

Available online at www.sciencedirect.com

Information Processing Letters 91 (2004) 293-298

Information Processing Letters

www.elsevier.com/locate/ipl

The super-connected property of recursive circulant graphs

Chang-Hsiung Tsai^{a,*}, Jimmy J.M. Tan^b, Lih-Hsing Hsu^c

^a Department of Computer Science and Information Engineering, Dahan Institute of Technology, Hualien 971, Taiwan, ROC ^b Department of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

^c Department of Information Engineering, Ta Hwa Institute of Technology, Hsinchu 307, Taiwan, ROC

Received 23 October 2003; received in revised form 19 April 2004

Available online 24 June 2004

Communicated by M. Yamashita

Abstract

In a graph G, a k-container $C_k(u, v)$ is a set of k disjoint paths joining u and v. A k-container $C_k(u, v)$ is k*-container if every vertex of G is passed by some path in $C_k(u, v)$. A graph G is k*-connected if there exists a k*-container between any two vertices. An m-regular graph G is super-connected if G is k*-connected for any k with $1 \le k \le m$. In this paper, we prove that the recursive circulant graphs $G(2^m, 4)$, proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35–62], are super-connected if and only if $m \ne 2$.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Super-connected; Container; Recursive circulant; Interconnection networks

1. Introduction

For the graph definitions and notations we follow Bondy and Murty [2]. G = (V, E) is a graph if V is a finite set and E is a subset of $\{(a, b) | (a, b) \text{ is an unordered pair of } V\}$. We say that V is the *vertex set* and E is the *edge set*. Two vertices a and b are *adjacent* if $(a, b) \in E$. A *path* of length k from x to y is a finite set of distinct vertices $\langle v_0, v_1, v_2, \dots, v_k \rangle$, where $x = v_0, y = v_k$, $(v_{i-1}, v_i) \in E$ for all $1 \leq i \leq k$. For convenience, we use the sequence $\langle v_0, \dots, v_i, Q, v_j, \dots, v_k \rangle$, where $Q = \langle v_i, v_{i+1}, \dots, v_j \rangle$ to denote the path $\langle v_0, v_1, v_2, \dots, v_k \rangle$. Note that we allow Q to be a path of length

A circulant graph can be defined as follows. Let *n* be a positive integer and let $S = \{k_1, k_2, ..., k_r\}$ with $1 \le k_1 < k_2 < \cdots < k_r \le n/2$. Then the vertex set of

Corresponding author. *E-mail address:* chtsai@ms01.dahan.edu.tw (C.-H. Tsai).

zero. Let *P* be the path $\langle v_0, v_1, \ldots, v_{k-1}, v_k \rangle$. We say that the vertex $v_i, 0 \le i \le k$, is passed by the path *P*. We use P^{-1} to denote the path $\langle v_k, v_{k-1}, \ldots, v_1, v_0 \rangle$. In particular, let l(P) denote the length of the path *P*. The distance between *u* and *v* in *G*, denoted by d(u, v), is the length of the shortest path joining *u* and *v*. A path is a *Hamiltonian path* if its vertices are distinct and span *V*. A graph, *G*, is *Hamiltonian connected* if there exists a Hamiltonian path joining any two vertices of *G*. A *cycle* is a path (except the first vertex is the same as the last vertex) that contains at least three vertices. A *Hamiltonian cycle* of *G* is a cycle that traverses every vertex of *G* exactly once. A graph is *Hamiltonian* if it has a Hamiltonian cycle.

^{0020-0190/}\$ – see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2004.05.013

the circulant graph (G, S) is $\{0, 1, \dots, n-1\}$ and the set of neighbors of the vertex u is $\{(u \pm k_i) \mod n \mid$ j = 1, ..., r. The graph we deal with here is the circulant graph $G(2^m, 4)$ proposed by Park and Chwa [7]. This family belongs to the family of circulant graphs denoted by G(N, d) with $N, d \in \mathcal{N}$. The vertex set of G(N, d) is $\{0, 1, \dots, N - 1\}$. Two vertices, u and v, are adjacent if and only if $u \pm d^i \equiv v \pmod{N}$ for some *i* with $0 \le i \le \lceil \log_d N \rceil - 1$. For example, G(8,4) and G(16,4), as shown in Fig. 1. Several interesting properties of $G(2^m, 4)$ have been studied in the literature [3,6–8]. For example, it was proved by Park and Chwa [7] that $G(2^m, 4)$ is an *m* connected and Hamiltonian graph. The embedding of meshes and hypercubes are studied in Park and Chwa [7]. The embedding of trees are studied by Lim et. al. [3]. The Hamiltonian decomposable property is studied by Micheneau [6].

