
pare the accuracy of the proposed methods. We will discuss
the effectiveness of the GP learning strategies for distinct
fitness functions and the suitability of variousZ-value am-
biguity resolutions for the learned discriminant functions.
The experiments show that a well-designed fitness func-
tions used in GP can improve the training time as well as
the accuracy of classification. In comparison with other
classification methods, the classifiers learned by the fitness
function of interval division includingIZ andIZ_min have
high accuracy of classification.

The remainder of this paper is organized as follows.
Section 2 reviews the methodology of genetic programming
and gives the algorithm in detail by steps. In Section 3, we
propose a GP-based adaptive incremental learning approach
and the distance-based fitness functions for learning a set
of discriminant functions. The ambiguity resolution mech-
anisms,Z-value measure, and the classification algorithms
are presented in Section 4. Section 5 shows the experimen-
tal results and makes some comparisons with the previous
methods. Finally, we make conclusions and discuss some
prospects for future research.
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2. Genetic programming

The technique of genetic programming (GP) was
proposed by Koza[18,19]. Genetic programming has
been applied to a wide range of areas, such as symbolic
regression, robot control programs and classifications, etc.
Genetic programming can discover underlying data rela-
tionships and presents these relationships by expressions.
The expression is constructed by terminals and functions.
There are several types of functions can be applied for
genetic programming:

1. Arithmetic operations: addition, subtraction, multiplica-
tion and division.

2. Trigonometric functions: Sine and Cosine, etc.
3. Conditional operators and Boolean operators: IF, ELSE

and OR, etc.
4. Other add-on operations: Absolution, negative and other

user-specific functions.

Genetic programming begins with a set of randomly cre-
ated individuals called population. Each individual is a po-
tential solution represented as a binary tree. Each binary tree
is constructed by all possible compositions of the sets of
functions and terminals. A suitable fitness function should
be given for evaluating the fitness value of each individual.
Then, a set of individuals with better fitness value will be
selected and used to generate new population of next gener-
ation by the predefined genetic operators. The purpose of ge-
netic operators is used to evolve individuals. The main opera-
tors generally include reproduction, crossover, and mutation.

The reproduction operator is the simplest one. This op-
erator copies the individuals with better fitness values to be
the population of the next generation directly. Thus, the in-
dividuals with better fitness values can be kept continuously
in offspring by the reproduction operator. The crossover op-
erator needs more action to generate new individuals. First,
two individuals are picked out as parents. Then two sub-trees
are randomly selected from the parents, respectively, and
swapped each other. After that, two new individuals are gen-
erated. For example, there are two individuals(5+ X) + X

and(X + X) − 2 in Fig. 3. After the crossover operator is
executed, two new individuals,(X+X)+X and(5+X)−2,
are generated. The mutation operator is usually used for
avoiding local optimum. There are two types of mutation
operators: Single-node mutation and sub-tree mutation.
Single-node mutation is that a terminal or a function in an
individual will be replaced by another terminal or function.
The other type of mutation, sub-tree mutation, does the
same operation with a sub-tree instead of a terminal or a
function. For example, inFig. 4, an individual(5+X)+X

becomes(7 + X) by sub-tree mutation operator.
After the evolution of a number of generations, a set of

individuals with fine fitness value is usually contained in the
population. We can take one of the individuals with the best
fitness value as the requested result. However, if the fitness
values still do not satisfy the specified condition, the process
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Fig. 3. An example of crossover operation.
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Fig. 4. An example of sub-tree mutation.

of evolution could be continued until the specified condition
successes or the number of evolving generations is reached.

We describe the main steps of genetic programming as
follows:

Algorithm. Native genetic programming for objective
functions learning
Input: The training setT .
Output: The target function with the best fitness value.
Step1: Initialize the population.

Let gen = 1 and we generate the set of initial individuals
�1 = {h1

1, h
1
2, . . . , h

1
q }, where�(gen) is the population in

the generationgenandh
(gen)
i

stands for theith individual
in the set�(gen) of the generationgen.
Step2: Evaluate the fitness value of each individual in

the training set.
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For all h
(gen)
i

∈ �(gen), we compute their fitness values

E
(gen)
i

= fitness(h(gen)
i

, T ), where the fitness evaluating
functionfitness() is dependent on the problem and is defined
by the user.
Step3: Does it satisfy the conditions of termination?

If the best fitness value ofE(gen)
i

satisfies the conditions
of termination or thegen is equal to the specified maxi-

mum generation, then the individualh
(gen)
i

with the best
fitness value is returned and the algorithm halts; otherwise,
gen = gen + 1.
Step4: Generate the next generation of individuals and

go to Step 2.
The new population of next generation�(gen) is generated
by the ratio ofPr , Pc andPm, and then goes to Step 2, where
Pr , Pc andPm represent the probabilities of reproduction,
crossover and mutation operations, respectively.

3. Learning discriminant functions by genetic
programming

This section presents the GP-based learning method of
discriminant functions for classification. First, we will give
a formal description for discriminant functions. Then, we
provide an adaptive incremental training strategy and pro-
pose two distance-based fitness functions to learn the dis-
criminant functions for classifiers. We also give a complete
example to explain the proposed learning method by a sub-
set of IRIS data set.

3.1. A formal description of discriminant functions for
classification

The notations of used symbols and a formal description
of discriminant functions for classification are described in
this subsection. Given a data set S, there aren attributes for
each dataxj ∈ S. Let xj be represented as

xj = (vj1, vj2, . . . , vj t , . . . , vjn), 1� t � n,

wherevjt ∈ R stands for thet th attribute of dataxj in S. Let
C = {C1, C2, . . . , CK } be the set ofK predefined classes,
we say that〈xj , cj 〉 is a sample if the dataxj is assigned to
a specified classcj , cj ∈ C. We then define a training set
(T ) on a set of samples such that

T ={〈xj , cj 〉|xj =(vj1, vj2, . . . , vjn), cj ∈ C,1�j�m},
wherem is the number of samples inT , denoted as|T | = m.
Let mi be the number of samples inT belonging to the class
Ci, 1� i �K,

m = (m1 + m2 + · · · + mi + · · · + mK).

For classifying unknown data into theK predefined
classes, a function-based classifier maintains a set ofK

discriminant functionsF,

F = {fi |fi : Rn → R,1� i �K}.

Each discriminant functionfi in the classifier is a function
mapping fromRn toR, 1� i �K. The task of the discrim-
inant functionfi is to determine whether an unknown data
xj belongs to a specified classCi or not. Since the image
of a discriminant functionfi is a set of real numbers, we
partitionR into two separate ranges and specify one of the
two ranges as the target range of the classCi . If the value
of fi(xj ) locates in the target range, the dataxj is an in-
stance of the classCi ; otherwise, thexj does not belong
to the classCi . We give two types of division methods to
separateR into two ranges: the boundary division and the
interval division.

The boundary division simply specifies a constanta ∈ R
to separate the real number into two half areas. For a sample
〈xj , cj 〉, the range based on the boundary division can be
defined as

fi(xj )� a if cj = Ci,

fi(xj )< a if cj �= Ci,
where 1�i�K and 1�j �m.

