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Abstract

In a graphG, a k-containerCy (u, v) is a set ofk disjoint paths joininge andv. A k-containerCy (u, v) is k*-container
if every vertex ofG is passed by some path @ («, v). A graphG is k*-connected if there exists /& -container between
any two vertices. Amn-regular graphG is super-connected & is k*-connected for any with 1 < k < m. In this paper, we
prove that the recursive circulant graptig2™, 4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35-62], are

super-connected if and onlysf # 2.
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

For the graph definitions and notations we follow
Bondy and Murty [2].G = (V,E) is a graph if
V is a finite set andE is a subset of{(a,b) |
(a, b) is an unordered pair o¥'}. We say thatV is
the vertex set and E is the edge set. Two vertices
a and b are adjacent if (a,b) € E. A path of
length £k from x to y is a finite set of distinct
vertices (vg, v1, v2, ..., vt), wherex = vg, y = v,
(vi_1,v;) € E for all 1 < i < k. For convenience,
we use the sequeném, ..., v;, Q, v}, ..., v), where
0 = (vi, vi41,...,v;) to denote the patkwo, vy, vz,

., k). Note that we allowQ to be a path of length
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zero. LetP be the pathvg, v1, ..., vk—1, vi). We say
that the vertex;, 0 < i <k, is passed by the path.
We useP ! to denote the patky, vi—1, ..., v1, Vo).
In particular, let/(P) denote the length of the path
P. The distance betweem andv in G, denoted by
d(u,v), is the length of the shortest path joinimg
and v. A path is aHamiltonian path if its vertices
are distinct and spaW. A graph,G, is Hamiltonian
connected if there exists a Hamiltonian path joining
any two vertices ofG. A cycle is a path (except the
first vertex is the same as the last vertex) that contains
at least three vertices. Mamiltonian cycle of G is
a cycle that traverses every vertex@fexactly once.
A graph isHamiltonian if it has a Hamiltonian cycle.
A circulant graph can be defined as follows. luet
be a positive integer and I8t= {k1, k2, ..., k,} with
1<k <kp<--- <k, <n/2. Then the vertex set of
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the circulant graphG, S) is {0, 1, ...,n — 1} and the
set of neighbors of the vertexis {(x + ;) mod# |
j=1,...,r}. The graph we deal with here is the
circulant graphG (2™, 4) proposed by Park and Chwa
[7]. This family belongs to the family of circulant
graphs denoted b (N, d) with N, d € N. The vertex
set of G(N,d) is {0,1,..., N — 1}. Two vertices,u
andv, are adjacent if and only if +d’ = v (modN)

for somei with 0 <i < [log; N1 — 1. For example,
G(8,4) and G(16,4), as shown in Fig. 1. Several
interesting properties of; (2", 4) have been studied
in the literature [3,6—8]. For example, it was proved by
Park and Chwa [7] thaG (2™, 4) is anm connected
and Hamiltonian graph. The embedding of meshes
and hypercubes are studied in Park and Chwa [7].
The embedding of trees are studied by Lim et. al. [3].
The Hamiltonian decomposable property is studied by
Micheneau [6].

A k-container Cy(u, v) is a set ofk disjoint paths
joining u andv. The connectivity of G, «(G), is the
minimum number of vertices whose removal leaves
the remaining graph disconnected or trivial. When
is a graph with« (G) > k, it follows from Menger’s
theorem [5] that there isiacontainer between any two
different vertices of5. In this paper, we are interested
in another type of container. A-containerCy (u, v)
is a k*-container if every vertex of G is passed by
some path inCy(u, v). A graphG is k*-connected if
there exists a&*-container between any two vertices.
In particular,G is 1*-connected if and only iiG is
Hamiltonian connected, and is 2*-connected if and
only if G is Hamiltonian. Obviously, all*-connected
graphs, excepk; and K>, are Z-connected. The
study of k*-connected graphs is motivated by the
globally 3*-connected graphs proposed by Albert,
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Fig. 1. Graphg5(8,4) andG (16, 4).
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Aldred and Holton [1]. We say &-regular graph is
super-connected if it is i *-connected for all K i < k.
Lin et al. [4] prove that the pancake graphis super-
connected if and only it > 3. In this paper, we prove
thatG (2™, 4) is super-connected if and onlynif # 2.