A k-container $C_k(u, v)$ is a set of k disjoint paths joining u and v. The connectivity of G, $\kappa(G)$, is the minimum number of vertices whose removal leaves the remaining graph disconnected or trivial. When Gis a graph with $\kappa(G) \ge k$, it follows from Menger's theorem [5] that there is a k-container between any two different vertices of G. In this paper, we are interested in another type of container. A k-container $C_k(u, v)$ is a k^* -container if every vertex of G is passed by some path in $C_k(u, v)$. A graph G is k^* -connected if there exists a k^* -container between any two vertices. In particular, G is 1^{*}-connected if and only if G is Hamiltonian connected, and G is 2^* -connected if and only if G is Hamiltonian. Obviously, all 1^* -connected graphs, except K_1 and K_2 , are 2^{*}-connected. The study of k^* -connected graphs is motivated by the globally 3*-connected graphs proposed by Albert,

Fig. 1. Graphs *G*(8, 4) and *G*(16, 4).

Aldred and Holton [1]. We say a *k*-regular graph is *super-connected* if it is *i**-connected for all $1 \le i \le k$. Lin et al. [4] prove that the pancake graph P_n is super-connected if and only if n > 3. In this paper, we prove that $G(2^m, 4)$ is super-connected if and only if $m \ne 2$.

Hypercubes are one of the most popular interconnection networks being used. A hypercube Q_m is a graph with 2^m vertices. Two vertices in Q_m are joined by an edge if and only if their binary representations differ in exactly one bit position. The number of vertices of $G(2^m, 4)$ is 2^m , which is equal to that of Q_m . The connectivity of $G(2^m, 4)$ is m, which is the best possible. The diameter of $G(2^m, 4)$ is less than that of Q_m . $G(2^m, 4)$ has good fault-tolerant Hamiltonian properties [8]. The super-connected property of $G(2^m, 4)$ is important in such a sense that it can be considered as a measure of the reliability of $G(2^m, 4)$.

In Section 2, we give some basic properties of $G(2^m, 4)$. Then in Section 3, we discuss the superconnected property of $G(2^m, 4)$. Finally, conclusions are given in Section 4.

2. Basic properties

For $0 \leq i < 2^m$, let f_i be the function from $V(G(2^m, 4))$ into itself defined by $f_i(x) \equiv (x + 1)^{m-1}$ i) (mod 2^m). It is easy to see that f_i is an automorphism of $G(2^m, 4)$. Similarly, let g be the function from $V(G(2^m, 4))$ into itself defined by $g(x) \equiv$ $-x \pmod{2^m}$. Again, g is an automorphism of $G(2^m, 4)$. Let h_i be the function from $V(G(2^m, 4))$ into itself defined by $h_i(x) \equiv (x - i) \pmod{2^m}$ for all $0 \leq i < 2^m$. Similarly, h_i is an automorphism of $G(2^m, 4)$. Thus, $G(2^m, 4)$ is vertex transitive. Micheneau [6] also pointed out that $G(2^m, 4)$ has the following recursive property: For $0 \leq j \leq 3$, let G_j be the subgraph of $G(2^m, 4)$ induced by vertices $\{v \mid v\}$ $v \equiv j \pmod{4}$. The edge set R in $E(G(2^m, 4))$, but not in $E(G_0) \cup E(G_1) \cup E(G_2) \cup E(G_3)$, is $\{(i, i + i)\}$ 1 (mod 2^m)) | $0 \le i \le 2^m - 1$ }. Thus, *R* forms a Hamiltonian cycles of $G(2^m, 4)$. Moreover, each G_i is isomorphic to $G(2^{m-2}, 4)$. We have the following theorems.

Theorem 1 [7]. *The diameter of* $G(2^m, 4)$ *is* $\lceil (3m - 1)/4 \rceil$.