The interval division, instead of using a constant num-
ber to distinguish the target range from the other, defines
an interval to represent the target range for specific class
Ci . A discriminant functionfi based on the interval divi-
sion defines two constanta, b ∈ R andb>0. For a sample
〈xj , cj 〉, the interval for distinguishing the classCi is de-
fined as follows:

a − b � fi(xj )� a + b if cj = Ci,

fi(xj )< a − b or fi(xj )> a + b if cj �= Ci

where 1� i �K and 1� j �m.

A good discriminant function can transform the dataxj
belonging to the classCi to the valuesfi(xj ) mapping
into the target range effectively. Thus, an effective function-
based classifier is built if we could find the set of effective
discriminant functionsF including allK predefined classes.

3.2. The proposed learning strategy

We first prepare the training setT before the starting of
learning procedures. The samples in training setT include
positive instances and negative instances usually. Consider
a specific classCi and a sample〈xj , cj 〉 ∈ T , we say that
〈xj , cj 〉 is a positive instance ifcj = Ci ; otherwise,〈xj , cj 〉
is a negative instance, where 1� j �m, 1� i �K. After the
training setT was prepared, we start the learning procedure
using genetic programming. Conventionally, all of the sam-
ples in the training set are fed to the learning procedure at
a time. However, when the size of the training set is large,
the number of evolving generations in genetic programming
will increase rapidly and spend much more time relatively
if we want to find an effective solution. Thus, for obtain-
ing effective solutions efficiently by genetic programming,
we proceed to learn from the training set using an adaptive
incremental learning strategy.

The proposed adaptive incremental learning strategy
organizes the training sets to be a sequence of subset ofT
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having T1⊆T2⊆· · ·⊆Ts = T and the learning procedure
is accomplished stage by stage. Theith learning stage trains
the subset of samplesTi and runs the evolution operations
up to the specified number of generations to find solutions.
While a former learning stage completes the training task
using a less number of training samples, it propagates the
solutions to the latter stages. A latter learning stage inher-
iting the solutions from the previous stage then starts its
learning stage by increasing the number of training sam-
ples. Since the learning stage with a larger training setTi+1
is based on the solutions of the previous training setTi and
increases only a few training samples intoTi , the solutions
for the training setTi+1 can be improved efficiently.

In the above training process, if a large-scale number of
samples are increased in each stage, an effective solution
may not be generated during a learning stage. On the con-
trary, if the incremental size of samples is too small, it will
waste time on getting an effective intermediate solution. For
preventing waste of time and guaranteeing the effectiveness
of a solution, we have to handle the increment in each learn-
ing stage. We use the following parameters to control the
effectiveness of each learning stage:

g: The specified number of generations to be evolved for
each learning stage.

�: The basic incremental rate, 0� � � 1.
�: The adaptive factor,� � 1.
�: The condition of satisfying the effectiveness of fitness

values.
The detailed algorithm for the proposed adaptive incre-

mental learning strategy is described in the following.

Algorithm. Genetic programming with adaptive in-
cremental learning
Input: The training setT , �, � andg.
Output: The function with the best fitness value.
Step1: Initialize the parameters.

Let s = 1, � = 1, m′ = 0, m = |T |, T0 = ∅ and T = T +∪
T −, whereT + and T − represent the set of positive in-
stances and the set of negative instances in the training set
T , respectively. Thes denotes the current learning stage.
Step2: Is the halting condition of learning satisfied?

If m′ = m, then the individualh(s,gen)
i

with the best fitness
value is returned and the algorithm halts. Otherwise, go to
Step 3; a new learning stage is started.
Step3: Prepare the training setTs for the learning stages.

Let T +
inc

and T −
inc

be the set of incremental posi-
tive instances and incremental negative instances, re-
spectively. |T +

inc
| is the number ofT +

inc
selected from

T + − Ts−1; similarly, |T −
inc

| is the number ofT −
inc

negative instances selected fromT − − Ts−1. Let
|T +

inc
| = �|T +| × �� × � and |T −

inc
| = �|T −| × �� × �.

Then, we haveTs = Ts−1∪T +
inc

∪T −
inc

and m′ = min{m,

�m × �� × � + m′}.
Step4: Initialize the population for the learning stages.

Let gen = 1 and generate the set of individuals�s,1

= {hs,1
1 , h

s,1
2 , . . . , h

s,1
q }, where�(s,gen) is the population

of the generationgen in the stages andh
(s,gen)
i

stands for
the ith individual of the generationgen in stages.
Step5: Evaluate the fitness value for the training setTs

in the learning stages.

For all h
(s,gen)
i

∈ �(s,gen), compute the fitness values

E
(s,gen)
i

= fitness(h(s,gen)
i

, Ts), where the fitness evaluat-
ing function fitness() defined by the user depends on the
problem.
Step6: Is the current learning stage completed?

Case1: The best fitness value ofE(s,gen)
i

satisfies the con-
dition �.
The individualh(s,gen)

i
with the best fitness value is propa-

gated to the next stage and double the incremental samples.
That is, let� = 2, s = s + 1 and go to Step 2. While two or
more individuals satisfy the condition�, the shortest one is
treated as the best individual.
Case2: The best fitness value ofE(s,gen)

i
does not satis-

fies the condition�.
If gen>g, the individualh(s,gen)

i
with the best fitness value

is propagated to the next stage but the increment is un-
changed; that is, let� = 1, s = s+1 and go to Step 2. Other-
wise, the current stage is to be continued, letgen = gen+1
and go to Step 7.
Step7: Generate the next generation of individuals and

go to Step 5.
The new population of next generation�(s,gen) is generated
by the ratio ofPr , Pc andPm, then goes to Step 5, where
Pr , Pc andPm represent the probabilities of reproduction,
crossover and mutation operations given by the user, respec-
tively.

3.3. The distance-based fitness functions

In the above algorithm, the fitness evaluating function,

f itness(h
(s,gen)
i

, Ts), is used to measure the effectiveness

of an individualh(s,gen)
i

’s behaving on the training setTs .
A good fitness evaluating function should be able to mea-
sure individuals precisely so as to improve not only effi-
ciency but also effectiveness of the learning process. Based
on the two range division methods presented in Section 3.1:
the boundary division and the interval division, we propose
two corresponding distance-based fitness evaluating func-
tions for learning the discriminant functions of a classifier.