Hypercubes are one of the most popular intercon-
nection networks being used. A hypercug, is a
graph with 2* vertices. Two vertices i, are joined
by an edge if and only if their binary representations
differ in exactly one bit position. The number of ver-
tices of G(2",4) is 2", which is equal to that of
Om- The connectivity ofG (2™, 4) is m, which is the
best possible. The diameter 6f(2", 4) is less than
that of 0,,,. G(2",4) has good fault-tolerant Hamil-
tonian properties [8]. The super-connected property of
G(2",4) is important in such a sense that it can be
considered as a measure of the reliabilityGa@™, 4).

In Section 2, we give some basic properties of
G(2",4). Then in Section 3, we discuss the super-
connected property afr (2™, 4). Finally, conclusions
are given in Section 4.

2. Basic properties

For 0<i < 2", let f; be the function from
V(G(2", 4)) into itself defined by fi(x) = (x +
i) (mod 2"). It is easy to see thaf; is an auto-
morphism of G(2", 4). Similarly, let ¢ be the func-
tion from V(G (2™, 4)) into itself defined byg(x) =
—x (mod 2"). Again, g is an automorphism of
G(2",4). Let h; be the function fromV (G(2", 4))
into itself defined byh; (x) = (x — i) (mod 2") for
all 0 <i < 2™. Similarly, h; is an automorphism of
G(2",4). Thus,G (2™, 4) is vertex transitive. Mich-
eneau [6] also pointed out th&t(2™, 4) has the fol-
lowing recursive property: For § j < 3, letG; be
the subgraph ofG(2",4) induced by verticequv |
v=j (mod 4}. The edge ser in E(G(2", 4)), but
not in E(Go) U E(G1) U E(G2) U E(G3), is {(i,i +
1 (mod 2") |0<i <2" —1}. Thus, R forms a
Hamiltonian cycles oiG (2", 4). Moreover, eaclG
is isomorphic toG(2"~2, 4). We have the following
theorems.

Theorem 1 [7]. The diameter of G(2",4) is [(3m —
1)/4].



C.-H. Tsai et al. / Information Processing Letters 91 (2004) 293-298

Theorem 2 [8]. Assume that F is a subset of
V(G(2",4) U E(G(2",4)). Then G(2",4) — F is
Hamiltonian if |F| <m — 2 and G(2",4) — F is
Hamiltonian connected if | F| < m — 3, wherem > 3.

Therefore, we have the following corollary.

Coroallary 1. G(2™, 4) are both 1*-connected and 2*-
connected if m > 3.

Corollary 2. Let (x, y) be any edge of G(2™", 4) with
m > 3. Then there are two Hamiltonian cycles C1
and C, of G(2",4) such that (x,y) € E(C1) and
(x,y) & E(C2).

Lemma 1. Assume that x and y are any two different
vertices of G(2™, 4) with m > 3. Then there exists a
3*-container C3(x,y) = {P1, P2, P3} joining x and
y such that P; is a shortest path between x and y.
Hence, G(2™, 4) is 3*-connected if m > 3.

Proof. Since G(2",4) is vertex transitive, we only
need to find a desired*Zontainer between vertex
0 and any vertext of G(2",4) with x # 0. Let
P1 be a shortest path joining 0 and By Theo-
rem 1,/(P1) < [(3m — 1)/4]. We may write P, as
(0, x1, x2, ..., xk, x). Since[(3m — 1) /4] <m — 1 for
m > 3,k < m—2, therefore by Theorem 2, there exists
a Hamiltonian cycleC of G(2",4) — {x; | 1 <i < k}.
Clearly, C can be written ag0, P», x, (P3)~L, 0). Ac-
cordingly, P1, P> and P; form a 3*-container joining
0 andx. ThereforeG (2™, 4) is 3*-connected. O

Lemma 2. Let x and y be any two different vertices of
G (16, 4). Then there exists a 4*-container C4(x, y) =
{P1, P2, P3, P4} joining x and y. In particular, P; =
(x, yyif x and y are adjacent.

Proof. Since G(2",4) is vertex transitive, we only
need to find a desired*4&ontainer between vertex 0
to any vertexx of G(2™, 4) with x # 0. We list this
4*-container in Table 1.