Theorem 2 [8]. Assume that *F* is a subset of $V(G(2^m, 4)) \cup E(G(2^m, 4))$. Then $G(2^m, 4) - F$ is Hamiltonian if $|F| \leq m - 2$ and $G(2^m, 4) - F$ is Hamiltonian connected if $|F| \leq m - 3$, where $m \geq 3$.

Therefore, we have the following corollary.

Corollary 1. $G(2^m, 4)$ are both 1^{*}-connected and 2^{*}connected if $m \ge 3$.

Corollary 2. Let (x, y) be any edge of $G(2^m, 4)$ with $m \ge 3$. Then there are two Hamiltonian cycles C_1 and C_2 of $G(2^m, 4)$ such that $(x, y) \in E(C_1)$ and $(x, y) \notin E(C_2)$.

Lemma 1. Assume that x and y are any two different vertices of $G(2^m, 4)$ with $m \ge 3$. Then there exists a 3^* -container $C_3(x, y) = \{P_1, P_2, P_3\}$ joining x and y such that P_1 is a shortest path between x and y. Hence, $G(2^m, 4)$ is 3^* -connected if $m \ge 3$.

Proof. Since $G(2^m, 4)$ is vertex transitive, we only need to find a desired 3*-container between vertex 0 and any vertex x of $G(2^m, 4)$ with $x \neq 0$. Let P_1 be a shortest path joining 0 and x. By Theorem 1, $l(P_1) \leq \lceil (3m-1)/4 \rceil$. We may write P_1 as $\langle 0, x_1, x_2, \ldots, x_k, x \rangle$. Since $\lceil (3m-1)/4 \rceil \leq m-1$ for $m \geq 3, k \leq m-2$, therefore by Theorem 2, there exists a Hamiltonian cycle C of $G(2^m, 4) - \{x_i \mid 1 \leq i \leq k\}$. Clearly, C can be written as $\langle 0, P_2, x, (P_3)^{-1}, 0 \rangle$. Accordingly, P_1 , P_2 and P_3 form a 3*-container joining 0 and x. Therefore, $G(2^m, 4)$ is 3*-connected. \Box

Lemma 2. Let x and y be any two different vertices of G(16, 4). Then there exists a 4*-container $C_4(x, y) = \{P_1, P_2, P_3, P_4\}$ joining x and y. In particular, $P_1 = \langle x, y \rangle$ if x and y are adjacent.

Proof. Since $G(2^m, 4)$ is vertex transitive, we only need to find a desired 4*-container between vertex 0 to any vertex x of $G(2^m, 4)$ with $x \neq 0$. We list this 4*-container in Table 1.

The lemma is proved completely. \Box

3. Super-connected property

Lemma 3. Let x and y be two adjacent vertices in $G(2^m, 4)$ with $m \ge 3$ and k be an integer with $2 \le 3$

 $k \leq m$. Then there exists a k^* -container $C_k(x, y) = \{P_1, P_2, \dots, P_k\}$ of $G(2^m, 4)$ such that $P_1 = \langle x, y \rangle$.

Proof. We prove this lemma by induction on *m*. With Corollary 2, the lemma is true for any $m \ge 3$ and k = 2. With Lemma 1, the lemma is true for any $m \ge 3$ and k = 3. With Lemma 2, the lemma is true for m = 4 and k = 4. Assume that the lemma holds for any $G(2^t, 4)$ with t < m. We only need to consider the case $m \ge 5$ and $4 \le k \le m$. Since $G(2^m, 4)$ is vertex transitive, we only need to find a desired k^* -container of $G(2^m, 4)$ between vertex 0 and any neighbor *x* for $4 \le k \le m$. Since the function *g* is an automorphism of $G(2^m, 4)$, we have the following cases: (1) x = 1 and (2) $x \equiv 4^l \pmod{2^m}$ for all $1 \le l \le \lfloor m/2 \rfloor - 1$.

