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Abstract

In this paper, we propose a new clustering algorithm for a mixture of Gaussian-based neural
network and self-growing probabilistic decision-based neural networks (SPDNN). The proposed
self-growing cluster learning (SGCL) algorithm is able to 3nd the natural number of prototypes
based on a self-growing validity measure, Bayesian information criterion (BIC). The learning
process starts from a single prototype randomly initialized in the feature space and grows adap-
tively during the learning process until most appropriate number of prototypes are found. We
have conducted numerical and real-world experiments to demonstrate the e8ectiveness of the
SGCL algorithm. In the results of using SGCL to train the SPDNN for data clustering and
speaker identi3cation problems, we have observed a noticeable improvement among various
model-based or vector quantization-based classi3cation schemes.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The last two decades have seen a growing number of researchers and practitioners
applying neural networks (NNs) to a variety of problems in engineering applications
and other scienti3c disciplines. In many of these neural network applications, data
clustering techniques have been applied to discover and to extract hidden structure
in a data set. Thus the structural relationships between individual data points can be
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detected. In neural network community, data clustering is commonly implemented by
unsupervised competitive learning techniques [3,15,21,4]. The goal of unsupervised
competitive learning is the minimization of clustering distortion or quantization error.

There are two major problems associated with competitive learning (CL), namely,
sensitivity in selecting the initial location and diEculty in determining the number of
prototypes. In general, selecting the appropriate number and location of prototypes is
a diEcult task, as we do not usually know the number of clusters in the input data a
priori. It is therefore desirable to develop an algorithm that has no dependency on the
initial prototype locations and is able to adaptively generate prototypes to 3t the input
data patterns.

A variety of clustering schemes have been developed, di8erent in their approaches to
competition and learning rules. The simplest and most prototypical CL algorithms are
mainly based on the winner-take-all (WTA) [13] paradigm, where adaptive learning
is restricted to the winner that is the single neuron prototype best matching the in-
put pattern. Di8erent algorithms in this paradigm such as LBG (or generalized Lloyd)
[20,7,22] and k-means [23] have been well recognized. A major problem with the sim-
ple WTA learning is the possible existence of under-utilization or the so-called dead
nodes problem [27]. In other words, some prototypes, due to inappropriate initialization
can never become winners. Signi3cant e8orts have been made to deal with this prob-
lem. By relaxing the WTA criterion, soft competition scheme (SCS) [31], neural-gas
network [24] and fuzzy competitive learning (FCL) [2], considering more than a single
prototype as winners to a certain degree and updating them accordingly, results in the
winner-take-most (WTM) paradigm (soft competitive learning). WTM decreases the
dependency on the initialization of prototype locations; however, it has an undesirable
side e8ect [21]: when all prototypes are attracted to each input pattern, some of them
may be detracted from their corresponding clusters, and these prototypes may become
biased toward the global mean of the clusters. Xu et al. [30] proposed a rival penal-
ized competitive learning (RPCL) algorithm to tackle this problem. The basic idea in
RPCL is that for each input pattern, not only the weight of the frequency-sensitive
winner is learned to shift toward the input pattern, but also the weight of its rival (the
2nd winner) is delearned by a smaller learning rate. Another well-known problem with
competitive learning is the diEculty in determining the number of clusters [8]. Deter-
mining the optimum number of clusters is a largely unsolved problem, due to lack of
prior knowledge in the data set. The growing cell structure (GCS) [9] and growing
neural gas (GNG) [10] algorithms are proposed to be di8erent from the previously
described models, by increasing the number of prototypes during the self-organization
process. The insertion of a neuron is judged at each pre-speci3ed number of iterations
and the stop criterion is simply the network size or some ad hoc subjective criteria
on the learning performance. In addition, it is also required that the initial number of
prototypes be at least two, which is not always the choice since sometimes a single
cluster may exist in the data set. To alleviate this problem, Zhang et al. [32] proposed a
one-prototype-take-one-cluster learning paradigm and a self-splitting competitive learn-
ing (SSCL) algorithm, which starts the learning process from a randomly initialized
single prototype in the feature space. During the learning period, one of the proto-
types will be chosen to split into two prototypes according to a split validity criterion.
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However, this method needs a threshold �, to determine whether or not a prototype is
suitable for splitting. Since usually no information about the threshold is available, it
must be determined adaptively from the analysis of the feature space, e.g., the threshold
� may be de3ned as the average variance for Gaussian distributed clusters.