The lemma is proved completelyD

3. Super-connected property

Lemma 3. Let x and y be two adjacent vertices in
G(2",4) with m > 3 and k be an integer with 2 <
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k < m. Then there exists a k*-container Cy(x,y) =
{P1, P>, ..., P} of G(2",4) suchthat P1 = (x, y).

Proof. We prove this lemma by induction am. With
Corollary 2, the lemma is true for any > 3 and
k = 2. With Lemma 1, the lemma is true for any
m > 3 andk = 3. With Lemma 2, the lemma is true
form = 4 andk = 4. Assume that the lemma holds for
anyG(2', 4) with + < m. We only need to consider the
casem > 5 and 4< k < m. SinceG (2", 4) is vertex
transitive, we only need to find a desireticontainer
of G(2", 4) between vertex 0 and any neighbofor
4 < k < m. Since the functiory is an automorphism
of G(2",4), we have the following cases: ()= 1
and (2)x =4' (mod 2*) forall 1< < [m/2] — 1.
Case 1: x = 1. By induction, there is & — 2)*-
containef{Q1, 02, ..., Qr_2} of Go between 0 and 4
such thatQ; = (0, 4). Obviously,i(Q;) > 2 for 2 <
i <k —2.Thus, we can writ®; as(0, R;, b;, 4) with
bi ¢ {0,4} for 2 <i <k — 2. Let {/1(Q1), f1(Q2),
..., J1(Qk-2)} be the image ofQ1, Q2, ..., Qk-2}
under the functionfi. Thus, { f1(Q1), f1(Q2),...,
f1(Qk—2)} forms a(k — 2)*-container ofG1 between 1
and 5. Since there aré'22 vertices inG, andm > 4,
|V (G2)| > 4. Then there is a vertexin G such that
y# 2 andy # 2™ — 2. By Theorem 2, there exists a
Hamiltonian pathS, of G2 joining y to 2, and there
exists a Hamiltonian patls of Gz joining 2" — 1 to
y+ 1. We set

(0, 1) fori =1,

(O, Ri,bi,bi + 1, (fi(R)) "L 1)
for2<i<k—-2,

i~
Il

(0,4,5,1)
fori=k—1,
0,2" —1,83,y+1,y,8,21) fori=k.

Thus,{P1, P>, ..., P} forms a desired*-container
of G(2™, 4) between 0 and.

Case2:x =4 (mod 2" forall 1< < [m/2] —1.
Thusx € V(Gop). By induction, there is ak — 2)*-
container{ Py, Po, ..., P._»} of Go between 0 and
such thatP; = (0, x). Sincex #0, x + 1# 1 and
x—1#£2" —1 (mod 2"). SinceG; is isomorphic
to G(2"~2, 4) for all 0 < i < 3, by Theorem 2, there
exists a Hamiltonian patiQ, of Gi, joining 1 to
x + 1; and there exists a Hamiltonian path of G3,
joining 2" — 1 to x — 1. We rewrite 0 as (2" —
1,8,t,x — 1). Thereforey, — 1 andx — 2 are two
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Table 1

X 4*-containerCy(0, x)

(0,1),(0,4,3,2,1),(0,15,14,13,1), (0,12,11,10,9,8,7,6,5,1)
(0,1,2),(0,15,3,2), (0,4,5,6,2),(0,12,8,7,11, 10,9, 13, 14, 2)
0,4,3),(0,15,3),(0,1,13,14,2,3), (0,12, 11,10,6,5,9,8,7, 3)

4),(0,1,5,4),(0,15,3,4),(0,12,11,10,9,13,14,2,6, 7, 8,4)
0,4,5),(0,1,5),(0,15,3,2,6,5), (0,12, 13,14,10,11, 7,8, 9, 5)
)
)
)
)

(

(O,

(

(0,1,5,6),(0,4,3,2,6), (0,12,11, 10,6), (0, 15,14, 13, 9,8, 7,6

(0,15,11,7), (0,12, 8,7, (0,1,2,3,7), (0,4, 5,9, 13, 14, 10,6, 7

(0,4,8), (0,12, 8), (0,15, 11, 10,6,5,9,8), (0, 1,13,14,2,3,7,8
9 (0,1,13,9), (0,12, 8,9), (0,4,3,7,11,10,9), (0, 15,14, 2, 6,5,9

