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Gain-Phase Margin Analysis of
Dynamic Fuzzy Control Systems

Jau-Woei Perng, Bing-Fei Wu, Hung-I Chin, and Tsu-Tian Lee

Abstract—In this paper, we apply some effective methods, including the
gain-phase margin tester, describing function and parameter plane, to pre-
dict the limit cycles of dynamic fuzzy control systems with adjustable pa-
rameters. Both continuous-time and sampled-data fuzzy control systems
are considered. In general, fuzzy control systems are nonlinear. By use of
the classical method of describing functions, the dynamic fuzzy controller
may be linearized first. According to the stability equations and parameter
plane methods, the stability of the equivalent linearized system with ad-
justable parameters is then analyzed. In addition, a simple approach is also
proposed to determine the gain margin and phase margin which limit cycles
can occur for robustness. Two examples of continuous-time fuzzy control
systems with and without nonlinearity are presented to demonstrate the de-
sign procedure. Finally, this approach is also extended to a sampled-data
fuzzy control system.

Index Terms—Fuzzy control, limit cycle, gain-phase margin, describing
function, parameter plane.

I. INTRODUCTION

The describing function method [18] has been widely used to analyze
thenonlinearcontrolsystemsinthefrequencydomain.Intherecentyears,
limit cycle analysis of fuzzy control systems has been considered due to
the describing function method. The transient and steady-state analysis
of a three-term fuzzy controller has been addressed by Abdelnour et al.
[1], [2]. According to theNyquist stability criterion, the stability of fuzzy
control systems has been analyzed in [10], [13], and [15]. In [14], the an-
alytic describing function of fuzzy logic control was derived and used to
predict the existence of limit cycles. On the other hand, the robust anal-
ysisofuncertainparametersinlinearcontrolsystemisoftendealtwithpa-
rameter plane method or parameter space method [3], [4], [11], [16]. Be-
sides, this approach is also applied to the analysis of nonlinear systems in
[12]and[17]. In the frequencydomain,gainmarginandphasemarginare
two important specifications for control design. Chang and Han [5] have
presented a simple method to analyze the gain-phase margins of control
system with adjustable parameters. After then, they have also extended
the method to the nuclear reactor control system with multiple transport
lags [6]. Furthermore, the gain-phase margin analysis of nonlinear con-
trol systems has been addressed in [7]–[9].

In this paper, based on the results in [14], we apply the parameter
plane method to predict the limit cycles of dynamic fuzzy control sys-
tems with adjustable parameters firstly. For the robust design, a novel
approach is also proposed to figure out the gain margin and phase
margin of dynamic fuzzy control systems when limit cycles can occur.
The information about the stability analysis of dynamic fuzzy control
systems could be acquired by our approach.

The paper is organized as follows. Section II outlines the describing
function analysis of dynamic fuzzy control system. Section III presents
the gain-phase margin analysis of nonlinear control systems. In Sec-
tion IV, three examples are referred to demonstrate the design proce-
dure. Finally, some conclusions are made in Section V.
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Fig. 1. Dynamic fuzzy control system.

II. DESCRIBING FUNCTION OF DYNAMIC FUZZY CONTROL SYSTEMS

In this section, the describing function analysis of dynamic fuzzy
controller is presented. The block diagram of a general dynamic fuzzy
control system is shown in Fig. 1 and the premise triangular member-
ship functions of dynamic fuzzy controller are depicted in Fig. 2. If the
error signal e(t) shown in Fig. 1 is selected as the reference input signal
x(t), then the following IF-THEN fuzzy rule base is adopted:

Ri;j : If x is �Mi and _x is �Nj ; then u is ui;j ;

where �Mi and �Nj are fuzzy variables

�Mi(x) =

x � �i�1

�i � �i�1

; if �i�1 � x < �i

x � �i+1

�i � �i+1

; if �i � x < �i+1

0; otherwise

�Nj( _x) =

_x�	j�1

	j �	j�1

; if 	j�1 � _x < 	j

_x�	j+1

	j �	j+1

; if 	j � _x < 	j+1

0 otherwise;

and �
�i = ��i;	�j = �	j .