For the boundary division, considering a discriminant
function fi for recognizing the classCi in a classifier, we
give a specified constanta and urge thatfi(xj )� a if the
dataxj belongs to the classCi ; at the same time, we urge
fi(xj )� a if the dataxj does not belong to the classCi ,

for all xj ∈ Ts . Hence, for directing an individualh(s,gen)
i

in �(s,gen) to achieve the goal of the boundary division, we
define the enforcement parameterp and letp >a. If a sam-

ple 〈xj , cj 〉 is a positive instance andh(s,gen)
i

(xj )� a, is a
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correct result and no error. However, whenh
(s,gen)
i

(xj )< a

for a positive instance〈xj , cj 〉, it results a wrong clas-
sification. At this time, the error of the sample〈xj , cj 〉
on the individualh(s,gen)

i
is measured by the distance of

|h(s,gen)
i

(xj ) − a| plus |p − a|. The distance of|p − a| is

used to enlarge the error value while the valueh
(s,gen)
i

(xj )

is close toa. The main purpose is to avoid selecting the in-

dividuals with many small distances of|h(s,gen)
i

(xj ) − a|
as new individuals in the next generation of evolution, since
our goal is to learn the function that can separate the ranges
between positive instances as far as possible. Thus, the fit-
ness measure for a positive instance is defined as

Dp(xj , cj ) =
{

0 if cj = Ci andh
(s,gen)
i

(xj )� a,

|p − h
(s,gen)
i

(xj )| if cj = Ci andh
(s,gen)
i

(xj )< a.
(1)

Similarly, the fitness measure for a negative instance is de-
fined as

Dn(xj , cj ) =
{

|h(s,gen)
i

(xj ) + p| if cj �= Ci andh
(s,gen)
i

(xj )� a,

0 if cj �= Ci andh
(s,gen)
i

(xj )< a.
(2)

The fitness evaluating function of an individualh
(s,gen)
i

for
the training setTs in stages is defined to be

Fitness(h
(s,gen)
i

, Ts)

= −
m′∑
j=1

(Dp(xj , cj ) + Dn(xj , cj )), (3)

wherem′ is the number of training samples in the current
learning stages, 〈xj , cj 〉 ∈ Ts, 1� j �m′.

For the interval division, considering a discriminant func-
tion fi for recognizing the classCi in a classifier, we give
two constantsa andb and urge that|fi(xj ) − a| � b if the
dataxj is a positive instance; at the same time, we urge
|fi(xj ) − a|>b if the dataxj is a negative instance, for
all xj ∈ Ts . That is, the fitness values of positive instances
should be located in the specified interval[a − b, a + b].
As the same reason of the boundary division, we also give
the enforcement parameterp, p >0, for pushing an indi-

vidual h(s,gen)
i

in �(s,gen) to achieve the goal of the in-
terval division. If a sample〈xj , cj 〉 is a positive instance

and |h(s,gen)
i

(xj ) − a| � b, it is a correct result and no er-

ror. However, when|h(s,gen)
i

(xj )− a|>b for a positive in-
stance〈xj , cj 〉, it results a wrong classification. The fitness
measure for a positive instance and a negative instance is
respectively defined as follows:

Dp(xj , cj ) =
{

0 if cj = Ci and |h(s,gen)
i

(xj ) − a| � b,

|p + (|h(s,gen)
i

(xj ) − a| − b)| if cj = Ci and |h(s,gen)
i

(xj ) − a|>b,
(4)

Dn(xj , cj ) =
{

|p − (|h(s,gen)
i

(xj ) − a| − b)| if cj �= Ci and |h(s,gen)
i

(xj ) − a| � b,

0 if cj �= Ci and |h(s,gen)
i

(xj ) − a|>b.
(5)

The fitness value of an individualh(s,gen)
i

for the training
setTs in stages is defined to be

Fitness(h
(s,gen)
i

, Ts)

= −
m′∑
j=1

(Dp(xj , cj ) + Dn(xj , cj )), (6)

wherem′ is the number of training samples in the current
learning stages, 〈xj , cj 〉 ∈ Ts, 1� j �m′.

Since we use the negative of measure to be the fitness
value of an individual, the best fitness value is zero. While
the fitness value of the individualh(s,gen)

i
is zero, it means

that the functionh(s,gen)
i

can discriminate all samples of
the classCi from the others in the givenm′ training sam-

ples. Hence, we can choose the individualh
(s,gen)
i

as the
discriminant functionfi for the classCi .

3.4. An example

For illustrating the proposed adaptive incremental learn-
ing approaches, we give an example with the boundary di-
vision to show the learning of discriminant functions in the
following.

Example 1. In the Fisher’s Iris dataset[20], there are four
numerical attributes in each object: sepal length, sepal width,
petal length, and petal width. We denote these attributes as
SL, SW, PL, andPW, respectively. In this example, we take
a subset of 12 objects from the original Iris dataset as the
training setT , asTable 1That is, |T | = m = 12. We now
begin the adaptive incremental learning procedure to find
the discriminant functionfSetosa for the Setosaclass as
follows:
Input: The training setT , � = 0.3, � is “the fitness value

equals to 0”, andg = 100.
Step1: Initialize the parameters. We initially sets = 1,

� = 1, m′ = 0, m = 12, and T0 = ∅ for the learning
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Table 1
The 12 training dataT for Example 1

Data SL SW PL PW Class

D1 6.3 2.7 4.9 1.8 Virginica
D2 4.9 3.0 1.4 0.2 Setosa
D3 6.7 3.1 4.4 1.4 Versicolor
D4 5.1 3.5 1.4 0.2 Setosa
D5 6.4 3.1 5.5 1.8 Virginica
D6 5.6 3.0 4.1 1.3 Versicolor
D7 5.0 3.6 1.4 0.2 Setosa
D8 7.2 3.2 6.0 1.8 Virginica
D9 6.7 3.1 4.7 1.5 Versicolor
D10 6.1 3.0 4.9 1.8 Virginica
D11 6.0 3.4 4.5 1.6 Versicolor
D12 5.2 3.4 1.4 0.2 Setosa

algorithm. Moreover, we seta = 0 andp = 10 for the fit-
ness function of the boundary division. The set of positive
instances of the training setT in Table 1 for the Setosa
class is

T + = {D2,D4,D7,D12},
and the set of negative instances is

T − = {D1,D3,D5,D6,D8,D9,D10,D11}.
Step 2: Since m′ �= m, a new stage,

Stage 1, is started and goes to Step 3.
Stage1
Step3: Prepare the training setT1 for the first learning

stage.

|T +
inc

| = �|T +| × �� × � = �4 × 0.3� × 1 = 1,

|T −
inc

| = �|T −| × �� × � = �8 × 0.3� × 1 = 2.

Assume that

T1 = T0∪T +
inc

∪T −
inc

= ∅∪{D2}∪{D1,D3}
= {D1,D2,D3}.

Let T1 be selected andm′ = min{m, �m × �� × � +
m′} = min{12, �12× 0.3� × 1 + 0} = 3.
Step4: Let gen = 1 and generate the set of individuals

�1,1 = {h1,1
1 , h

1,1
2 , . . . , h

2,1
q }.

Step5: Evaluate the fitness valuesE1,gen
i

on the training
setT1 in the Stage 1.
Steps 5–7 are repeated until the best fitness value of

E
1,gen
i

satisfies the condition offitness(h1,gen
i

, T1) = 0 or
gen>100.
Step6: Assume thatgen>100 at this stage, the individual

with best fitness value after 100 generations is

h
1,100
i

= SL − PL − PW,

Table 2
The fitness values of the individualh1,100

i
= SL − PL − PW

Data h Value Dn|Dp Class

D1 −0.4 Dn = 0 Virginica
D2 3.3 Dp = 0 Setosa
D3 0.9 Dn = 10.9 Versicolor

and the fitness value of the individual is

−
3∑

j=1

(Dp + Dn) = − 10.9.