(

(

(

(

(

(

O~NO O~ WNPRE

10 0,15,11, 10), (0, 4,5, 6,10), (0, 12, 13, 14, 10), (0, 1,2, 3,7,8, 9, 10)
11 0,12, 11), (0, 15,11), (0, 1, 13, 14, 10, 11), (0,4, 3,2, 6,5,9, 8, 7, 11)
12 0,12, (0,4,8,12), (0, 15,14, 13,12), (0,1, 2, 3,7, 6,5, 9, 10, 11, 12)
13 0,12 13), (0,1, 13), (0,15, 11, 10, 14, 13), (0, 4,5, 6,2, 3,7, 8,9, 13)
14 0,15,14), (0,12,11, 10, 14, (0, 4, 3,2, 14), {0, 1,5, 6, 7, 8,9, 13, 14)
15 0,15), (0, 1,2, 3,15), (0,12, 13,14, 15), (0, 4, 5,6, 7, 8, 9, 10, 11, 15)

distinct vertices inG,. By Theorem 2, there exists a x 2 +4/ (mod 2") for all 1 < < [m/2], (2) x =
Hamiltonian pathQ3 of G, joiningr — 1 tox — 2. +1 (mod 4, x #1, andx £#2" — 1, (3)x =2 or
Consequently, we sé®._; as{0,1, Q1,x + 1, x) and x=2"-2,(4)x=2+4 (mod2") andx #£2" — 2
Pras(0,2"—1,8,t,t -1, 03,x —2,x—1,x). Thus, forall 1<I<[m/2] —1, and (5)x =2 (mod 4 and
{Pq1, P>, ..., P} forms ak*-container of G(2",4) x#2+4 (mod 2") forall 1< < [m/2].

between O and. O Case 1: x = 0 (mod 4 andx % +4' (mod 2") for

all 1 <1< [m/2]. Thusx € V(Gp). By induction,
Theorem 3. G(2", 4) is super-connected if and only there is a(k — 2)*-container{Py, Ps, ..., Pi_o} of
if m+#2. Go between 0 andk. Sincex #0, x +1# 1 and

x—1=#£2"—1(mod 2"). Note thatG; is isomorphic
Proof. It is easy to see that (2™, 4) is isomorphic to G(2"2,4) for all 0 < i < 3. By Theorem 2, there

toKxif m=1 anch(Z"", 4) is isomorphic toCj if exists a Hamiltonian patf®; of G1 joining 1 tox + 1
m = 2. Clearly,G (2", 4) is super-connected. However,  and there exists a Hamiltonian pathy of G3 joining
C4 is not Hamiltonian connected. Henag(22, 4) is oM _1tox—1.WewriteQz as(2" — 1, S, . x — 1).

not super-connected. Now, by induction we prove that
G (2", 4) is super-connected forn > 3. With Corol-
lary 1 and Lemma 1G(28,4) is super-connected.
With Corollary 1, Lemma 1, and Lemma 824, 4)

is super-connected. Assume th@t2", 4) is super-
connected for any with 3 <n < m with m > 5. By
Corollary 1 and Lemma 1¢(2™, 4) is k*-connected
with k = 1,2, and 3. Assume that £ k£ < m. By
Lemma 3, ifx andy are adjacent then there exists'a

Thereforey — 1 andx — 2 are two distinct vertices in
G». By Theorem 2, there exists a Hamiltonian path
Qs of Gy joiningt — 1 to x — 2. We setP,_1 as
(0,1, Q01,x +1,x) and P, as(0,2" — 1, S,¢t,t — 1,
03,x —2,x —1,x). Thus,{Py, P, ..., Pt} forms a
k*-container ofG (2", 4) between 0 and.
Case2: x =+1 (mod 4, x #1, andx # 2" — 1.
Thus,x € V(G1) or x € V(G3). Since the function

container Cx (x, y) = {P1, Pa, ..., P} of G(2",4). g is an automorphism o (2", 4), we may assume
Consequently, we need to find&-container between ~ thatx € V(G1). Thus,x — 13 0. By induction, there
any two nonadjacent vertices 6f(2", 4) for 4 < k < exists a(k — 2)*-container{ P1, P2, ..., Pr—2} of Go
m. between 0 and — 1. Without loss of generality, we
Since G (2™, 4) is vertex transitive, we only need assume thai(P1) <I/(P;) forall2<i <k —2.Hence,
to find ak*-container between 0 and with x # 0, I(P;) 22 for2<i <k — 2. Thus, we can writé’; as