Case 1: x = 1. By induction, there is a $(k - 2)^*$ container $\{Q_1, Q_2, ..., Q_{k-2}\}$ of G_0 between 0 and 4 such that $Q_1 = \langle 0, 4 \rangle$. Obviously, $l(Q_i) \ge 2$ for $2 \le i \le k - 2$. Thus, we can write Q_i as $\langle 0, R_i, b_i, 4 \rangle$ with $b_i \notin \{0, 4\}$ for $2 \le i \le k - 2$. Let $\{f_1(Q_1), f_1(Q_2), ..., f_1(Q_{k-2})\}$ be the image of $\{Q_1, Q_2, ..., Q_{k-2}\}$ under the function f_1 . Thus, $\{f_1(Q_1), f_1(Q_2), ..., f_1(Q_{k-2})\}$ forms a $(k-2)^*$ -container of G_1 between 1 and 5. Since there are 2^{m-2} vertices in G_2 and $m \ge 4$, $|V(G_2)| \ge 4$. Then there is a vertex y in G_2 such that $y \ne 2$ and $y \ne 2^m - 2$. By Theorem 2, there exists a Hamiltonian path S_2 of G_2 joining y to 2, and there exists a Hamiltonian path S_3 of G_3 joining $2^m - 1$ to y + 1. We set

$$P_{i} = \begin{cases} \langle 0, 1 \rangle & \text{for } i = 1, \\ \langle 0, R_{i}, b_{i}, b_{i} + 1, (f_{1}(R_{i}))^{-1}, 1 \rangle & \text{for } 2 \leqslant i \leqslant k - 2, \\ \langle 0, 4, 5, 1 \rangle & \text{for } i = k - 1, \\ \langle 0, 2^{m} - 1, S_{3}, y + 1, y, S_{2}, 2, 1 \rangle & \text{for } i = k. \end{cases}$$

Thus, $\{P_1, P_2, \ldots, P_k\}$ forms a desired k^* -container of $G(2^m, 4)$ between 0 and x.

Case 2: $x \equiv 4^{l} \pmod{2^{m}}$ for all $1 \leq l \leq \lceil m/2 \rceil - 1$. Thus $x \in V(G_0)$. By induction, there is a $(k-2)^*$ container $\{P_1, P_2, \ldots, P_{k-2}\}$ of G_0 between 0 and xsuch that $P_1 = \langle 0, x \rangle$. Since $x \neq 0$, $x + 1 \neq 1$ and $x - 1 \neq 2^m - 1 \pmod{2^m}$. Since G_i is isomorphic to $G(2^{m-2}, 4)$ for all $0 \leq i \leq 3$, by Theorem 2, there exists a Hamiltonian path Q_1 of G_1 , joining 1 to x + 1; and there exists a Hamiltonian path Q_2 of G_3 , joining $2^m - 1$ to x - 1. We rewrite Q_2 as $\langle 2^m - 1, S, t, x - 1 \rangle$. Therefore, t - 1 and x - 2 are two