Since the fitness value is not equal to zero after 100 gener-
ations, we set� = 1 ands = 2, and the procedure goes to
Step 2. The values ofDn andDp of the training data inT1
are listed inTable 2.
Step2: Sincem′ = 3 �= m = 12, go to Step 3, Stage 2 is

started.
Stage2
Step3: Prepare the training setT2 for the Stage 2. We

have

|T +
inc

| = �|T +| × �� × � = �4 × 0.3� × 1 = 1,

|T −
inc

| = �|T −| × �� × � = �8 × 0.3� × 1 = 2.

Assume thatT +
inc

= {D4} andT −
inc

= {D5,D6} are selected
from T − T1, thus

T2 = T1∪T +
inc

∪T −
inc

= {D1,D2,D3}∪{D4,D5,D6}
= {D1,D2,D3,D4,D5,D6},

andm′ = min{12, �12× 0.3� × 1 + 3} = 6.
Step4: Let gen = 1 and generate the set of individuals

�2,1 = {h2,1
1 , h

2,1
2 , . . . , h

2,1
q }.

Step5: Evaluate the fitness on the training setT2 in Stage
2.
Steps 5–7 are repeated until the best fitness value of

E
2,gen
i

satisfies the condition offitness(h2,gen
i

, T2) = 0 or
gen>100.
Step6: Assume that there is an individual satisfies the

condition offitness(h2,50
i

, T2) = 0 while gen = 50:

h
2,50
i

= SL − PL − PW − PW.

The fitness value of the individual is

−
6∑

j=1

(Dp + Dn) = 0.

Since the condition� is satisfied, we set� = 2, s = 3 and
the procedure goes to Step 2. The values ofDn andDp of
the training data are shown inTable 3.
Step2: Sincem′ = 6 �= m = 12, go to Step 3, and Stage

3 is started.
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Table 3
The fitness values of the individualh

2,50
i

= SL−PL−PW −PW

Data Valueh Dn|Dp Class

D1 −2.2 Dn = 0 Virginica
D2 3.1 Dp = 0 Setosa
D3 −0.5 Dn = 0 Versicolor
D4 3.3 Dp = 0 Setosa
D5 −2.7 Dn = 0 Virginica
D6 −1.1 Dn = 0 Versicolor

Stage3
Step3: Prepare the training setT3 for the Stage 3. We

have

|T +
inc

| = �|T +| × �� × � = �4 × 0.3� × 2 = 2,

|T −
inc

| = �|T −| × �� × � = �8 × 0.3� × 2 = 4,

Assume thatT +
inc

= {D7,D12} and T −
inc

= {D8,D9,D10,

D11} are selected fromT − T2, thus

T3 = T2∪T +
inc

∪T −
inc

= {D1,D2,D3,D4,D5,D6}∪{D7,D12}
∪{D8,D9,D10,D11}

= {D1,D2,D3,D4,D5,D6,D7,D8,D9,

D10,D11,D12},

andm′ = min{m, �m × �� × �+m′} = min{12, �12× 0.3�
× 2 + 6} = 12.
Step4: Let gen = 1 and generate the set of individuals

�3,1 = {h3,1
1 , h

3,1
2 , . . . , h

3,1
q }.

Step5: Evaluate the fitness on the training setT3 in Stage
3.

Steps 5–7 are repeated until the best fitness value of

E
3,gen
i

satisfies the condition offitness(h3,gen
i

, T3) = 0 or
gen>100.
Step6: Assume that there is an individual satisfies the

condition offitness(h3,20
i

, T3) = 0 while gen = 20:

h
3,20
i

= SW − PL,

and the fitness value of the individual is

−
12∑

j=1

(Dp + Dn) = 0.

Since the condition� is satisfied, we set� = 2, s = 4 and
the procedure goes to Step 2. The values ofDn andDp of
the training data are shown inTable 4.
Step2: Sincem′ = m = 12, the individualSW − PL is

returned and the algorithm halts. The individual will be used
to be the discriminant function of theSetosaclassfSetosa.

By the same learning procedure, we can obtain the
classifierF = {fSetosa, fVersicolor, fVirginica}. In this case,

Table 4
The fitness values of the functionh(3,20)

i
= SW − PL

Data h Value Dn|Dp Class

D1 −2.2 Dn = 0 Virginica
D2 1.6 Dp = 0 Setosa
D3 −1.3 Dn = 0 Versicolor
D4 2.1 Dp = 0 Setosa
D5 −2.4 Dn = 0 Virginica
D6 −1.1 Dn = 0 Versicolor
D7 2.2 Dp = 0 Setosa
D8 −2.8 Dn = 0 Virginica
D9 −1.6 Dn = 0 Versicolor
D10 −1.9 Dn = 0 Virginica
D11 −1.1 Dn = 0 Versicolor
D12 2.0 Dp = 0 Setosa

Table 5
The values of training data for the discriminant functions

Data fSetosa fVersicolor fVirginica Class

D1 −2.2 −68.0944 20.9091 Virginica
D2 1.6 −0.8493 −2.7187 Setosa
D3 −1.3 6.1413 −20.1754 Versicolor
D4 2.1 −0.8327 −2.7316 Setosa
D5 −2.4 −6.7874 20.5357 Virginica
D6 −1.1 5.9744 −11.8557 Versicolor
D7 2.2 −0.8054 −2.7251 Setosa
D8 −2.8 −15.2502 17.9688 Virginica
D9 −1.6 8.8143 −41.0714 Versicolor
D10 −1.9 −22.9747 21.6981 Virginica
D11 −1.1 11.5634 −191.6669 Versicolor
D12 2.0 −0.8607 −2.7381 Setosa

the following three discriminant functions are learned:

fSetosa= SW − PL,

fVersicolor=
PL × SL − PL−119 − −4×(PW−SL)

PL

PW×SL
PL−SL

+ 5 + SW + −16−104

,

fVirginica = 115

29× PW + SL − 53
.

The values of training data with the three discriminant func-
tions are shown inTable 5

4. TheZ-value measure and the classification methods

In general, since the training set does not consist of all
possible samples, a classifier cannot recognize all objects
correctly in real applications. The traditional rule-based clas-
sifiers need high accurate rules to achieve the effectiveness
of recognition. However, the recognition rate of the pro-
posed function-based classifier is dependent on not only
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one discriminant function itself but also others discriminant
functions in the classifier, since the misjudgment of a dis-
criminant function will make the classifier misclassified or
ambiguous. Misclassification occurs only when an object is
recognized by a single discriminant function in the classi-
fier and the recognized class is a wrong one. The ambigu-
ous cases are more complicated than misclassification, thus
we discuss the problem of ambiguity in the following two
situations:
Case1: Conflict. An unknown data is recognized by two

or more discriminant functions in the classifier at the same
time.
Case 2: Rejection. An unknown data is recognized

by no discriminant function in the classifier. Generally,
the probability of misclassification is much less than
ambiguity. Hence, for improving the recognition rate of a
function-based classifier, an effective ambiguity resolution
mechanism is needed. Here, we proposeZ-value measure
to handle the problem of ambiguity. TheZ-value is defined
and described in the following.