In this paper, we propose a new clustering algorithm for a mixture of Gaussian-based
neural network, called self-growing probabilistic decision-based neural networks
(SPDNN) [11]. Using the Bayesian information criterion (BIC) as a self-growing va-
lidity measure, the proposed self-growing cluster learning (SGCL) algorithm is able to
3nd the natural number of prototypes in a class of input patterns. The learning process
starts from randomly initializing a single prototype in the feature space and adaptively
growing the prototypes until the most appropriate number of prototypes is reached.
We have conducted numerical and real-world experiments to demonstrate the e8ective-
ness of the SGCL algorithm. In the performance results of using SGCL to train the
SPDNN, we observed a noticeable improvement among various model-based or vector
quantization-based classi3cation schemes.

The remainder of this paper is organized as follows. In Section 2, we describe in
detail the architecture of SPDNN and its discriminant functions. Then, in Section 3 the
learning rules of SPDNN and the SGCL Algorithm are presented. Section 4 presents the
performance results on numerical clustering experiments and real-world applications.
Finally, Section 5 draws the summary and concluding remarks.

2. Self-growing probabilistic decision-based neural network

As shown in Fig. 1, self-growing probabilistic decision-based neural network
(SPDNN) is a multi-variate of Gaussian neural network [16,19]. The training scheme of
SPDNN is based on the so-called locally unsupervised globally supervised (LUGS)
learning. There are two phases in this scheme: during the locally-unsupervised (LU)
phase, prototypes in each subnet are learned and grown according to the proposed
self-growing cluster learning (SGCL) algorithm (see Section 3 A.2), and no mutual
information across the classes may be utilized. After the LU phase is completed, the
training enters the globally-supervised (GS) phase. In the GS phase, teacher informa-
tion is introduced to reinforce or anti-reinforce the decision boundaries between classes.
A detailed description of the SPDNN model and the proposed learning schemes will
be given in the following sections.

2.1. Discriminant functions of SPDNN

One of the major di8erences between traditional multi-variate Gaussian neural net-
works (MGNN) [16,19] and SPDNN is that SPDNN adapts a Kexible number of clus-
ters instead of 3xed number of clusters in a subnet, which models a class of data
patterns. That is, the subnet discriminant functions of SPDNN are designed to model
the log-likelihood functions of di8erent complexed pixel distributions of a data pattern.
Given a set of iid patterns X = {x(t); t = 1; 2; : : : ; N}, we assume that the likelihood
function p(x(t)|!i) for class !i is a mixture of Gaussian distributions.
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Fig. 1. The schematic diagram of a k-class SPDNN.

De3ne p(x(t)|!i;�ri) as one of the Gaussian distributions which comprise
p(x(t)|!i), where �ri represents the parameter set {
ri ;�ri} for a cluster ri in a
subnet i:

p(x(t)|!i) =
Ri∑
ri=1

P(�ri |!i)p(x(t)|!i;�ri);

where P(�ri |!i) denotes the prior probability of the cluster ri. By de3nition,∑Ri
ri=1 P(�ri |!i) = 1, where Ri is the number of clusters in !i.
The discriminate function of the multi-class SPDNN models the log-likelihood

function

’(x(t);wi) = logp(x(t)|!i)

= log

[
Ri∑
ri=1

P(�ri |!i)p(x(t)|!i;�ri)

]
; (1)

where wi = {�ri ;�ri ; P(�ri |!i); Ti}: Ti is the output threshold of the subnet i (cf.
Section 3).