Table 1	
x	4*-container $C_4(0,x)$
1	(0, 1), (0, 4, 3, 2, 1), (0, 15, 14, 13, 1), (0, 12, 11, 10, 9, 8, 7, 6, 5, 1)
2	$\langle 0, 1, 2 \rangle, \langle 0, 15, 3, 2 \rangle, \langle 0, 4, 5, 6, 2 \rangle, \langle 0, 12, 8, 7, 11, 10, 9, 13, 14, 2 \rangle$
3	(0, 4, 3), (0, 15, 3), (0, 1, 13, 14, 2, 3), (0, 12, 11, 10, 6, 5, 9, 8, 7, 3)
4	$\langle 0,4\rangle, \langle 0,1,5,4\rangle, \langle 0,15,3,4\rangle, \langle 0,12,11,10,9,13,14,2,6,7,8,4\rangle$
5	$\langle 0,4,5\rangle, \langle 0,1,5\rangle, \langle 0,15,3,2,6,5\rangle, \langle 0,12,13,14,10,11,7,8,9,5\rangle$
6	$\langle 0, 1, 5, 6 \rangle, \langle 0, 4, 3, 2, 6 \rangle, \langle 0, 12, 11, 10, 6 \rangle, \langle 0, 15, 14, 13, 9, 8, 7, 6 \rangle$
7	$\langle 0, 15, 11, 7 \rangle, \langle 0, 12, 8, 7 \rangle, \langle 0, 1, 2, 3, 7 \rangle, \langle 0, 4, 5, 9, 13, 14, 10, 6, 7 \rangle$
8	$\langle 0,4,8\rangle, \langle 0,12,8\rangle, \langle 0,15,11,10,6,5,9,8\rangle, \langle 0,1,13,14,2,3,7,8\rangle$
9	$\langle 0, 1, 13, 9 \rangle, \langle 0, 12, 8, 9 \rangle, \langle 0, 4, 3, 7, 11, 10, 9 \rangle, \langle 0, 15, 14, 2, 6, 5, 9 \rangle$
10	$\langle 0, 15, 11, 10 \rangle, \langle 0, 4, 5, 6, 10 \rangle, \langle 0, 12, 13, 14, 10 \rangle, \langle 0, 1, 2, 3, 7, 8, 9, 10 \rangle$
11	$\langle 0, 12, 11 \rangle, \langle 0, 15, 11 \rangle, \langle 0, 1, 13, 14, 10, 11 \rangle, \langle 0, 4, 3, 2, 6, 5, 9, 8, 7, 11 \rangle$
12	$\langle 0,12\rangle, \langle 0,4,8,12\rangle, \langle 0,15,14,13,12\rangle, \langle 0,1,2,3,7,6,5,9,10,11,12\rangle$
13	$\langle 0, 12, 13 \rangle, \langle 0, 1, 13 \rangle, \langle 0, 15, 11, 10, 14, 13 \rangle, \langle 0, 4, 5, 6, 2, 3, 7, 8, 9, 13 \rangle$
14	$\langle 0, 15, 14 \rangle, \langle 0, 12, 11, 10, 14 \rangle, \langle 0, 4, 3, 2, 14 \rangle, \langle 0, 1, 5, 6, 7, 8, 9, 13, 14 \rangle$
15	$\langle 0, 15 \rangle, \langle 0, 1, 2, 3, 15 \rangle, \langle 0, 12, 13, 14, 15 \rangle, \langle 0, 4, 5, 6, 7, 8, 9, 10, 11, 15 \rangle$

distinct vertices in G_2 . By Theorem 2, there exists a Hamiltonian path Q_3 of G_2 , joining t - 1 to x - 2. Consequently, we set P_{k-1} as $(0, 1, Q_1, x + 1, x)$ and P_k as $(0, 2^m - 1, S, t, t - 1, Q_3, x - 2, x - 1, x)$. Thus, $\{P_1, P_2, \ldots, P_k\}$ forms a k^* -container of $G(2^m, 4)$ between 0 and x. \Box

Theorem 3. $G(2^m, 4)$ is super-connected if and only if $m \neq 2$.

Proof. It is easy to see that $G(2^m, 4)$ is isomorphic to K_2 if m = 1 and $G(2^m, 4)$ is isomorphic to C_4 if m = 2. Clearly, $G(2^1, 4)$ is super-connected. However, C_4 is not Hamiltonian connected. Hence, $G(2^2, 4)$ is not super-connected. Now, by induction we prove that $G(2^m, 4)$ is super-connected for $m \ge 3$. With Corollary 1 and Lemma 1, $G(2^3, 4)$ is super-connected. With Corollary 1, Lemma 1, and Lemma 2, $G(2^4, 4)$ is super-connected. Assume that $G(2^n, 4)$ is superconnected for any *n* with $3 \le n < m$ with $m \ge 5$. By Corollary 1 and Lemma 1, $G(2^m, 4)$ is k^* -connected with k = 1, 2, and 3. Assume that $4 \le k \le m$. By Lemma 3, if x and y are adjacent then there exists a k^* container $C_k(x, y) = \{P_1, P_2, \dots, P_k\}$ of $G(2^m, 4)$. Consequently, we need to find a k^* -container between any two nonadjacent vertices of $G(2^m, 4)$ for $4 \le k \le$ m.

Since $G(2^m, 4)$ is vertex transitive, we only need to find a k^* -container between 0 and x with $x \neq 0$, x is not adjacent to 0, and $4 \leq k \leq m$. We have the following five cases: (1) $x \equiv 0 \pmod{4}$ and $x \not\equiv \pm 4^l \pmod{2^m}$ for all $1 \leq l \leq \lfloor m/2 \rfloor$, $(2) x \equiv \pm 1 \pmod{4}$, $x \neq 1$, and $x \neq 2^m - 1$, (3) x = 2 or $x = 2^m - 2$, $(4) x \equiv 2 \pm 4^l \pmod{2^m}$ and $x \neq 2^m - 2$ for all $1 \leq l \leq \lfloor m/2 \rfloor - 1$, and $(5) x \equiv 2 \pmod{4}$ and $x \not\equiv 2 \pm 4^l \pmod{2^m}$ for all $1 \leq l \leq \lfloor m/2 \rfloor$.