x is not adjacent to 0, and 4 k < m. We have (O,R;,bj,x—1)for1<i <k—2.Notethaf(Ry) =0
the following five cases: (1x = 0 (mod 4 and if b1 =0.
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Obviously,b; 4+ 1 is a neighborhood of for 1 <
i<k—2.LetB={(x,x+t4 (mod2"))|1<i<
fm/2] — 1 andx + 4 #b; + 1 (mod 2") for all
1< j<k—2). We setFi to be the union ofB
and the setflg; | 3<i <k —2 andg; = b; + 1}.
Clearly, | F1| = m — 4 and the only neighbors af in
G1 — F1 area; andaz. By Theorem 2, there exists
a Hamiltonian cycleC of G1 — F1. We can writeC
as (x, a1, S1, 1, S2, az, x). Without loss of generality,
we may assume thatS1) < /(S2). Since the number
of vertices inG1 — F1 are 22 — k + 4 with k <
m, [(C) > 7. Thus,l(S2) > 3. We can rewriteS, as
(L, v,T,u,az) with [(T) > 0.

Clearly,u + 1 andv + 1 are two distinct vertices in
G2. By Theorem 2, there exists a Hamiltonian path
S of G2 joining u + 1 andv + 1. We write S as
(u+1, 83, w,x+1,1, 84, v+1). Thus, one of vertices
w and¢ is not 2" — 2. Without loss of generality, we
assume that # 2™ — 2. Again, we can writeS as
(u+1, Ss5,x+1, 1, S4, v+1). SinceGz is Hamiltonian
connected, there exists a Hamiltonian paghof G3
joining 2" — 1 andr + 1. We set

0, P1,x —1,x) fori =1,
0,R;,bj,b; +1,x) for2<i<k-—2,
fori=k—1,

(
Qi =1 (0,1, S1, a1, x)
(

0,2" —1,86,t+1,¢t,S4,v+1,v,T,u,
u+1,8,x+1x) fori=k.

Apparently{Q1, O, ..., O} forms ak*-container
of G(2",4) between vertices 0 and, as shown by
Fig. 2.

Case3:x =2 orx = 2" —2. Sinceg is an automor-
phism of G(2", 4), we consider only the case= 2.
Note that 0 and 4 are adjacent @fp. By Lemma 3,
there exists ak — 2)*-container{Py, P>, ..., P._2}

Fig. 2. lllustration of Theorem 3, Case 2.
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of Go between 0 and 4 such th&; = (0, 4). Hence
I(P;) > 2 for 2<i < k — 2. Without loss of general-
ity, we assume tha{ Py_2) > I(P;) for1 <i <k —3.
Therefore, we can writeP; as (0, a;, R;, b;, 4) for
2 <i < k — 3. Note thata; = b; if I(R;) = 0. Ob-
viously, I(Pr_2) > [(2"2—2)/(k — 3)] + 1. Since
A<k<mandm =5, [(P._2) > 4. We can write
Pr_2as(0,ar—2, Rk—2,y,z,4). Note that (Ry_2) =0
if I(Py_2) =4. Thereforez # 0. Suppose that > 6.
By Theorem 2, there exists a Hamiltonian path
of G1 — {1} joining y — 3 andz — 3. Suppose that
m=5. ThenV (Gg) = {0, 4,8, 12,16, 20, 24, 28} and
Go is isomorphic toG(8,4). There are three ver-
tices 0, 8, and 20 inGp adjacent to vertex 4. Since
z#0, z € {8,20}. Hencez — 3 € {5,17}. Conse-
quently, (y — 3,z — 3) is an edge ofG; and hence
(y—3,z2—3)€{(9,5), (21,5), (13,17, (21, 17)}.We
can find a Hamiltonian patkiof G1 — {1} joining y — 3
andz — 3 in Table 2.

Now, we set

(0,4,3,2) fori =1,

(0,ai, Ri, bi, by — 1, (ha(Ri) ™, a; — 1,

ai —2,ha(Ri),bj —2,2) for2<i<k-3,
<07 ak—2, Rk—29 yy 2,2 — 17 y - 17

0i=1 (hRe-2)  ar—2—Lar2—2
ho(Rk—2),y—2,y—3,8,z—3,z—2,2)
fori=k—2,
(0,2m —1,2m —2,2) fori =k.

