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Abstract

This study aims to develop a sliding mode based learning controller for track-following in

hard disk drives. The proposed controller incorporates characteristics of sliding mode control

into learning control. The reason for using sliding mode control is attributed to its robust

properties dealing with model uncertainty and disturbances. The learning algorithm utilizes

shape functions to approximate influence functions in integral transforms and estimate the

control input to reduce repetitive error. Mathematical derivation of the control law and sta-

bility analysis are presented. To validate the proposed method, this work conducts track-

following experiments.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of hard disk drive techniques has come to maturity. A pivoted
voice coil motor (VCM) has been the common rotary actuator to perform track

seeking and following in hard disk drives. While the hard disk drive data storage

capacity and track density rapidly increase, repetitive disturbance degrades the

track-following performance even more than before. Hence the control performance

has to be elevated since the data track width and track pitch become smaller.

Disturbances in hard disk drive track-following motion can be classified into

repetitive and nonrepetitive components. Nonrepetitive disturbances generally come
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from the mechanical resonance, external impact, windage-induced disk flutter, etc.

[1]. In addition, the repetitive disturbances mostly caused by the geometric bias of a

disk, the relative position bias of the data track and rotary center, and the spindle

motor defects [2]. In general, repetitive disturbances hurt track-following precision
more than the nonrepetitive one [1,2]. In the conventional track-following control

design, which only considers nominal plant models and nonrepetitive factors, such as

PID, phase lead–lag, or notch filter can provide adequate gain and phase margin and

reduce the resonance but can not perform well dealing with periodic disturbances [2].

Recently, many repetitive control methods have been proposed such as internal

model type controllers [2], external model controller with a basis function algorithm

[3] or with a learning algorithm [4]. These repetitive controllers can be categorized as

internal mode based and external model based ones [5]. Controllers of internal model
based are linear and constructed with a periodic signal generator inside a control

loop. Conversely, external model based ones generate a cancellation signal outside

the loop to eliminate the repetitive error. Comparison [5] of these methods indicates

tradeoffs of error convergence speed and disturbance rejection ability. The internal

model based approach with advantageous properties of linearity and easy analysis

can converge rapidly but changes loop gains and influences sensitivity to distur-

bances. The robustness to unmodelled dynamics and noises is thus reduced. The

external model controller is more complex in implementation. However, it applies a
disturbance model outside the basic feedback loop, which can be adaptively adjusted

to match the actual disturbance. Hence, the control compensation is more like a

feedforward one that affects the nominal open loop gain less than the former.

Integrating the adaptive control [6] and learning control, the adaptive learning

control [7] does not require exact knowledge of the plant model and can effectively

eliminate the repetitive error after periods of learning. In addition, the nonlinear

properties of plant and disturbance can be compensated by learning estimation [8]. It

can be treated as a learning feedforward control, which is not designed completely
prior to operation but keeps learning during control. Repetitive errors are com-

pensated by a learning component that is operated in a feedforward path after

training [9]. In addition, sliding mode control [10] has been developed and examined

in various systems including nonlinear systems, discrete time systems, large scale

systems, stochastic systems, multi-input, multi-output systems, etc. [11].

Dealing with model uncertainty and repetitive error motivates this work to

integrate sliding mode control and learning control. As long as the error signal

period is known in advance, without exact plant models the proposed sliding mode
based learning controller can reduce repetitive error. The learning algorithm utilizes

shape functions to approximate influence functions in integral transforms and esti-

mate the control input to reduce repetitive error. Once the learning error converges,

the sliding mode reaching condition [10,12] is obtained and the position error will

converge to zero on a prescribed sliding surface.

This paper is organized as follows. Section 2 presents the sliding mode based

learning control devoted to the repetitive tracking control. Some properties of the

proposed controller are investigated. Section 3 describes a VCM model and simu-
lation results. Experimental results are shown in Section 4.
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2. Sliding mode based learning control

In this section, a sliding mode based learning controller is developed and its
properties are presented.

2.1. Dynamic model and prescribed conditions

The equation of motion for an n-dimensional system can be expressed as
MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ ¼ u ð1Þ

where qðtÞ, _qðtÞ, and €qðtÞ are respectively n� 1 position, velocity, and acceleration

vectors, u denotes a n� 1 actuator input vector,MðqÞ is a symmetric positive definite

inertia matrix, Cðq; _qÞ _q results from Coriolis and centripetal forces, and GðqÞ is a

gravitational force vector.