If the fuzzifier is a singleton, the inference engine is a product infer-
ence and the defuzzifier is the center average, then the dynamic fuzzy
control can be formulated by the following equation [14]:

u = f(x; _x) =
i j

�Mi(x) �Nj( _x)
q

s=�q

p

r=�p
�Mr(x) �Ns( _x)

ui;j

=
i j


i;j(x; _x)ui;j (1)

where 
i;j(x; _x) is fuzzy basis function, which can be defined as [19],
[20]


i;j(x; _x) =
�Mi(x) �Nj( _x)

q

s=�q

p

r=�p
�Mr(x) �Ns( _x)

: (2)

Definition 1 [14]: Suppose that the signals input to membership
functions of the dynamic fuzzy controller are x(t) = A sin!t and
_x(t) = !A cos!t, respectively, and �n � A < �n+1 and 	m �
!A < 	m+1. Then f�ig; f�jg, and f
kg are defined as follows:

�i � sin�1
�i

A
i = 0; . . . ; n; 0 � �i <

�

2

�i � � � �2n+1�i i = n+ 1; . . . ; 2n+ 1;
�

2
� �i < �

�0 � 0; �j � cos�1
	m�j+1

!A
(j = 1; . . . ; 2m+ 1; 0 < �j < �) and �2m+2 = �:

f
kg (k = 0; . . . ; h) is defined as the sorted values of f�ig and f�jg
in the ascending order, where h+ 1 is the number of f
kg.

1083-4419/04$20.00 © 2004 IEEE
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Fig. 2. Premise membership functions of dynamic fuzzy controller.

Lemma 1 [14]: For �k � x < �k+1 and 	l � _x < 	l+1, the
dynamic fuzzy control is formulated as the following equations

u(x; _x) =

q

j=�q

p

i=�p


i;j(x; _x)ui;j

= ak;l
x

��k

_x

�	l

+ bk;l
x

��k

+ ck;l
_x

�	l

+ dk;l (3)

where

��k = �k+1 � �k; �	l = 	l+1 �	l

ak;l � uk;l � uk;l+1 � uk+1;l + uk+1;l+1

bk;l �
1

�	l

(	l+1(uk+1;l � uk;l)	l(uk;l+1 � uk+1;l+1))

ck;l �
1

��k

(�k+1(uk;l+1 � uk;l) + �k(uk+1;l � uk+1;l+1))

dk;l �
1

��k

1

�	l

(�k+1	l+1uk;l � �k+1	luk;l+1

� �k	l+1uk+1;l +�k	luk+1;l+1):

Theorem 1 [14]: The describing function of dynamic fuzzy con-
troller is expressed by the following equation:

N1 � N1(A; !) =
1

A
(b1 + ja1) (4)

where

a1 =
2

�

h�1

i=0

�aki;li
A2!

3��ki�	li

(cos3 
i+1 � cos3 
i)

� bki;li
A

4��ki

(cos 2
i+1 � cos 2
i)

+ cki;li
A!

2�	li

((
i+1 � 
i)

+ (sin 
i+1 cos 
i+1 � sin 
i cos 
i))

+ dki;li(sin
i+1 � sin 
i)

b1 =
2

�

h�1

i=0

aki;li
A2!

3��ki�	li

(sin3 
i+1 � sin3 
i)

+ bki;li
A

2��ki

((
i+1 � 
i)� sin 
i+1 cos 
i+1

+ sin 
i cos 
i)� cki;li
A!

4�	li

(cos 2
i+1 � cos 2
i)

� dki;li(cos
i+1 � cos 
i)

where f
ig and h are given in Definition 1; ki and li are defined to
satisfy �ki � A sin 
 < �ki+1 and 	li � !A cos 
 < 	li+1,
respectively, for 
i � 
 < 
i+1; aki;li; bki;li; cki;li, and dki;li are
given in Lemma 1.

Remark 1: From Theorem 1, it can be noted that the zero term a0
of describing function of dynamic fuzzy controller is disappeared since
the consequent parts meet the odd condition.

III. GAIN-PHASE MARGIN ANALYSIS OF

NONLINEAR CONTROL SYSTEMS

A systematic procedure, including the parameter plane method and
gain-phase margin tester method, is proposed to predict limit cycles of
nonlinear control system with adjustable parameters. In Fig. 3, a gen-
eral linearized system with multiple nonlinear elements is considered,
where G(s;N1R; N1I ; . . . ; NmR; NmI) is the open-loop transfer
function. N1R; . . . ; NmR and N1I ; . . . ; NmI are real parts and
imaginary parts of the describing function (Ni) of n1; n2; . . . ; nm,
respectively, which can be expressed in the following equation [7]:

Ni(A; !) = NiR(A; !) + jNiI(A; !); i = 1; . . . ;m (5)

where A and ! are the amplitude and frequency of sinusoidal input to
one of the nonlinearities. Besides, a gain-phase margin tester (Ke�j�)
is also inserted in the forward part of open-loop transfer function.