Case 1: $x \equiv 0 \pmod{4}$ and $x \not\equiv \pm 4^{l} \pmod{2^{m}}$ for all $1 \leq l \leq \lceil m/2 \rceil$. Thus $x \in V(G_{0})$. By induction, there is a $(k - 2)^{*}$ -container $\{P_{1}, P_{2}, \dots, P_{k-2}\}$ of G_{0} between 0 and x. Since $x \neq 0$, $x + 1 \neq 1$ and $x - 1 \not\equiv 2^{m} - 1 \pmod{2^{m}}$. Note that G_{i} is isomorphic to $G(2^{m-2}, 4)$ for all $0 \leq i \leq 3$. By Theorem 2, there exists a Hamiltonian path Q_{1} of G_{1} joining 1 to x + 1and there exists a Hamiltonian path Q_{2} of G_{3} joining $2^{m} - 1$ to x - 1. We write Q_{2} as $(2^{m} - 1, S, t, x - 1)$. Therefore, t - 1 and x - 2 are two distinct vertices in G_{2} . By Theorem 2, there exists a Hamiltonian path Q_{3} of G_{2} joining t - 1 to x - 2. We set P_{k-1} as $(0, 1, Q_{1}, x + 1, x)$ and P_{k} as $(0, 2^{m} - 1, S, t, t - 1, Q_{3}, x - 2, x - 1, x)$. Thus, $\{P_{1}, P_{2}, \dots, P_{k}\}$ forms a k^{*} -container of $G(2^{m}, 4)$ between 0 and x.

Case 2: $x \equiv \pm 1 \pmod{4}$, $x \neq 1$, and $x \neq 2^m - 1$. Thus, $x \in V(G_1)$ or $x \in V(G_3)$. Since the function g is an automorphism of $G(2^m, 4)$, we may assume that $x \in V(G_1)$. Thus, $x - 1 \neq 0$. By induction, there exists a $(k - 2)^*$ -container $\{P_1, P_2, \ldots, P_{k-2}\}$ of G_0 between 0 and x - 1. Without loss of generality, we assume that $l(P_1) \leq l(P_i)$ for all $2 \leq i \leq k - 2$. Hence, $l(P_i) \geq 2$ for $2 \leq i \leq k - 2$. Thus, we can write P_i as $\langle 0, R_i, b_i, x - 1 \rangle$ for $1 \leq i \leq k - 2$. Note that $l(R_1) = 0$ if $b_1 = 0$. Obviously, $b_i + 1$ is a neighborhood of x for $1 \le i \le k - 2$. Let $B = \{(x, x \pm 4^i \pmod{2^m}) \mid 1 \le i \le \lfloor m/2 \rfloor - 1$ and $x \pm 4^i \ne b_j + 1 \pmod{2^m}$ for all $1 \le j \le k - 2\}$. We set F_1 to be the union of B and the set $\{a_i \mid 3 \le i \le k - 2 \text{ and } a_i = b_i + 1\}$. Clearly, $|F_1| = m - 4$ and the only neighbors of x in $G_1 - F_1$ are a_1 and a_2 . By Theorem 2, there exists a Hamiltonian cycle C of $G_1 - F_1$. We can write C as $\langle x, a_1, S_1, 1, S_2, a_2, x \rangle$. Without loss of generality, we may assume that $l(S_1) \le l(S_2)$. Since the number of vertices in $G_1 - F_1$ are $2^{m-2} - k + 4$ with $k \le m$, $l(C) \ge 7$. Thus, $l(S_2) \ge 3$. We can rewrite S_2 as $\langle 1, v, T, u, a_2 \rangle$ with $l(T) \ge 0$.