In most general formulations, the basis function of a cluster should be able to ap-
proximate the Gaussian distribution with a full rank covariance matrix, i.e., ’(x; !i)=
− 1

2x
T�−1

ri x, where �ri is the covariance matrix. However, for applications which deal
with high-dimension data but a 3nite number of training patterns, the
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training performance and storage space requirements discourage such matrix modeling.
A natural simplifying assumption is to assume uncorrelated features of unequal impor-
tance. That is, suppose that p(x(t)|!i;�ri) is a D-dimensional Gaussian distribution
with uncorrelated features:

p(x(t)|!i;�ri) =
1

(2�)D=2|�ri |1=2
· exp

[
−1

2

D∑
d=1

(xd(t) − 
rid)
2

�2
rid

]
; (2)

where x(t)=[x1(t); x2(t); : : : ; xD(t)]T is the input, �ri =[
ri1; 
ri2; : : : ; 
riD]T is the mean
vector, and diagonal matrix �ri = diag[�2

ri1; �
2
ri2; : : : ; �

2
riD] is the covariance matrix.

As shown in Fig. 1, an SPDNN contains K subnets which are used to represent a
K-category classi3cation problem. Inside each subnet, an elliptic basis function (EBF)
serves as the basis function for each cluster ri:

’(x(t); !i; �ri) = −1
2

D∑
d=1

�rid(xd(t) − 
rid)
2 + �ri ; (3)

where �ri = −D=2 ln 2� + 1=2
∑D

d=1 ln �rid. After passing an exponential activation
function, exp{’(x(t); !i; �ri)} can be viewed as a Gaussian distribution, as described
in (2), except for a minor notational change: 1=�rid = �2

rid.

3. Learning rules and algorithms of SPDNN

Recall that the training scheme for SPDNN follows the LUGS principle. The lo-
cally unsupervised (LU) phase for the SPDNN learns proper number and location
of clusters in a class of input patterns. Network learning enters the GS phase af-
ter the LU training is converged. As for the globally supervised (GS) learning, the
decision-based learning rule is adopted. Both training phases need several epochs to
converge.

3.1. Unsupervised training for LU learning

We have developed a new self-growing cluster learning (SGCL) algorithm that is
able to 3nd appropriate number and location of clusters based on a self-growing validity
measure, Bayesian information criterion (BIC) [12].

(1) Bayesian information criterion (BIC): One advantage of the mixture-model
approach to the clustering scheme is that it allows the use of approximate Bayes factors
to compare models. This gives a means of selecting not only the parameterization of
the model, the clustering method, but also the number of clusters. The Bayes factor
is the posterior odds for one model against the other assuming neither is favored a
priori. This paper proposes a Bayesian factor-based iteration method to determine the
appropriate number of clusters in a class of input patterns. In the followings, we will
describe an approximation method to derive the Bayes factor.
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Given a set of patterns X+ = {x(t); t = 1; 2; : : : ; N} and a set of candidate models
M = {Mi|i = 1; : : : ; L}, each model associated with a parameter set wi. If we want to
select a proper model Mi from M to represent the distribution of X+, the posterior
probability can be used to make the decision. Assuming a prior distribution P(wi|Mi)
for the parameters of each model Mi, the posterior probability of a model Mi is

P(Mi|X+) =
P(Mi)P(X+|Mi)

P(X+)

˙ P(Mi)P(X+|Mi)

˙ P(Mi)
∑
i

P(X+|wi ; Mi)P(wi|Mi):

To compare two models Mm and Ml, the posterior odds between these two models are:

P(Mm|X+)
P(Ml|X+)

=
P(Mm)
P(Ml)

P(X+|Mm)
P(X+|Ml)

: (4)

Typically the prior over models is uniform, so that P(Mm) is constant. If the odds are
greater than one we choose model m, otherwise we choose model l. The rightmost
quantity

BF(X+) =
P(X+|Mm)
P(X+|Ml)

(5)

is called Bayes factor, the contribution of the data toward the posterior odds. However,
for applications which deal with high-dimensional data but 3nite number of training
patterns, the training performance and storage space discourage such modeling. A nat-
ural simpli3cation is to use a so-called Laplace approximation to the integral followed
by some simpli3cations [26] as follows:

logP(X+|Mi) = logP(X+|ŵi ; Mi) − 1
2 d(MilogN + O(1); (6)

where ŵi is a maximum likelihood estimate of wi, d(Mi) is the number of free pa-
rameters in model Mi, and N is the number of train data. The Bayesian information
criterion (BIC) for model Mi and training data X+ is de3ned as