Let TCi
be the set of positive instances for classCi

belonging to the training setT , TCi
= {xj |〈xj , cj 〉 ∈ T

and cj = Ci,1� j �m} and |TCi
| = mi . We consider

a classCi and its corresponding discriminant function
fi ∈ F, 1� i �K. We define that�i is the mean of values
of fi(xj ) for xj ∈ TCi

. That is,

�i =
∑

xj∈TCi
fi(xj )

mi
, 1� i �K. (7)

For each �i , the standard deviation of values of
fi(xk), xk ∈ TCi

, is defined as

�i =

√√√√∑
xj∈TCi

(fi(xj ) − �i )
2

mi
, 1� i �K. (8)

Now, for ann-attribute datasetS, let xk ∈ S and a dis-
criminant functionfi ∈ F, 1� i �K, theZ-value of data
xk for fi is defined as

Zi(xk) = |fi(xk) − �i |
�i

, (9)

wherexk ∈ S, 1� i �K. If the dataxk is only recognized
by a unique discriminant functionsfi in F, the xk is as-
signed to the classCi and the task of classification is done.
However, once a data is not recognized by any discriminant
function or a data is recognized by two or more discrimi-
nant functions inF, the mechanism ofZ-value measure is
applied to resolve the problem of ambiguity. For a discrim-
inant functionfi and a dataxk , since theZ-value ofxk for
fi , Zi(xk), represents the variance between the dataxk and
the classCi , this variance can be used to decide the class
to which thexk should belongs. We propose two classifica-
tion methods based on theZ-value measure, the Algorithm

Z and the AlgorithmZ_min. The detailed algorithms are
shown in the following.

Algorithm Z. Classification by the Z-value measure
on ambiguous cases
Input: An unknown dataxk and the setF of K learned

discriminant functions.
Output: the assigned classCl for xk
Step1: Initially, i = 1 and there exists a setZ such that

Z = ∅.
Step 2: If the data xk is recognized byfi , then

Z = {fi}∪Z.
Step3: If i <K, theni = i + 1, go to Step 2; otherwise,

go to Step 4.
Step4: Let |Z| be the number of functions inZ. If |Z| = 1,

the unique classCl corresponding to the functionfl in Z
will be returned and stop; otherwise, go to Step 5.
Step5: If |Z| = 0, Z = F.
Step6: Compute allZi(xk), wherefi ∈ Z.
Step7: Find thel = arg minfi∈Z{Zi(xk)} and assign the

dataxk to the classCl .

Algorithm Z_min. Classification by the minimum Z-
value measure
Input: An unknown dataxk and the setF of K learned

discriminant functions.
Output: the assigned classCl for xk
Step1: Compute allZi(xk), wherefi ∈ F.
Step2: Find thel = arg minfi∈F {Zi(xk)} and assign the

dataxj to the classCk .
For cases of conflict, the mechanism used in theAlgorithm

Z collects the conflicting discriminant functions on dataxk
into the set ofZ. Then, we compute theZ-valueZi(xk) on
each discriminant function inZ and assign dataxk to the
class with the smallestZ-value. For the case of rejection,
since there is no discriminant function in the set ofZ, the
Algorithm Z puts all discriminant functions inF into Z
and resolves the case as all discriminant functions conflict.
However, the algorithmZ_mindoes not recognize dataxk by
individual discriminant function in the classifierF. Instead
of resolving ambiguity as in the AlgorithmZ, the algorithm
Z_min directly assigns the dataxk to the class with the
smallestZ-value. If the number of the smallestZ-values is
more than one, although the probability of such situation is
very small, we dedicate the data to the major class when
once it happens.

Example 2. We use the discriminant functionsfSetosa,
fVersicolor, and fVirginica obtained from Example 1 to
construct a classifier and classify the test data. Let
F = {fSetosa, fVersicolor, fVirginica}, the �i and �i of the
discriminant functionsfSetosa, fVersicolor, and fVirginica
can be calculated fromTable 5, as follows:

�Setosa=
(1.6 + 2.1 + 2.2 + 2)

4
= 1.975,
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Table 6
The test data set for Example 2

Data SL SW PL PW Real class fSetosa fVersicolor fVirginica Assigned class

TD1 5.1 3.8 1.6 0.2 Setosa 2.2 −0.4791 −2.7316 Setosa
TD2 4.6 3.2 1.4 0.2 Setosa 1.8 −0.7734 −2.6995 Setosa
TD3 5.3 3.7 1.5 0.2 Setosa 2.2 −0.6694 −2.7446 Setosa
TD4 5.0 3.3 1.4 0.2 Setosa 1.9 −0.8355 −2.7251 Setosa
TD5 6.7 3.0 5.0 1.7 Versicolor −2.0 22.7246 38.3333 VersicolorandVirginica
TD6 6.2 2.9 4.3 1.3 Versicolor −1.4 6.0521 −12.6374 Versicolor
TD7 5.1 2.5 3.0 1.1 Versicolor −0.5 2.0693 −7.1875 Versicolor
TD8 5.4 3.0 4.5 1.5 Versicolor −1.5 −20.8712 −28.0488 None
TD9 6.8 3.2 5.9 2.3 Virginica −2.7 −4.0444 5.6098 Virginica
TD10 6.5 3.0 5.2 2.0 Virginica −2.2 −15.1911 10.0000 Virginica
TD11 6.2 3.4 5.4 2.3 Virginica −2.0 −3.2506 5.7789 Virginica
TD12 5.9 3.0 5.1 1.8 Virginica −2.1 −5.1028 22.5490 Virginica

�Versicolor=
(6.1413+ 5.9744+ 8.8143+ 11.5634)

4
= 8.1234,

�Virginica = (20.9091+ 20.5357+ 17.9688+ 21.6981)

4
= 20.2779.

�Setosa= 0.2278,

�Versicolor= 2.2835,

�Virginica = 1.3977.

After �i and �i are generated, assume that we have
12 test data denoted as{TD1, T D2, . . . , T D12}, which
is shown in the columns ofSL, SW, PL, and PW in
Table 6 . The values of the corresponding discriminant
functions are listed as the columns offSetosa, fVersicolor,
and fVirginica in Table 6, respectively. Owing to the dis-
criminant functions in Example 1 are learned using the
boundary division, while we apply the AlgorithmZ to clas-
sify the test data inTable 6, the test data will be assigned
to the class whose function value is larger than or equal to
zero. InTable 6, we found that most of the test data can be
assigned to the correct class except theTD5 and theTD8.
The TD5 is recognized byfVersicolor andfVirginica at the
same time; thus, the conflict occurs in this case. The Algo-
rithm Z resolves this conflict case by calculating the values
of ZVersicolor and ZVirginica and assigns theTD5 to the
class ofVersicolor, sinceZVersicolor is less thanZVirginica
as shown in the first row ofTable 7 . For theTD8, it is
a case of rejection because no discriminant function rec-
ognizes such object. The AlgorithmZ must calculate the
Z-values of all discriminant functions for theTD8. The
second row inTable 7shows thatZVersicolor= 12.6973 is
the smallest, hence, theTD8 is assigned to the class of
Versicolor, too.

While the AlgorithmZ_min is applied to classify the data,
we will calculate theZ-values of all discriminant functions

Table 7
TheZ-values ofTD5 andTD8

Data Z-value Z-value Z-value

of fSetosa of fVersicolor of fVirginica

TD5 6.3942 12.9179
TD8 15.2572 12.6973 34.5769

for eachTDi and assign theTDi to the class having the
smallestZ-value like the rejection case of theTD8.