After some simple manipulations, the characteristic equation of this
equivalent linear system can be expressed as

1 +Ke
�j�

G(s;N1R; N1I ; . . . ; NmR; . . . ; NmI)

= 1 +Ke
�j�N(s;N1R; N1I ; . . . ; NmR; . . . ; NmI)

D(s;N1R; N1I ; . . . ; NmR; . . . ; NmI)
= 0 (6)

which is equivalent to

f(s)
�
= D(s;N1R; N1I ; . . . ; NmR; . . . ; NmI)

+Ke
�j�

N(s;N1R; N1I ; . . . ; NmR; . . . ; NmI) = 0: (7)

Let s = j!; one has

f(j!) = f(�; �; 
; . . . ; K; �; j!) = 0 (8)

where �; �; 
; . . . are variables which consist of the items (NiR; NiI)
of describing functions and/or adjustable parameters of the linear por-
tion of the system. Notice that the designer can define these variables
arbitrarily in order to analyze the effect of system parameters. When
only two decoupled parameters � and � are chosen to concern, (8) is
arranged as the following equation:

f(j!) = f(�; �; 
; . . . ; K; �; j!) = X � �+ Y � � + Z = 0; (9)

where X;Y , and Z are functions of 
; . . . ; K; �, and j!. Let (9) be
partitioned into two stability equations with real part (fR) and imagi-
nary part (fI) and written in the following [12]:

fR(�; �; 
; . . . ; K; �; !) = X1 � �+ Y1 � � + Z1 = 0 (10)

and

fI(�; �; 
; . . . ; K; �; !) = X2 � � + Y2 � � + Z2 = 0 (11)

where X1; Y1; Z1, and X2; Y2; Z2 are real and imaginary parts of
X;Y , and Z . Therefore, � and � are solved from (10) and (11), one
has

� =
Y1 � Z2 � Y2 � Z1

�
(12)
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Fig. 3. A general linearized system including gain-phase margin tester.

and

� =
Z1 �X2 � Z2 �X1

�
(13)

where � = X1 � Y2 � X2 � Y1.
On the other hand, let � = 0�; (8) is rearranged as follows:

f(j!) = f(�; �; 
; . . . ; K; j!) = E �K + F = 0: (14)

Partitioning (14) into real and imaginary parts yields

fR(�; �; 
; . . . ; K; !) = E1 �K + F1 = 0 (15)

and

fI(�; �; 
; . . . ; K; !) = E2 �K + F2 = 0 (16)

where E1; E2; F1, and F2 are functions of �; �; 
; . . ., and !. Thus,
K can be obtained from (15) and (16), which yield

K =
�F1

E1

�
= K

0 (17)

and

K =
�F2

E2

�
= K

00

: (18)

If K 0 = K 00 = Ki for A = Ai, the values of Ai and Ki related to !i
can be found by varying A from 0 to 1. For many values of !, a set
(GM) of desired values of A and K can be obtained. Alternatively, let
k = 0 dB; (8) is rearranged as follows:

f(j!) = f(�; �; 
; . . . ; �; j!) = U �cos �+V �sin �+W = 0: (19)

Also, partitioning (19) into real and imaginary parts yields

fR(�; �; 
; . . . ; �; !) = U1 � cos � + V1 � sin � +W1 = 0 (20)

and

fI(�; �; 
; . . . ; �; !) = U2 � cos � + V2 � sin � +W2 = 0 (21)

where U1; V1; W1; U2; V2, andW2 are functions of �; �; 
; . . ., and !.
Hence, � can be obtained from (20) and (21), which yield

� = cos�1
V1 �W2 � V2 �W1

U1 � V2 � U2 � V1

�
= �

0 (22)

and

� = sin�1
U1 �W2 � U2 �W1

U1 � V2 � U2 � V1

�
= �

00

: (23)

If �0 = �00 = �i for A = Ai; Ai, and �i related to !i can be found by
varying A from 0 to 1. For many values of !, a set (PM) of desired
values for A and � can be obtained.

Based on the above analysis, if any two adjustable parameters oper-
ating in the asymptotically stable region are considered for stability
margin analysis, then GMmin and PMmin defined as the minimum
values of GM and PM represent the minimum amounts by which the
loop gain and phase shift should be increased to produce a limit cycle
solution.