Define Kerðt; sÞ as a periodic Hibert–Schmit kernel function [8] that satisfies
Z T

0

Kerðt; sÞ2 ds ¼ ker < 1; Kerðt; sÞ ¼ kerðt þ T ; sÞP 0
Condition 1. There exists an influence function aðsÞ such that
MðqÞ _tþ Cðq; _qÞtþ GðqÞ ¼
Z T

0

Kerðt; sÞaðsÞds ð2Þ
where tðtÞ 2 Rn is a vector function.

Condition 2. Using a proper definition of matrix Cðq; _qÞ, both MðqÞ and Cðq; _qÞ in
Eq. (1) satisfy
qTð _M � 2CÞq ¼ 0 8q 2 Rn ð3Þ

That is, ð _M � 2CÞ is a skew-symmetric matrix. In particular, elements in Cðq; _qÞ can
be defined as
Cij ¼
1

2
_qT

oMij

oq

"
þ
Xn
k¼1

oMik

oqj

�
� oMjk

oqi

�
_qk

#
:

2.2. Controller design

The present track-following control is to position a read/write head precisely at

the center of desired tracks in the presence of disturbances. In order to deal with the

periodic position error caused by repetitive disturbance, define periodic motion with

a known period T as
qdðt þ T Þ ¼ qdðtÞ; _qdðt þ T Þ ¼ _qdðtÞ; €qdðt þ T Þ ¼ €qdðtÞ

where qdðtÞ, _qdðtÞ, and €qdðtÞ are desired position, velocity, and acceleration, respec-

tively. For position output qðtÞ, the resultant position error is written as
eðtÞ ¼ qðtÞ � qdðtÞ ð4Þ
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Based on Condition 1, periodic motion corresponding to the reference velocity _qr
can be written as
MðqÞ€qr þ Cðq; _qÞ _qr þ GðqÞ ¼ w ¼
Z T

0

Kerðt; sÞaðsÞds ð5Þ
The reference velocity _qr is defined based on the adaptive control [13] as
_qrðtÞ ¼ _qdðtÞ � KeðtÞ � C
Z

eðtÞdt ð6Þ
and the error between the output velocity and reference velocity is
_erðtÞ ¼ _qðtÞ � _qrðtÞ ð7Þ
Substituting Eq. (6) into (7) and employing Eq. (4) lead to
_er ¼ _q� _qd

�
� Ke� C

Z
edt
�

¼ _eþ Keþ C
Z

edt
which implies that once the reference velocity error _er equals zero, the system tra-

jectory under control will satisfy
_er ¼ _eþ Keþ C
Z

edt ¼ 0
Concerning sliding mode control, to have the steady state position error stay on a

sliding surface and consequently eliminate the position error [10], a sliding vector can

be defined by letting s ¼ _er which leads to
sðtÞ ¼ _eðtÞ þ KeðtÞ þ C
Z

eðtÞdt ð8Þ
where K ¼ kiId and C ¼ ciId are both positive definite matrices, and Id represents the
identity matrix. Hence, this study defines a control input uSMLC that integrates an

estimated learning compensation used to approximate w in Eq. (5), a proportional,

integral, and derivative (PID) feedback control term, and a discontinuous control
term; i.e.
uSMLC ¼ ~w� KI

Z
edt � KPe� KD _e� Q sgnð _erÞ

¼ ~w� KD _e
�

þ K�1
D KPeþ K�1

D KI

Z
edt
�
� Q sgnðsÞ ð9Þ
Denoting K ¼ K�1
D KP and C ¼ K�1

D KI and substituting Eq. (8) into (9) yield
uSMLC ¼ ~w� Ks� Q sgnðsÞ ð10Þ
where Q and K ¼ KD ¼ kId are both positive definite matrices. The control block

diagram is shown in Fig. 1.

Different from conventional controllers designed based on nominal plant models,

the proposed controller Eq. (10) does not require exact knowledge of plant and
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Fig. 1. System block diagram.
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disturbance models. The three terms in Eq. (10) are correlated based on Eqs. (5), (6)

and (8). It will be proved in Section 2.3 that the proposed controller after learning

will constitute an equivalent sliding mode controller that satisfies the sliding mode

reaching condition i.e. making the tracking error trajectory approach and stay on a
prescribed sliding surface. Accordingly, the proposed controller with properties of

both learning control and sliding mode control can be carried out doing without

complicated procedure and any plant model. To verify stability of the proposed

controller, a mathematical proof is given in the following section. Moreover, the

reaching condition for the sliding mode control is also verified.

Based on the learning control [7], the desired input ~w can be estimated as
~wðtÞ ¼
Z T

0

Kerðt; sÞeI ðt; sÞds ð11Þ
where eI ðt; sÞ is the unknown estimated influence function.