5. Experimental results and comparisons

In this section, we demonstrate and compare the perfor-
mance of the proposed classifiers. The classifiers proposed
in this paper consist of sets of discriminant functions learned
by genetic programming and the ambiguity resolutions. We
refer to the learning methods using the boundary division
and the interval division as GP-B and GP-I, respectively. For
demonstrating the effectiveness and efficiency of the pro-
posed classifiers, we modify the GP Quick 2.1[21] to fit
the requirements of the proposed approaches and perform
the experiments since the source code of GP Quick is well
known and easily accessible from the web. The experiments
are done by using a PC with 866 MHz CPU and 128 MB
RAM.

We select 11 datasets with all numeric attributes as our
test datasets from UCI data depository[20], which are well-
known benchmark for evaluating the accuracy of classifiers.
These selected datasets have many distinct features includ-
ing the number of attributes, the number of classes and the
size of each dataset. All selected datasets are summarized in
Table 8 . Some of the datasets containing miss values are
modified, such as the Wisconsin breast cancer dataset (bcw)
and PIMA Indian diabetes dataset (pima1andpima2). The
original Wisconsin breast cancer dataset contains 699 cases
separated into two classes calledMalignantandBenignwith
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Table 8
The test datasets

Datasets Number of Number of Number of
attributes cases classes

bcw 9 683 2
bupa 6 345 2
glass 9 214 7
iris 4 150 3
ionosphere 34 351 2
pima1 8 768 2
pima2 7 532 2
sonar 60 229 2
vehicle 18 846 4
waveform 21 5000 3
wine 13 178 3

241 cases and 458 cases, respectively. Each object in the
bcw dataset has nine numerical attributes. However, 16 cases
in the bcw dataset consist of missing values. The 683 cases
without missing values are used to evaluate classifiers af-
ter removing the 16 incomplete data. The remaining dataset
contains 239 data ofMalignant and 444 data of ‘Benign’.
The PIMA Indian diabetes dataset contains 768 cases that
are separated into two classes: tested positive for diabetes or
not. Each case has eight numerical attributes. However, the
attribute, namely 2-h serum insulin, contains many zero val-
ues, which are physically impossible[22]. Hence, we pre-
pare two versions of the PIMA Indian diabetes dataset: the
pima1and thepima2. The original dataset is denoted as the
pima1. Thepima1contains 500 cases in the positive class
and 268 cases in the negative class. Then, we remove the at-
tribute of 2-h serum insulin and some records that have im-
possible values in other attributes from the original dataset.
The remaining dataset is denoted as thepima2, which con-
tains 532 cases and each case has only seven attributes. In
pima2, the number of cases in the positive class is 355 and
the number of cases in the negative class is 177. The oth-
ers datasets are unchanged. All datasets is tested in 10-fold
cross validation for ten runs[23].

The proposed classifiers first learn the discriminant
function fi for each corresponding classCi using genetic
programming. The parameters used in GP Quick and the
adaptive incremental learning are set asTable 9. The maxi-
mum generation for each stageg is set to be 1000,� = 0.2,
and� is set as “the fitness value equals to 0”. The parame-
ters of fitness function for the GP-B arep = 10 anda = 0,
and for the GP-I arep = 10,a = 0, andb = 10. We experi-
ence these values by experiments in this paper. The training
times of each discriminant function for all selected datasets
are shown inTable 10. The table shows the minimum, the
maximum and the average learning time for each discrimi-
nant function during the ten runs of 10-fold validation test.
After the discriminant functions of a dataset are learned,
we test the accuracy for each discriminant function. The

accuracy of a discriminant function,Acc, is defined to be

Acc =
K∑

i=1

ni

/
K∑

i=1

mi ,

wheremi is the number of cases in the classCi , andni is the
number of cases recognized only by the discrminant function
fi and belonging to the classCi . The results are shown as
the column ofAcc in Table 11 . Since the ambiguous cases
happened, we list the rates of conflict and rejection in the
columns ofrconf lict and rreject of Table 11, respectively.
Then, the classification algorithms, the AlgorithmZ and
the AlgorithmZ_min, are applied to resolve the ambiguous
cases for the discriminant functions learned from the GP-
B and the GP-I. The final classification results are shown
in the columns ofBZ, BZ-min, IZ and IZ_min of Table
11. The BZ method means using the GP-B to learn the
discriminant functions and classifying data by the Algorithm
Z. TheBZ_minmethod uses the GP-B and the Algorithm
Z_min. Similarly, the methods ofIZ andIZ_minare the GP-
I in combination with the AlgorithmZ and the Algorithm
Z_min, respectively.

The training time of a discriminant function is mainly
dependent on datasets and fitness functions used in genetic
programming. We discuss the reasons in the following. For
the reason of datasets, first, it is obvious that we need spend
more training time on learning discriminant functions from
a larger dataset. Nevertheless, the training time is indepen-
dent of the number of attributes in datasets. Secondly, since
the adaptive incremental learning will start a new learn-
ing stage once the current learning stage gets a good dis-
criminant function, it will take less training time if the in-
stances belonging to the corresponding class are easy to
be distinguished from the others in the dataset. For exam-
ple, we knew that classifying the classVersicolorin the iris
dataset is more difficult than classifying the classSetosa.
The training time forfVersicolor is longer thanfSetosa. An-
other example is that although the number of instances in
the ionosphere dataset (351 cases) is more than the bupa’s
(345 cases), the training time of the ionosphere dataset is
shorter than the bupa’s because of its higher recognition
rate. Hence, the difficulty of classification about the classes
in datasets will reflect the training time. For another reason
of fitness functions, a good fitness function is able to find
out effective discriminant functions so that the adaptive in-
cremental learning can be halt earlier. At the same time, the
advantage of the adaptive incremental learning strategy can
make an effective fitness function be performed more effi-
ciently. Hence, a well-defined fitness function will improve
the effectiveness and efficiency of learning process. From
Tables 10and11, we found that the mean training time of
GP-I is shorter than the GP-B’s generally, and the accuracy
of discriminant functions learned by GP-I is better than the
GP-B’s for the same class. That is to say, the interval divi-
sion is more effective and efficient than the boundary divi-
sion in the learning process.
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Table 9
The used parameters of experiments

Parameters Values Parameter Values

Node mutate weight 43.5% Mutation weight annealing 40%
Mutate constant weight 43.5% Generations per stageg 1000
Mutate shrink weight 13% Incremental rate� 0.2
Selection method Tournament Criterion number� Fitness= 0
Tournament size 7 Function set +,−, × ,÷
Crossover weight 28% Population size 1000
Crossover weight annealing 20% a, p for GP-B 0, 10
Mutation weight 8% a, b, p for GP-I 0, 10, 10
Max tree depth 7