Clearly, u + 1 and v + 1 are two distinct vertices in G_2 . By Theorem 2, there exists a Hamiltonian path S of G_2 joining u + 1 and v + 1. We write S as $\langle u + 1, S_3, w, x + 1, t, S_4, v + 1 \rangle$. Thus, one of vertices w and t is not $2^m - 2$. Without loss of generality, we assume that $t \neq 2^m - 2$. Again, we can write S as $\langle u + 1, S_5, x + 1, t, S_4, v + 1 \rangle$. Since G_3 is Hamiltonian connected, there exists a Hamiltonian path S_6 of G_3 joining $2^m - 1$ and t + 1. We set

$$Q_{i} = \begin{cases} \langle 0, P_{1}, x - 1, x \rangle & \text{for } i = 1, \\ \langle 0, R_{i}, b_{i}, b_{i} + 1, x \rangle & \text{for } 2 \leq i \leq k - 2, \\ \langle 0, 1, S_{1}, a_{1}, x \rangle & \text{for } i = k - 1, \\ \langle 0, 2^{m} - 1, S_{6}, t + 1, t, S_{4}, v + 1, v, T, u, \\ u + 1, S_{5}, x + 1, x \rangle & \text{for } i = k. \end{cases}$$

Apparently, $\{Q_1, Q_2, ..., Q_k\}$ forms a k^* -container of $G(2^m, 4)$ between vertices 0 and x, as shown by Fig. 2.

Case 3: x = 2 or $x = 2^m - 2$. Since g is an automorphism of $G(2^m, 4)$, we consider only the case x = 2. Note that 0 and 4 are adjacent in G_0 . By Lemma 3, there exists a $(k - 2)^*$ -container $\{P_1, P_2, \dots, P_{k-2}\}$

Fig. 2. Illustration of Theorem 3, Case 2.

of G_0 between 0 and 4 such that $P_1 = \langle 0, 4 \rangle$. Hence $l(P_i) \ge 2$ for $2 \le i \le k - 2$. Without loss of generality, we assume that $l(P_{k-2}) \ge l(P_i)$ for $1 \le i \le k-3$. Therefore, we can write P_i as $(0, a_i, R_i, b_i, 4)$ for $2 \leq i \leq k - 3$. Note that $a_i = b_i$ if $l(R_i) = 0$. Obviously, $l(P_{k-2}) \ge \lceil (2^{m-2} - 2)/(k-3) \rceil + 1$. Since $4 \leq k \leq m$ and $m \geq 5$, $l(P_{k-2}) \geq 4$. We can write P_{k-2} as $(0, a_{k-2}, R_{k-2}, y, z, 4)$. Note that $l(R_{k-2}) = 0$ if $l(P_{k-2}) = 4$. Therefore, $z \neq 0$. Suppose that $m \ge 6$. By Theorem 2, there exists a Hamiltonian path S of $G_1 - \{1\}$ joining y - 3 and z - 3. Suppose that m = 5. Then $V(G_0) = \{0, 4, 8, 12, 16, 20, 24, 28\}$ and G_0 is isomorphic to G(8, 4). There are three vertices 0, 8, and 20 in G_0 adjacent to vertex 4. Since $z \neq 0, z \in \{8, 20\}$. Hence $z - 3 \in \{5, 17\}$. Consequently, (y - 3, z - 3) is an edge of G_1 and hence $(y-3, z-3) \in \{(9, 5), (21, 5), (13, 17), (21, 17)\}.$ We can find a Hamiltonian path S of $G_1 - \{1\}$ joining y - 3and z - 3 in Table 2.

Now, we set

$$Q_{i} = \begin{cases} \langle 0, 4, 3, 2 \rangle & \text{for } i = 1, \\ \langle 0, a_{i}, R_{i}, b_{i}, b_{i} - 1, (h_{1}(R_{i}))^{-1}, a_{i} - 1, \\ a_{i} - 2, h_{2}(R_{i}), b_{i} - 2, 2 \rangle & \text{for } 2 \leq i \leq k - 3, \\ \langle 0, a_{k-2}, R_{k-2}, y, z, z - 1, y - 1, \\ (h_{1}(R_{k-2}))^{-1}, a_{k-2} - 1, a_{k-2} - 2, \\ h_{2}(R_{k-2}), y - 2, y - 3, S, z - 3, z - 2, 2 \rangle \\ & \text{for } i = k - 2, \\ \langle 0, 1, 2 \rangle & \text{for } i = k - 1, \\ \langle 0, 2^{m} - 1, 2^{m} - 2, 2 \rangle & \text{for } i = k. \end{cases}$$

Apparently, $\{Q_1, Q_2, \dots, Q_k\}$ forms a k^* -container of $G(2^m, 4)$ between 0 and x.