Definition: Let CkðT Þ denote a subset of CðT Þ (which is the space of continuous T -
period functions Ið�Þ : Rþ ! Rn) such that every Ið�Þ is piecewise continuously dif-

ferentiable, and
sup
t2½0;T �

d

dt
Ið�Þ

���� ����6 k
Given a collection for shape functions fUig and / > 0, there exist a finite number of
shape functions fU0;U1;U2; . . . ;UNg that uniformly approximate members of CkðT Þ
within / > 0, i.e. for every I 2 CkðT Þ, there exist constant vectors C0;C1;
C2; . . . ;Cn 2 Rn such that
sup
t2½0;T �

IðtÞ
����� �

XN
i¼0

CiUi

����� < /
To estimate the desired influence function IðtÞ, it can be approximated by a linear

combination of shape functions Ui. Hence,
IðtÞ ffi
XN
i¼0

CiUiðtÞ
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where Ci 2 Rn represent unknown coefficient vectors for each shape function Ui at an

instant, and N þ 1 denotes the total number of shape functions. Hence, the estimated

term is generated by determining coefficients eCi, i.e.,
eI ðt; sÞ ¼XN
i¼0

eCiðt; sÞUiðsÞ ð12Þ
where eCiðt; sÞ are estimated corresponding coefficients. In addition, the sliding vector

is introduced into an adaptation law as
o

ot
eCiðt; sÞ ¼ �KLKerðt; sÞUiðsÞs ð13Þ
where the learning gain KL ¼ klId is a symmetric positive definite matrix.
This study employs a set of piecewise linear functions, as depicted in Fig. 2.

Accordingly, in each interval of ½iT=N ; ðiþ 1ÞT=N �, only two linear shape functions,
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Fig. 2. Piecewise linear shape functions.
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Ui and Uiþ1, are required; i.e. there are only two corresponding coefficients, ci and
ciþ1, to be updated at any instant. The linear shape functions are a B-spline set of

second order. A B-spline of order n consists of piecewise polynomial functions of
order n� 1. The time span of each shape function is defined as its support. If there

are N þ 1 equally spaced shape functions, the period can be expressed by
Fig. 3

of N ¼
T ¼ Nd=2 ð14Þ

where d is the shape function support. It in general can be regarded as a filter as

shown in Fig. 3 with N ¼ 5, for example. The accuracy of the filtering or called

approximating process depends on the support of the shape functions [14]. For ease
of computing kernel functions, piecewise linear functions shown in Fig. 4 are used as

kernel functions for integral transforms, where the span ‘sp’ denotes a subinterval

length.

2.3. Stability analysis

Applying the control input given by Eq. (10) into the system in Eq. (1), system

dynamics subject to the present controller is written as
MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ ¼ ~w� Ks� Q sgnðsÞ

The approximation error �w ¼ ~w� w of control inputs between Eqs. (5) and (11) can

be written as
�w ¼ ~w� w ¼
Z T

0

Kerðt; sÞeI ðt; sÞds� Z T

0

Kerðt; sÞaðsÞds

¼ ½MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ þ Ksþ Q sgnðsÞ� � ½MðqÞ€qr þ Cðq; _qÞ _qr þ GðqÞ�
¼ MðqÞ_sþ Cðq; _qÞsþ Ksþ Q sgnðsÞ ð15Þ
T0
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Taking the time derivative of Eq. (15) leads to
_�w ¼ _~w� _w
It follows from Eqs. (11)–(13) that
_�w ¼ o

ot

Z T

0

Kerðt; sÞeI ðt; sÞds�
�
Z T

0

Kerðt; sÞaðsÞds
�
¼ �KLZðKer;UÞs ð16Þ
where ZðKer;UÞ is a function of the kernel function and the shape function.
In order to verify stability of the proposed control method, i.e. s ¼ _er

asymptotically converges to zero, prescribe a Lyapunov function candidate of the

form
V ¼ 1
2
ðsTMsþ �wTKL�wÞP 0 ð17Þ
Taking the time derivative of V leads to
_V ¼ 1
2
sT _Msþ sTM _sþ �wTKL _�w ð18Þ
From Eq. (15),
MðqÞ_s ¼ �w� Cðq; _qÞs� Ks� Q sgnðsÞ
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Hence, Eq. (18) can be rewritten as
_V ¼ 1
2
sT _Msþ sT½�w� Cðq; _qÞs� Ks� Q sgnðsÞ� þ �wTKL _�w