To explain the reason why the interval division is better,
we should discuss the properties of their fitness functions
used first. The difference between the boundary division and
the interval division is the mapped ranges of positive in-
stances. The boundary division maps the positive instances
to an unlimited half area. While the adaptive incremental
learning strategy is learning, the function learned from the
initial subset in the training set may be too loose to map the
most part of the training set to the correct area. For instance,
the learned function only contains one of the attributes that
can distinguish positive instances and negative instances by
multiplying a minus. However, this rule may be true only for
the subset of training data in initial learning stages. While the
training data is increasing, such function is not fit to the next
learning stage any more. Thus, the larger training set must
take more time for evolving accurate discriminant functions.
On the contrary, the interval division maps the positive in-
stances to a limited interval. Any positive instance located
outside the interval or negative instance located inside the
interval will produce error. Thus, the learned function must
consider more attributes in order to represent the character-
istics of the initial subset of the training set. Such function,
generally, will be conducive to evolve an effective discrim-
inant function for the complete training set in later learning
stages efficiently. AsTable 11shows, the accuracy of the
discriminant functions learned by GP-I are better than GP-
B’s for most of the datasets except the bcw dataset and the
bupa dataset. However, the decreases of accuracy are small
(Acc: −1.5% for the bcw and−0.9% for the bupa) and the
main reason of decreasing is not caused by the decreasing
rate of rejection (rreject : −0.3% for the bcw and−0.5% for
the bupa) but the increasing rate of conflict (rconflict: +1.7%
for the bcw and +2.9% for the bupa). It means that the dis-
criminant functions learned by GP-I still can recognize more
cases than the GP-B’s though some cases may conflict.

From the above explanation, also, we can easily realize
that the results of the classification methodBZ will be
better than the methodBZ_min. Since GP-B only urges
the training set to map to two half unlimited area, the func-
tion values of some exceptions or noise in the training set

may be too large or too small. It results in interference of
the computation on�i and�i . The confidence ofZ-values
thus is relatively low in comparison with the boundary
condition of the discriminant function. That is to say, the
Algorithm Z is more suitable than the AlgorithmZ_min for
GP-B. The experiments inTable 11show such result that
the methodBZ is more accurate and more stable than the
methodBZ_min. On the other hand, the discriminant func-
tions learned by GP-I restrict the range of positive instances
in the training set to be located in a specified interval. In
statistical, the mean values of positive instances mapped
by a discriminant function will be a normal distribution if
the data in training sets reflect uniform sampling of the real
domain. Thus, theZ-valueZi(xk) of an instancexk for a
discriminant functionfi for the classCi can be used to rep-
resent the degree of the instancexk belonging to the class
Ci . In Table 11, the experiments demonstrate theZ-value
can resolve the cases of conflict and rejection effectively in
the methodIZ. Furthermore, we found that the classifica-
tion methodIZ_min determining the class of an unknown
instance using theZ-values directly is even more accu-
rate than the methodIZ for most of datasets. The method
IZ_min is superior toIZ in 7 datasets for the selected 11
datasets. Three of them including the bupa(+9.36%), the
pima1(+8.90%) and thepima2(+8.93%) improve a lot
especially. However, in the methodIZ_min, the four data-
sets with less accuracy do not drop the accuracies too
much (iris≈ − 0.54%, sonar≈ − 3.63%, waveform≈
− 1.94%, wine≈ − 2.21%). Hence, theZ-value measure
provides either a good measurement in the methodIZ or
theIZ_min. The experimental results show that the classifi-
cation results of both theIZ and theIZ_min are better than
theBZ and theBZ_min obviously. Such results correspond
to the discussions of fitness functions in learning process.
We also found that both of the conflict rate and the rejec-
tion rate of discriminant functions are independent of the
number of classification classes but depends on the features
in datasets. FromTable 11, the vehicle dataset contains four
classes with high rejection rate and the bupa dataset has
two classes with high conflict rate relatively. However, the
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Table 10
The training time of discriminant functions (in s)

Datasets Classification functions GP-B GP-I

Average min max stddev Average min max stddev

bcw fmalignant 32.41 23.10 39.31 4.83 15.02 10.90 18.98 2.50
fbenign 33.34 25.61 39.61 4.20 8.39 4.53 15.01 3.31

bupa f1 14.78 11.81 18.73 2.32 13.00 7.92 17.67 3.04
f2 14.89 11.39 18.60 2.27 13.71 8.80 17.46 2.71

glass fbwfp 7.37 4.77 13.67 3.33 5.89 3.87 8.31 1.01
fbwnfp 9.38 5.56 14.63 3.69 7.02 4.54 9.04 1.51
fvwfp 8.82 4.78 13.51 4.16 6.31 4.19 5.53 1.34
fvwnfp 8.57 3.31 11.40 2.71 6.18 4.14 5.51 2.07
fcontainers 7.83 4.44 11.89 3.67 5.21 3.16 9.67 1.74
ftableware 7.62 4.48 11.09 3.10 5.15 3.04 8.19 1.46
fheadlamps 7.98 4.18 13.84 4.40 4.92 3.85 9.04 1.73

ionosphere fgood 13.19 9.33 19.57 3.63 10.32 8.10 12.34 1.17
fbad 10.14 8.76 19.08 4.11 7.51 4.92 10.05 1.57

iris fSetosa 2.07 1.78 2.35 0.18 1.64 1.31 2.02 0.22
fVersicolor 3.10 2.10 3.73 0.49 2.96 1.86 3.82 0.60
fVirginica 2.40 1.63 3.46 0.57 2.38 1.59 3.55 0.62

pima1 fpositive 32.51 21.17 42.25 6.40 22.31 10.72 35.30 7.84
fnegative 32.93 22.26 49.38 8.91 26.08 12.91 39.59 8.15

pima2 fpositive 25.87 18.40 33.06 4.54 16.52 5.73 31.71 10.28
fnegative 24.66 18.48 31.62 4.24 17.76 6.22 33.95 10.61

sonar fM 7.56 4.67 12.18 2.71 5.36 3.68 10.04 1.48
fR 7.10 4.05 11.88 3.03 6.13 4.11 9.06 1.77

vehicle fopel 33.71 25.80 41.31 4.50 30.80 16.75 50.34 9.73
fsaab 34.45 26.18 48.04 6.46 30.21 15.98 41.04 7.77
fvan 34.91 21.16 49.43 8.39 29.59 12.46 48.50 11.87
fbus 33.61 23.62 48.15 7.48 33.73 17.19 49.17 9.58

waveform fw0 200.49 181.45 226.30 10.55 157.44 144.75 168.13 6.98
fw1 197.62 177.59 232.14 12.33 122.73 101.83 143.93 9.74
fw2 226.11 189.44 240.75 10.09 167.39 136.87 185.80 13.26

wine fwine1 5.45 4.41 7.99 1.46 4.53 3.67 5.59 0.52
fwine2 7.30 4.84 10.13 2.62 4.71 3.43 6.11 0.77
fwine3 6.19 4.71 7.10 0.97 3.85 3.74 4.01 0.08

glass has seven classes but the rates of rejection and conflict
are not so high as the vehicle’s and the bupa’s respectively.