BIC(Mi;X+) ≡ −2logP(X+|ŵi ; Mi) − d(Mi)logN: (7)

Therefore, choosing the model with minimum BIC is equivalent to choosing the model
with the largest (approximate) posterior probability. For model selection purposes, BIC
is asymptotically consistent as a selection criterion. In other words, given a family of
models, including the true model, the probability that BIC will select the correct model
approaches one as the sample size N → ∞ [12]. Thus, BIC can be used to compare
models with di8ering parameterizations, di8ering numbers of cluster components, or
both.
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Table 1
Grades of evidence corresponding to values of the Bayes factor for M2 against M1, the BIC di8erence, and
the posterior probability of M2

BIC di8erence Bayes factor Pr(M2|X+)(%) Evidence

0–2 1–3 50–70 Weak
2–6 3–20 75–95 Positive
6–10 2–150 95–99 Strong
¿ 10 ¿ 150 ¿ 99 Decisive

Model selection by BIC: If there are two candidate models M1 and M2 for modeling
a data set X+, Raftery et al., suggest that the BIC di8erence PBIC21 [17,25]:

PBIC21(X+) = BIC(M2;X+) − BIC(M1;X+)

can be used to evaluate which model is a preferred one. Table 1 depicts the grade
of evidence corresponding to the values of the Bayesian di8erence for favoring M2

against M1.
(2) BIC-based self-growing cluster learning: There are two aspects with respect to

self-growing rules:

I1 Which cluster should be split?
I2 How many clusters are enough?

On Issue I1, suppose every cluster is split temporarily to calculate its value of
PBIC21. The cluster with the highest value of PBIC21 also larger than a prede3ned
threshold of growing confidence, will be selected as a candidate for splitting.

On Issue I2, the splitting process terminates when none of the PBIC21 is larger than
a prede3ned threshold, growing confidence, which is a lower bound for PBIC21(X+

i )
in favor of splitting.

Detailed computing processes are depicted in the following SGCL algorithm:
Self-growing cluster learning (SGCL) algorithm
Notations:

• Input data set: X+ = {x(t) : t = 1; : : : ; N}.
• BIC(X+

l ; GMMi): The BIC value of a mixture Gaussian model (GMMi) with i com-
ponents and a sub-data set X+

l in X+.
• PBIC21(X+

l ) ≡ BIC(X+
l ; GMM2) − BIC(X+

l ; GMM1).
• � = { Qwj; .j|j = 1; 2; : : : ; Gc}: � represents the parameters of a mixture Gaussian

model, where Qwj is the weight of the jth Gaussian component, .j = {
j;Rj} is the
mean and covariance matrix of the jth Gaussian component, Gc is the number of
components in the mixture Gaussian model.

• �̃j = {w̃j; .̃j} represents the initial parameter setting of the jth Gaussian component.
• EM clusteri denotes the input data x(t) which belongs the ith Gaussian component

after EM learning [4].
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BEGIN
Initialization: Set the initial number of mixture Gaussian components:
Gc = 1, and the initial parameter values in �: Qwj = 0:1, 
j = 0:0, and Rj = I ,
for j = 1; 2; : : : ; Gc.
(1)If PBIC21(X+)6 growing confidence

Relearn � by applying EM algorithm on a uni-component mixture Gaussian on X+;
GOTO END;
else
Increment Gc;
Relearn � by applying EM algorithm on a 2-component mixture Gaussian on X+;

(2)Clustering:
EM clusterj = 2, for j = 1; 2; : : : ; Gc;
for each pattern x(t) in X+

c = arg maxj{P(.j|x(t))}; // where .j is for jth Gaussian component.
Assign x(t) to EM clusterc;

(3)Grows one component:
Let localPBIC = max{PBIC21(EM clusteri)}, for i = 1; 2; : : : ; Gc;
whichGrow = argmaxi{PBIC21(EM clusteri)}, for i = 1; 2; : : : ; Gc;
If localPBIC6 growing confidence // the algorithm terminates
GOTO END;
else
Initialize �̃1, �̃2 of the newly split two components from EM clusterwhichGrow,
�̃1 = {w̃1; .̃1}; �̃2 = {w̃2; .̃2}, .̃i = {
̃i; R̃i}, for i = 1; 2;
Let w̃1 = w̃2 = 1

2 QwwhichGrow;
Remove the parameter �̃whichGrow from �;
Update � by putting �̃1 and �̃2 into �;
Increment Gc;

(4)Global EM learning:
Using current � as the initial values, perform EM learning on all the clusters.
GOTO 2.