¼ 1
2
sTð _M � 2CÞsþ sT½�w� Ks� Q sgnðsÞ� þ �wTKL _�w
Applying Condition 2, it becomes
_V ¼ sT½�w� Ks� Q sgnðsÞ� þ �wTKL _�w
Substituting Eq. (16) into the above equation leads to
_V ¼ sT½�w� Ks� Q sgnðsÞ� � �wTK2
LZðKer;UÞs

¼ sT½Id � K2
LZðKer;UÞ��w� sTKs� sTQ sgnðsÞ ð19Þ
Assuming that both �w and ZðKer;UÞ are bounded, i.e. k�wk6W and ZðKer;UÞk k6 f,
where W and f are positive, one has
k½Id � K2
LZðKer;UÞ��wk6 kId � K2

LZðKer;UÞk �w
��� ���

6 ½kIdk þ kK2
LZðKer;UÞk�k�wk6 ð1þ k2l fÞW ð20Þ
Eq. (19) can be rewritten as
_V ¼ sTf½Id � K2
LZðKer;UÞ��w� Q sgnðsÞg � sTKs
Hence, letting Q½ð1þ k2l fÞW þ d�Id and applying Eq. (20) yields
_V 6 � dksk � kksk2 ð21Þ

where d > 0. Since V > 0 from Eq. (17) and according to Eq. (21), the negative

definiteness of _V implies the convergence of s. In addition, a finite reaching time to
the sliding surface s ¼ 0 is ensured by designing dP g. Hence, the reaching condition

[12,15]
_V 6 � gksk; g > 0
for the sliding mode control is ensured. As a consequence, the position error will
converge to zero on the sliding surface s ¼ _eþ Keþ C

R
edt ¼ 0.
3. Plant model and simulation results

Since hard disk drives employ a pivoted VCM as the track seeking and follow-

ing actuator, in this study the control performance is investigated with a VCM
plant model whose parameters were identified and listed in Table 1 [16]. The iden-

tified plant model is adopted to perform simulation. The nominal plant model is

defined as
QðsÞ
UðsÞ ¼ PVCMðsÞ ¼ k

1

s2

 
þ
X2
i¼1

ci
s2 þ 2fixisþ x2

i

!
e�TdS ð22Þ
where qðtÞ denotes the position output (lm) of the pickup head, uðtÞ is the input

current (A), k is a constant gain, fi, ci, and xi are ith mode damping factor, residue



Table 1

VCM model parameters

Fs Sampling frequency 11 kHz

x1 First resonant frequency 5200 Hz

x2 Second resonant frequency 6100 Hz

f1 First resonant damping factor 0.02

f2 Second resonant damping factor 0.01

c1 Residue of first resonant mode )1.2
c2 Residue of second resonant mode )0.2
K Constant gain 1.3 · 108
Td Time delay including ZOH effect 88 ls
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and resonant frequency, respectively, and Td is a time delay. The time delay includes

the effect of delay caused by zero order hold (ZOH), which is half of the sampling

period. The term of the time delay is approximated by a third-order Pad�e approx-

imation [17].

To demonstrate the periodic disturbance rejection of the track-following control

with the proposed controller, a input periodic disturbances is applied as a composite

sinusoidal signal consisting of multiple frequencies of x ¼ 60 Hz. Thus, the control

input disturbance dI is expressed as
dIðtÞ ¼ 0:01� ½0:1þ sinð2pxtÞ þ 0:5 sinð4pxtÞ þ 0:25 sinð8pxtÞ�ðAÞ ð23Þ
In order to evidence the periodic error convergence capability, a PD controller is

used to compare with the proposed controller. It can be found from Fig. 1 that the

proposed controller without the learning control and the discontinuous switching

terms is equivalent to a PD controller based on the sliding variable definition
sðeÞ ¼ _eþ Ke
Hence, the equivalent PD controller can be rewritten as
uPD ¼ �Ks ¼ �Kð _eþ KeÞ ¼ �KD _e� KPe
where KD ¼ K and KP ¼ KK are corresponding PD control gains. The corresponding

controller gains in both controllers will be the same in the discrete time simulation at

100 kHz sampling rate for impartial comparison. Assuming the repetitive tracking
error is caused by a periodic input disturbance, Figs. 5 and 6 compare repetitive

errors in amplitudes and power spectrums between both control methods, respec-

tively, where the PD controller cannot cope with the disturbance. By contrast, using

the proposed controller, the repetitive tracking error caused by the input disturbance

is eliminated after five learning periods. The power spectrum in Fig. 6 shows that

error component due to fundamental frequency x ¼ 60 Hz has been removed.