Finally, we compare our results with some well-
known previous researches[3,6,22,24,25]in Table 12. In
Ref. [3], Friedman proposed a Bayesian network learn-
ing method to build tree augmented Naïve Bayes(TAN)
for classification. They also compared the method with
Naïve Bayes with 25 datasets via five-fold cross valida-
tion. An efficient fuzzy classifier based on fuzzy entropy

measure was reported in Ref.[6]. Their experimental
results are mainly completed in holdout method and
compared with some effective methods. The research of
Ref. [22] evaluated and compared thirty-three classifica-
tion algorithms including twenty-two decision tree, nine
statistical and two neural network algorithms in 10-fold
cross validation. The other two researches including CBA
[24] and SNNB [25] were also done by 10-fold cross
validation and made a comparison with the methods of
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Table 11
The results of classification

Datasets Accuracy GP-B GP-I

(%) Acc rconf lict reject BZ BZ_min Acc rconf lict rreject IZ IZ_min

bcw average 94.57 1.41 1.82 96.94 94.52 93.06 3.10 1.52 97.17 97.53
stddev 2.11 1.07 2.02 0.42 1.92 2.58 2.73 0.52 0.45 0.47

bupa average 57.28 11.83 8.61 69.54 69.86 56.38 14.72 8.12 74.70 84.06
stddev 3.57 4.60 2.34 1.67 2.77 3.02 3.63 1.59 2.05 2.31

glass average 65.23 10.73 4.31 70.08 71.27 70.32 8.57 7.49 75.47 76.81
stddev 3.06 2.68 2.76 1.53 2.24 2.74 1.08 0.93 0.42 0.94

ionosphere average 77.43 10.24 6.50 88.44 86.11 85.43 7.80 4.91 92.33 94.47
stddev 1.97 3.26 2.73 2.15 2.62 1.77 0.71 0.88 1.01 2.32

iris (2-fold) average 94.00 3.27 1.60 98.13 93.60 96.53 0.93 1.20 98.27 98.13
stddev 1.49 1.70 1.53 0.65 2.80 1.45 0.68 1.02 0.53 0.83

iris (10-fold) average 90.53 3.31 4.00 95.67 91.87 91.87 3.20 2.40 96.07 95.53
stddev 1.83 2.13 1.79 0.95 1.73 1.78 2.15 1.12 1.31 1.19

pima1 average 66.34 7.59 6.38 75.03 72.01 66.56 8.14 5.48 76.41 85.31
stddev 0.94 2.78 1.96 0.99 3.07 1.57 1.80 1.97 0.79 1.95

pima2 average 69.06 7.24 5.70 77.54 77.07 56.20 18.12 10.36 79.08 88.01
stddev 1.68 2.04 1.21 0.73 2.80 2.77 4.57 2.44 1.43 1.64

sonar average 70.51 8.59 4.76 80.98 81.58 80.59 9.06 1.11 88.96 85.33
stddev 1.84 1.53 2.16 2.39 3.80 1.17 0.99 0.46 0.64 0.88

vehicle average 32.52 13.13 39.09 61.78 59.07 36.82 2.57 48.43 73.72 75.24
stddev 2.46 4.68 6.14 4.20 2.73 1.85 0.68 2.23 1.25 1.79

waveform average 60.56 14.93 7.73 83.21 82.92 76.46 15.70 6.02 85.50 83.56
stddev 1.78 2.82 2.11 1.59 2.21 1.09 3.31 1.54 1.14 1.26

wine average 81.72 6.67 4.72 90.91 89.17 90.08 5.66 3.20 95.69 93.48
stddev 2.75 1.08 1.33 1.12 2.84 1.26 0.96 1.18 0.29 0.44



B.-C. Chien et al. / Pattern Recognition 37 (2004) 1957–1972 1971

Table 12
The comparison of the proposed classifiers and the best results summarized in Refs.[3,6,22,24,25]

Datasets BZ BZ_min IZ IZ_min Previous methods

bcw 96.94 94.52 97.17 97.53 97.22 (LVQ)[22]
bupa 69.54 69.86 74.70 84.06 72.10 (OCM)[22]
glass 70.08 71.27 75.47 76.81 73.90 (CBA)[24]
ionosphere 88.44 86.11 92.33 94.47 92.10 (CBA)[24]
iris(2-fold) 98.13 93.60 98.27 98.13 97.12 (FEBFC)[6]
iris(10-fold) 95.67 91.87 96.07 95.53 95.30 (C4.5)[24]
pima1 75.03 72.01 76.41 85.31 75.52 (TAN)[3]
pima2 77.54 77.07 79.08 88.01 77.90 (LDA)[22]
sonar 80.98 81.58 88.96 85.33 83.20 (SNNB)[25]
vehicle 61.78 59.07 73.72 75.24 85.50 (QDA)[22]
waveform 83.21 82.92 85.50 83.56 83.90 (NBTree)[25]
wine 90.91 89.17 95.69 93.48 98.30 (NB)[25]

Naïve Bayes and C4.5. Although these researches are done
under different environments, the rank of classification rate
is consistent. For simplicity, we summarize the classifi-
cation accuracies from the above researches and list only
the best results of different datasets in the last column of
Table 12. The classification results ofIZ andIZ_min have
the best recognition rates for most of the datasets except
the vehicle and the wine. Especially,IZ_min improves
classification accuracies so much in some medical diag-
nosis datasets such as the bupa and the pima. For the iris
dataset, since the experiment using holdout method is better
than 10-fold cross validation, we compare the accuracies
of 2- and 10-fold cross validation with the corresponding
previous experimental results, respectively. The research
results in Ref.[22] show that, for the vehicle dataset, only
statistical-based algorithms have higher classification ac-
curacy but it cannot be well classified by other methods.
Although the accuracies ofIZ and IZ_min on the vehicle
dataset are about ten percent lower than QDA in Ref.[22],
they are still better than other methods like NB, C4.5, TAN
and CBA. At last, we found that the wine dataset can be
well classified by Naïve Bayes-based classifiers. Except
Naïve Bayes-based classifiers,IZ and IZ_min outperform
the other methods for the wine dataset.

6. Conclusions

The traditional rule-based classification is to classify pat-
terns using a set of decision rules. For the problem with
high-dimensional numerical attributes, a classifier with de-
cision rules may not get a high accuracy of classification
and keep rules simply simultaneously. This paper presents
a learning approach to generate discriminant functions for
classification based on genetic programming. The proposed
approaches include an adaptive incremental learning strat-
egy to speed up the training procedure without loss accu-
racy, a distance-based fitness function to obtain better dis-

criminant function and the mechanism of ambiguity resolu-
tion calledZ-value measure to resolve not only the cases of
conflict but also rejections.

The advantages of classification functions are concise and
efficient. The longer training time will produce a classifier
with better accuracy without increasing the number of dis-
criminant functions. Hence, the classification rate of a clas-
sifier can be easily preserved and improved. However, the
main disadvantage of generating a good solution for clas-
sification by evolutionary algorithms like genetic algorithm
or genetic programming is time consuming. It usually needs
much time for the evolution step to learn classification rules
or discriminant functions. As we know, the GP learning ap-
proaches proposed in Ref.[26] take more than one hour
to generate the classification rules on the same datasets we
used. However, our experiments show that the proposed GP-
B and GP-I learning approaches take only a few seconds or
few minutes. They are even faster in comparison with some
of the previous methods. We also show that theZ-value
measure is effective and the obtained classifiers have high
classification rates in comparison with previous methods. Fi-
nally, we found that the features selected from the functions
can be used to reduce the dimensions of the features of the
problem. The feature selection using genetic programming
approach thus is an interesting issue for further studying of
researchers. Other future extensions on classifying data with
symbolic values and missing values using function-based
classifier are also worth investigating.
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