Apparently,{Q1, Q2, ..., Ok} forms ak*-container of
G (2", 4) between 0 and.

Case 4: x =2+ 4 (mod 2") andx # 2™ — 2 for
all 1 <1< [m/2] — 1. Clearly,x is in G2. Therefore,
x —2is adjacentto 0iit7o. By Lemma 3, there exists a
(k — 2)*-container{ P1, Po, ..., Pr_2} of Go between
0 andx — 2 such thatP; = (0, x — 2). Hencel (P;) > 2
for2<i <k—2.We canwriteP; as{0, a;, R;, b;, x —

2) for2<i <k—2.Sincex #2" — 2, x + 1 and
2™ — 1 are two distinct vertices af3. By Theorem 2,

Table 2

»y—-3z-3 S

9,5 (9, 25,29,13 17,21, 5)
(13,17 (13,29,25,9,5,21,17)
(21,5) (21,17,13,29, 25,9, 5)
(21,17 (21,5,9, 25,29, 13, 17)
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there exists a Hamiltonian pathof G3 joining x + 1
and 2" — 1. We set

0, x—2,x —1,x) fori =1,
(0,a;, Ri, bi, f1(bi), (Fu(R)) 7L, fulan),

0; =1 f2ai), f2(Ri), fa(bi), x) for2<i<k-—2,
(0,1,2, x) fori=k—1,
(0,2" —1,T,x+1,x) fori =k.
Thus, {Q1, O2, ..., Or} forms ak*-container of

G (2", 4) between 0 and.

Case5: x =2 (mod 4 andx # 2+ 4’ mod 2") for
all 1 <1< [m/2]. By induction, there is & — 2)*-
container{Py, P>, ..., Pr_2} of Go between 0 and
x — 2. Sincex — 2 +4/ (mod 2), [(P;) > 2 for all
1<i <k—2.We canwriteP; as(0, a;, R;, bj, x — 2)
for 1 <i <k — 2. We recursively define a sequence of
vertices inG3 as follows: Set1 =3 andz; =z;_1+4
for 2 <i < 2"2 Clearly, (3=z21,22,...,2m—2 =
2" — 1,3 =z1) forms a Hamiltonian cycl&€ of Gs.
Sincex — 2% +4 (mod 2"), x — 3,x + 1, 2" — 1,
and 3 are four distinct vertices 6f3. We may writeC
as(3,5,x—3,x+1,T,2™" -1, 3). Now, we set

(0,a;, Ri, bi, fi(bi), (f1(R)) 7L, fular),
f2(ai), f2(R;), fa(bi), x)
forl<i<k—-2,

0i=11(0,1,235x-3x—-2x—1x)
fori=k—1,
0,2" -1, 771 x+1,x)
fori =k.
Thus, {Q1, O2, ..., Or} forms ak*-container of

G(2",4) betweenOand. O

4. Conclusions

Recursive circulant graphs(2™, 4) are the major
concern in this pape6 (2™, 4) has the connectivity:
and the diametef(3m — 1)/4]; which is less tham:,
the diameter of the hypercub®,,. The main result
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of this paper is proving that the recursive circulant
graphsG (2™, 4) have super-connected property if and
only if m # 2. A k-containerCy(u, v) between two
distinct vertexu and v in G is a set ofk disjoint
paths betweem: and v. The length of aCy(u, v),
written asi(Cy(u,v)), is the length of the longest
path inCg (u, v). The k-wide distance between and

v IS dy(u, v), which is the minimum length among
all k-containers betweem and v. Let « be the
connectivity of G. The wide diameter o7, denoted
by D.(G), is the maximum ofx-wide distances
among all pairs of vertices, v in G, u # v. Assume
that G is k*-connected. We may define thé-wide
distance between any two verticesand v, denoted
by d(u,v), which is the minimum length among
all k*-containers betweem and v. Let D} (G) =
max{d;(u,v) | u andv are two different vertices of
G}. We say thaD} (G) is thek*-diameter ofG. In our
future work, we are interested to fint; (G(2", 4))
for2<k<m.
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