Finally, the similar procedure applied to the stability analysis of non-
linear sampled-data control systems can be listed as follows.

Step 1) Augment the characteristic equation as (7) of a nonlinear
sampled-data system.
Step 2) Let z = ej!T , where T is the sampling period and evaluate
(8).
Step 3) Solve � and � by using (10)–(13).
Step 4) Gain margin analysis by using (14)–(18).
Step 5) Phase margin analysis by using (19)–(23).

IV. SIMULATION EXAMPLES

In this section, three examples of dynamic fuzzy control system are
cited to verify the design procedure. The first example is a third-order
system. The second example is a third-order system with a nonlinear
element of saturation. The final example is a sample-data system.

A. Example 1

Consider the dynamic fuzzy control system shown in Fig. 1 and a
third-order equation in the following is adopted:

P (s) =
1

s3 + q1s2 + q2s+ 1
: (24)

In this simulation, the 25 rules listed in Table I and triangular mem-
bership functions shown in Fig. 4 are picked [14]. If the parameters of
fuzzy rules listed in Table II are assumed and the corresponding param-
eters are as follows:

�M�2 = NBE; �M�1 = NSE; �M0 = ZRE; �M1 = PSE

�M2 = PBE

�N�2 = NBDE; �N�1 = NSDE; �N0 = ZRDE; �N1 = PSDE

�N2 = PBDE

��2 = nbe; ��1 = nse; �0 = zre; �1 = pse; �2 = pbe

	�2 = nbde

	�1 = nsde; 	0 = zrde; 	1 = psde; 	2 = pbde:

Then the describing function (N1) of dynamic fuzzy controller can be
expressed as (4) and the control surface is given in Fig. 5. It is noted
that the output value in the original (e; _e) = (0; 0) is 0 due to the center
average method. When the gain-phase margin tester (Ke�j�) is cas-
caded in the open-loop system, the overall open-loop transfer function
can be expressed as

G(s) =
Ke�j�N1

s3 + q1s2 + q2s+ 1
: (25)

After some manipulations, the characteristic equation is

f(s) = s
3 + q1s

2 + q2s+ 1 +Ke
�j�

N1

= s
2
q1 + sq2 + s

3 + 1 +Ke
�j�

N1

= X � � + Y � � + Z

= 0 (26)
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TABLE I
RULES OF FUZZY CONTROLLER

Fig. 4. Membership functions.

TABLE II
PARAMETERS OF THE RULE

where � = q1 and � = q2 are two adjustable parameters. Substituting
s = j! into (26), enables � and � to be determined from (10)–(13).
Then, the stability boundary (K = 0 dB, � = 0�) can be plotted
in the q1 versus q2 plane with fixed amplitude A (varying ! from 0
to 1) and fixed frequency ! (varying A from 0 to 1). Fig. 6 shows
some limit cycle loci. In order to test the accuracy of Fig. 6, two points
Q1(4:6; 4:2) (limit cycle region: A = 0:1; ! = 2) and Q2(14;12)
(asymptotically stable region) are selected. Fig. 7 shows the time re-
sponses of input signal x(t). We can clearly find that the results in Fig. 7
are matched with Fig. 6. Due to analyzing the gain-phase margins for
limit cycle prediction, the point Q2 is chosen. First, let � = 0�. Equa-
tion (26) can be arranged as

f(s) = N1K + s
3 + 14s2 + 12s+ 1

= E �K + F

= 0 (27)

where E = N1 and F = s3+14s2+12s+1. By utilizing (15)–(18),
a set of GM can be obtained and plotted in Fig. 8. On the other hand,
let K = 0 dB. Equation (26) can be also arranged as

f(s) = N1 cos � + (�j)N1 sin � + s
3 + 14s2 + 12s+ 1

= U � cos � + V � sin � +W

= 0: (28)

Fig. 5. Control surface.

Fig. 6. Limit cycle loci in parameter plane.

Fig. 7. Input signal x(t).

where U = N1; V = (�j)N1, andW = s3+14s2+12s+1. By uti-
lizing (20)–(23), a set of PM can be obtained and plotted in Fig. 8. The
minimum gain margin and phase margin are 7.54 dB and 13.3 degrees,
respectively. The relative gain-phase margins can be also checked by
using Nyquist plot, which is shown in Fig. 9. In Fig. 10, the time re-
sponses of input signal x(t) are depicted and the characteristics of limit
cycles conform to the results in Fig. 8.
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Fig. 8. Sets of GM and PM.