END

3.2. Global supervised learning

During the supervised learning phase, training data are then used to 3ne tune the
decision boundaries of each class. Each class is modeled by a subnet with discrimi-
nant functions, ’(x(t);wi); i= 1; 2; : : : ; L. At the beginning of each supervised learning
phase, use the still-under-training SPDNN to classify all the training patterns X+

i =
{xi(1); xi(2); : : : ; xi(Mi)} for i=1; : : : ; L. xi(m) is classi3ed to class !i, if ’(xi(m);wi)¿
’(xi(m);wk), ∀k �= i, and ’(xi(m);wi)¿Ti, where Ti is the output threshold for sub-
net i. According to the classi3cation results, the training patterns for each class i can
be divided into three subsets:

• Di
1 = {xi(m); xi(m) ∈!i; xi(m) is classi3ed to !i (correctly classi3ed set)};

• Di
2={xi(m); xi(m) ∈!i; xi(m) is misclassi3ed to other class !j (false rejection set)};

• Di
3 = {xi(m); xi(m) �∈ !i; xi(m) is misclassi3ed to class !i (false acceptance set)}.



C.L. Tseng et al. / Neurocomputing 61 (2004) 21–38 29

The following reinforced and antireinforced learning rules [18] are applied to the
corresponding misclassi3ed subnets.

Reinforced learning:

w(m+1)
i = w(m)

i + 4∇’(xi(m);wi): (8)

Antireinforced learning:

w(m+1)
j = w(m)

j − 4∇’(xi(m);wj): (9)

In (8) and (9), 4 is a user-de3ned learning rate 0¡461. For the data set Di
2,

reinforced and antireinforced learning will be applied to class !i and !j, respectively.
As for the false acceptance set Di

3, antireinforced learning will be applied to class !i,
and reinforced learning will be applied to the class !j, where xi(m) belongs to. The
gradient vectors ∇’ in (8) and (9) can be computed in a similar manner, as proposed
in [19].

Threshold updating: The threshold value Ti of a subnet i in the SPDNN recognizer
can also be learned by reinforced or antireinforced learning rules.

4. Experimental results

In this section, experimental results are presented in three parts. In the 3rst part we
use a synthetic data set to demonstrate the capability of SGCL algorithm, the second
part evaluates the proposed SGCL algorithm and the SPDNN for text-independent
speaker identi3cation (ID). And the third part explores the ability of SPDNN for
real-world applications on anchor/speaker identi3cation.

4.1. Experiment 1: synthetic data set drawn from a distribution of six Gaussian
clusters

This set contains 600 synthetic data points, which are evenly divided into six Gaus-
sian distributions. Fig. 2 depicts the self-growing and EM learning processes and the
clustering results from the initially one up to the 3nal six clusters. Six di8erent initial-
ization methods are used in EM learning to illustrate the sensitiveness of initial location
to the clustering performance. The six di8erent initialization methods are brieKy ex-
plained below as follows:

• Regular EM method: initial locations (i.e., the clustering center) are randomly se-
lected from training data.

• K-means method: initial locations are determined by k-means clustering method.
• Single-link method: initial locations are calculated by single-link hierarchical clus-

tering method [14].
• Average-link method: initial locations are computed according to average-link hier-

archical clustering [14].
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Fig. 2. The learning and splitting processes of automatic data clustering on the synthetic data set.

• Complete-link method: initial locations are determined by complete-link hierarchical
clustering [14].