Furthermore, this study superimposes a white noise of zero mean and variance 5

mA on a periodic input disturbance and another white noise of zero mean and
variance 2 lm in the position measurement to examine the learning control

robustness to nonrepetitive disturbances. Fig. 7 shows that the proposed controller is

robust in the presence of white noise and the repetitive error convergence capability

is not degrade at all. At a lower sampling frequency of 1 kHz, Fig. 8 indicates the
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repetitive error convergence conditions subject to different disturbance frequencies,

where the lower the disturbance frequency is, the faster the tracking error converges.
4. Experiment and results

As shown in Fig. 9, this experimental setup contains a VCM that drives a sus-

pension arm in a 3.5’’ hard disk drive. For the position sensing purpose, this study



0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

Tr
ac

ki
ng

 E
rro

r (
µm

)

Time (sec)

Fig. 7. Tracking errors of sliding mode based learning control (solid line) and PD control (dotted line)

subject to white noise in both control input and measurement signal.

0 1 2 3 4 5 6
-12

-8

-4

0

4

8

12

16

Tr
ac

ki
ng

 E
rro

r (
µm

)

Time (sec)

 1 Hz
 5 Hz
 10 Hz

Fig. 8. Tracking error of sliding mode based learning control subject to various frequencies of periodic
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uses a Renishaw RGH22S digital optical readhead and a fan-shaped component

with a reflective tape scale attached at the tip of the suspension arm, as shown in Fig.

10. The reflective tape scale is scanned by a digital optical readhead. The readhead
generates a digital square wave signal, which is encoded in a NI PCI-7344 Flex-

Motion control card as position feedback signals. Accordingly, the positioning

resolution can achieve 0.1 lm.

Fig. 11 depicts this experimental setup. It consists of a Pentium II PC to perform

control algorithm calculation at 1 kHz sampling rate that is the same as simulation, a

motion control card to encode the digital square wave signal and convert digital

control signal to analog output, an amplifier to drive the VCM, and a modified VCM

with the suspension arm as the control plant.
To validate the controller proposed in this work, experimental results of both

equivalent PD controller and sliding mode based learning controller are compared.

In practice, the repetitive position error is caused by spindle motor bias, disk runout

and deformation, etc. As long as the period of the disturbance is known, the present

method can eliminate the repetitive error. Further, the periodic disturbance pre-

scribed in Eq. (23) is included on purpose in the control input. Repetitive errors of

PD control and sliding mode based learning control are compared in Fig. 12, where

in the presence of 1 Hz disturbance the proposed method outperforms the PD
control. Tracking results compared with those of 5 and 10 Hz disturbances are

presented in Fig. 13. The learning performance with a fixed learning gain degrades

with increasing disturbance frequency due to sampling rate limitation of the con-

troller hardware.
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Fig. 11. Experimental setup.
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Fig. 10. Measurement device.
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Modern disk drives have much higher spin speed, say 12,000 rpm that causes a

200 Hz high frequency disturbance. To deal with a higher frequency disturbance,

using hardware of higher sampling rate to implement the proposed controller will be

an effective solution. In tracking sinusoidal signals, the total number N of shape

functions in a learning period T determines error magnitudes in steady state. Since

the number N of shape functions is prescribed as 100 in experiments that result in

Fig. 13, to obtain comparable performance in dealing with a 200 Hz disturbance of
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period T ¼ 5 ms, it is also prescribed that N ¼ 100. Substituting T ¼ 5 ms and

N ¼ 100 into Eq. (14) gives d ¼ 0:1 ms. However, according to the last paragraph in

Section 2.2, the shape function support d of a piecewise linear shape function as
shown in Fig. 2 has to be at least twice the sampling period Dt to implement the

proposed controller in discretized form. Hence, Dt ¼ 0:05 ms; i.e. the sampling rate

must be at least 20 kHz. An alternative is to use other shape functions such as

Fourier series bases [4] that may better approximate the desired input even at a low

sampling rate, which however will increases computation time.
5. Conclusion

A sliding mode based learning control method has been proposed for a VCM in

hard disk drives to perform disturbance rejection in track-following control.

Mathematical derivation of the control law and stability proof have been carried out.
According to experimental results, without an exact plant model the proposed

control method achieves rejection of periodic disturbances. Additionally, the sliding

mode based learning control not only exhibits error convergence faster than the PD

control but also can eliminate the repetitive error. However, in experiments due to

time delay caused by I/O, the sampling rate is confined to 1 kHz at most. The

tracking error can be reduced more effectively with lower frequency disturbance

signals or using higher sampling rate if available. The latter can be achieved by using

more advanced control hardware.
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