Fig. 9. Nyquist plot.

B. Example 2

Consider the dynamic fuzzy control system as the same with Ex-
ample 1 and insert a nonlinear element of saturation (N2) into the
system between the dynamic fuzzy controller and the plant. Assume
that the input signals of N1 and N2 are x(t) = A sin!t and x2(t) =
A2 sin!t, respectively, the describing function of N2 is given as [12]

N2 =
2k

�
sin�1

d

A2

+
d

A2

1�
d2

A2

2

(29)

where k = 1 and d = 0:5.
Remark 2: If x(t) is chosen as a reference input signal, A2 can be

expressed as the function of A, i.e., A2 = A � jN1j.
When the gain-phase margin tester is cascaded in the open-loop

system, the overall open-loop transfer function can be expressed as

G(s) =
Ke�j�N1N2

s3 + q1s2 + q2s+ 1
: (30)

By using a similar procedure as in Example 1, if � = q1 and � = q2
are selected, some limit cycle loci are plotted in Fig. 11. As compared
the results with Fig. 6, we observe that the range of limit cycle region
in Fig. 11 is decreased when the saturation is added in the dynamic
fuzzy control system. The gain-phase margin analysis for limit cycle
prediction is fulfilled when �2 is picked as the same with Example 1.
Let � = 0� and adopt the similar procedure, a set of GM can be ob-
tained and plotted in Fig. 12. On the other hand, let K = 0 dB, a set of
PM can be also obtained and plotted in Fig. 12. It means that, when the

Fig. 10. Input signal x(t).

Fig. 11. Limit cycle loci in parameter plane.

Fig. 12. Sets of GM and PM.

saturation is inserted, the dynamic fuzzy control system here is more
robust than Example 1 due to prevent the occurrence of limit cycles.

C. Example 3

The block diagram of a sample-data dynamic fuzzy control system
is depicted in Fig. 13. The transfer functions are

P (s) =
1:173k(s+ h)

(s+ 0:01)(s+ 2:3)(s+ 0:51)
(31)
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Fig. 13. Sampled-data dynamic fuzzy control system.

and

Pho(s) =
1� e�Ts

s
(32)

where the sampling period T = 1 s.
If the describing function (N1) of dynamic fuzzy controller is se-

lected as Example 1 and the gain-phase margin tester is inserted, the
overall open-loop transfer function is as shown in the equation at the
bottom of the page. where Ztf [ � ] denotes “the z-transform of [ � ]”.

After some simple manipulations, the characteristic equation be-
comes

f(z) = z3 + (0:12Ke�j�N1kh+ 0:255Ke�j�N1k� 1:68)z2

+ (0:215Ke�j�N1kh� 0:14Ke�j�N1k + 0:746)z

+ (0:027Ke�j�N1kh� 0:1Ke�j�N1k � 0:059)

= (0:12Ke�j�N1z
2 + 0:215Ke�j�N1z + 0:027Ke�j�N1)kh

+ (0:255Ke�j�N1z
2
� 0:14Ke�j�N1z � 0:1Ke�j�N1)k

+ (z3 � 1:68z2 + 0:746z � 0:059)

= X � � + Y � � + Z = 0 (34)

where � = kh and � = k are two adjustable parameters. Substituting
z = ej!T into (34), � and � are determined from (10)–(13), which can
be plotted by the boundaries with fixed amplitude A (varying ! from
0 to 1) and fixed frequency ! (varying A from 0 to 1) in the h vs. k
plane, where h = �=�. Some limit-cycle loci are revealed in Fig. 14.
The gain margin and phase margin analysis for limit cycle prediction
of sampled-data dynamic fuzzy control system can be performed by
use of (14)–(18), and (19)–(23), respectively. In our simulations, Q1 is
adopted and the sets of GM and PM are displayed in Fig. 15.

V. CONCLUSION

In this paper, the limit cycle prediction of a dynamic fuzzy control
system with adjustable parameters is achieved by utilizing the useful
approaches of describing function, parameter plane and gain-phase
margin tester. In addition, a simple method is also proposed to figure
out the gain margin and phase margin when limit cycles can occur.
Some examples are illustrated to demonstrate the design procedure.
Computer simulations show that the information about the character-
istics of limit cycles of the dynamic fuzzy control systems could be
acquired by our work.

Fig. 14. Limit cycle loci in parameter plane.

Fig. 15. Sets of GM and PM.
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