• Self-growing method: initial locations are determined according to the proposed
BIC-based self-growing validity measure criterion.
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Fig. 3. Learning curves of the six di8erent methods applied on the synthetic data. The learning curve of the
Self-growing method peaks at GMM6, it seems that the proposed SGCL method suggests a nature number
of clusters for the synthetic data set.

In order to evaluate the capability of SGCL algorithm in determining the proper
number of prototypes, experiments are designed to perform a self-growing process up
to 10 prototypes. As shown in Fig. 3, the learning curve of the proposed self-growing
method rises to its peak value when the number of clusters reaches 6, which is the
number of prototypes in the data set.

4.2. Experiment 2: Text-independent speaker identi;cation

This experiment demonstrates and compares the performance of SGCL on speaker
identi3cation problems with some well-known classi3cation methods.

4.2.1. Database description
The speaker identi3cation experiments were primarily conducted using a subset of the

MAT TCC-300 speech database [28,29]. The MAT TCC-300 database is a collection
of article reading speech spoken by 150 male and 150 female speakers and recorded
from various microphones at high signal-to-noise ratio (SNR) environments. For each
speaker, various lengths of Chinese article (approximately 475 characters in average)
were read and recorded in a 3le.

4.2.2. Performance evaluation criterion
The evaluation of a speaker identi3cation experiment was conducted in the follow-

ing manner. The test speech was 3rst processed to produce a sequence of feature
vectors {x1; x2; : : : ; xt}. To train and to evaluate di8erent utterance lengths, the se-
quence of feature vectors was divided into overlapping segments of T feature vectors.
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For instance, the 3rst and second segments of a sequence would be: {Seg1 : x1; x2; : : : ;
xT} and {Seg2 : x2; x3; : : : ; xT ; xT+1}. A speech segment length of 5 s corresponds to
T=500 feature vectors at a 10 ms frame rate. Each feature vector is composed of a 20-
dimensional mel-cepstral vector.

The performance evaluation was then computed as the percent of correctly identi3ed
segment overall test utterance segments.

% correct identification=
No: of correctly identified segments

Total no: of segments
× 100%:

The evaluation was repeated for di8erent values of T to evaluate performance with re-
spect to test utterance length. Each speaker model had approximately equal amounts of
testing speech, so the performance evaluation was not biased to any particular speaker.

4.2.3. Large population performance
One factor which de3nes the diEculty of the speaker identi3cation task is the size

of the speaker population. The following experiments examined the performance of the
SPDNN speaker ID system as a function of population size consisting of 40 speakers
(20 male and 20 female). Identi3cation performance versus test utterance lengths for
populations of 10, 20, 40 speakers (half male and half female) are shown in Fig.
4. It is clear that the SPDNN speaker ID system maintains high ID performance as
the population size increases. The largest degradation for increasing population size is
for 1-s test utterance length, but it rapidly reaches 76.9% of correctness for 5 s test
utterance lengths.
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Fig. 4. Speaker identi3cation performance versus test utterance length for population sizes of 10, 20, and 40
speakers.
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Table 2
Performance results of di8erent speaker identi3cation methods

Classi3er 10 speakers (%) 20 speakers (%) 40 speakers (%)

Feed-foward neural network 91 85 74
decision tree(CART) 87 82 76
GMM(32) 92 89 76
SGCL 93 88 76

The performance comparison of speaker identi3cation experiments is shown in Ta-
ble 2. We included experiments from some well-known classi3cation methods, such as
feed-forward neural networks [5,6] and decision trees [1]. We can see that under vari-
ous speaker capacities, SGCL achieved an identi3cation rate higher than feed-forward
neural networks. We also used the decision tree method, CART, to implement speaker
identi3er. The performance is inferior to both types of neural network identi3ers. Note
that the identi3cation result of this experiment does not imply that the SGCL speaker
identi3er has a performance superior to the traditional GMM approach. By properly
choosing the clusters in each class, GMM may have better identi3cation performance.
However, this experimental result reveals several things. They are: (1) without any
prior knowledge or experience, the SGCL method can automatically select the proper
number of clusters in learning each class; (2) SGCL has a better identi3cation perfor-
mance than most well-known classi3cation methods do.

4.3. Experiment 3: Anchor/speaker identi;cation

The evaluation of the anchor/speaker identi3cation experiments was conducted in
the following manner. Speech data were collected from 19 female and 3 male an-
chor/speakers, of the evening TV news broadcasting programs in Taiwan. For each
speaker, there are 180 TV news brie3ng of approximately 25 min sampling over 6
months. The speech data are partitioned into 5 s segments, which corresponds to 420
features vectors (mfcc). Each speaker was modeled by a subnet in an SPDNN. Each
speaker model was trained by three di8erent lengths of speech utterances (30, 60 and
90 s), and was tested by the rest of the speech data. Each segment of 5 second speech
data was treated as a separate test utterance.

The experiments were primarily conducted to investigate the following issues:

(1) the capability of the proposed BIC-based self-growing cluster learning (SGCL) al-
gorithm in determining the number of components in a mixture Gaussian
model;

(2) the performance of the SPDNN for real-world problems, e.g., anchor/speaker iden-
ti3cation.

Fig. 5 shows the learning curve of (BIC values) versus the number of Gaussian
components used in building an SPDNN speaker model. There are several observations
to be made from these results. First, the sharp increase in the BIC values from 1 to 8
mixture components, and leveling o8 above 16 components. The following experiments
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Fig. 5. The learning curve of the SPDNN for an anchor/speaker identi3cation system. The training data of
each speaker’s model are a 90 s of speech. The BIC values shows a sharp increase from 1 to 8 mixture
components, and leveling o8 above 16 components.

were performed to evaluate the identi3cation performance according to:

(1) di8erent lengths (30, 60, and 90 s) of training speech, and
(2) di8erent dimensions (12, 16, 20 and 24) of mfcc (mel-frequency features) vectors.

As shown in Table 3, by using di8erent lengths of training speech data and di8er-
ent dimensions of mfcc features, the identi3cation performance of the SPDNNs with

Table 3
Anchor/speakeridenti3cation performance for di8erent lengths of training speech and dimension of mfcc
feature vectors

Length of Training
speech (s) Dimension of mfcc

12 16 20 24

Identi3cation performance by self-growing SPDNN
30 12.32/1.45(89.51) 13.32/2.03(92.00) 14.84/2.54(94.24) 15.8/2.12(94.81)
60 17.31/2.16(90.28) 19/1.19(95.08) 20.84/2.41(96.81) 23.05/2.80(96.95)
90 20.32/2.67(93.44) 23.79/2.55(96.46) 25.94/2.97(97.78) 30.21/3.6(97.90)

Identi3cation performance by 3xed (32) component SPDNN
90 32(92.57) 32(95.60) 32(97.39) 32(97.71)

In the body of the table, the 3rst number is the mean value of the number of clusters, the second number
after ‘=’ is the standard deviation of the mean value, and the number in parentheses indicates the identi3cation
performance (%).
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self-growing components are listed, and are compared with the performance of the
SPDNNs with 3xed number of components. It seems that the identi3cation performance
from self-growing SPDNN is slightly better than the 3xed (32) component models.

5. Concluding remarks

In this paper, we present the SGCL algorithm for data clustering in SPDNN. The
SGCL algorithm tries to tackle two long-standing critical problems in clustering,
namely, (1) the diEculty in determining the number of clusters, and (2) the sensi-
tivity to prototype initialization. The derivation of SGCL algorithm is based on a split
validity criterion, Bayesian information criterion (BIC). Using SGCL for data cluster-
ing, we need to randomly initialize only one prototype in the feature space. During the
learning process, according to the split validity criterion (BIC), one prototype is chosen
to split into two prototypes. This splitting process terminates when the BIC values of
each cluster reaches their highest points. We have conducted experiments on a variety
of data types and demonstrated that the SGCL algorithm is indeed a powerful, e8ective,
and Kexible technique in 3nding a natural number of components for text-independent
speaker identi3cation problems. We also successfully applied SPDNN to TV news an-
chor/speaker identi3cation. Since TV news speech data are highly dynamic, SGCL is
able to adaptively split clusters according to the actual data sets presented. In addition,
features in TV news speech are usually highly dimensional, SGCL has demonstrated
its ability in dealing with such data.
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