Case 4: $x \equiv 2 \pm 4^{l} \pmod{2^{m}}$ and $x \neq 2^{m} - 2$ for all $1 \leq l \leq \lceil m/2 \rceil - 1$. Clearly, *x* is in *G*₂. Therefore, x - 2 is adjacent to 0 in *G*₀. By Lemma 3, there exists a $(k - 2)^{*}$ -container $\{P_{1}, P_{2}, \dots, P_{k-2}\}$ of *G*₀ between 0 and x - 2 such that $P_{1} = \langle 0, x - 2 \rangle$. Hence $l(P_{i}) \geq 2$ for $2 \leq i \leq k - 2$. We can write P_{i} as $\langle 0, a_{i}, R_{i}, b_{i}, x - 2 \rangle$ for $2 \leq i \leq k - 2$. Since $x \neq 2^{m} - 2$, x + 1 and $2^{m} - 1$ are two distinct vertices of *G*₃. By Theorem 2,

Table 2		
(y-3, z-3)	S	
(9,5)	(9, 25, 29, 13, 17, 21, 5)	
(13, 17)	(13, 29, 25, 9, 5, 21, 17)	
(21,5)	(21, 17, 13, 29, 25, 9, 5)	
(21, 17)	(21, 5, 9, 25, 29, 13, 17)	

there exists a Hamiltonian path T of G_3 joining x + 1and $2^m - 1$. We set

$$Q_{i} = \begin{cases} \langle 0, x - 2, x - 1, x \rangle & \text{for } i = 1, \\ \langle 0, a_{i}, R_{i}, b_{i}, f_{1}(b_{i}), (f_{1}(R_{i}))^{-1}, f_{1}(a_{i}), \\ f_{2}(a_{i}), f_{2}(R_{i}), f_{2}(b_{i}), x \rangle & \text{for } 2 \leq i \leq k - 2, \\ \langle 0, 1, 2, x \rangle & \text{for } i = k - 1, \\ \langle 0, 2^{m} - 1, T, x + 1, x \rangle & \text{for } i = k. \end{cases}$$

Thus, $\{Q_1, Q_2, \dots, Q_k\}$ forms a k^* -container of $G(2^m, 4)$ between 0 and x.

Case 5: $x \equiv 2 \pmod{4}$ and $x \neq 2 \pm 4^{l} \pmod{2^{m}}$ for all $1 \leq l \leq \lceil m/2 \rceil$. By induction, there is a $(k-2)^{*}$ container $\{P_1, P_2, \ldots, P_{k-2}\}$ of G_0 between 0 and x-2. Since $x-2 \neq \pm 4^{l} \pmod{2^{m}}$, $l(P_i) \geq 2$ for all $1 \leq i \leq k-2$. We can write P_i as $\langle 0, a_i, R_i, b_i, x-2 \rangle$ for $1 \leq i \leq k-2$. We recursively define a sequence of vertices in G_3 as follows: Set $z_1 = 3$ and $z_i = z_{i-1} + 4$ for $2 \leq i \leq 2^{m-2}$. Clearly, $\langle 3 = z_1, z_2, \ldots, z_{2^{m-2}} = 2^m - 1$, $3 = z_1 \rangle$ forms a Hamiltonian cycle *C* of G_3 . Since $x - 2 \neq \pm 4^{l} \pmod{2^m}$, x - 3, x + 1, $2^m - 1$, and 3 are four distinct vertices of G_3 . We may write *C* as $\langle 3, S, x - 3, x + 1, T, 2^m - 1, 3 \rangle$. Now, we set

$$Q_{i} = \begin{cases} \langle 0, a_{i}, R_{i}, b_{i}, f_{1}(b_{i}), (f_{1}(R_{i}))^{-1}, f_{1}(a_{i}), \\ f_{2}(a_{i}), f_{2}(R_{i}), f_{2}(b_{i}), x \rangle \\ & \text{for } 1 \leq i \leq k-2, \\ \langle 0, 1, 2, 3, S, x-3, x-2, x-1, x \rangle \\ & \text{for } i = k-1, \\ \langle 0, 2^{m}-1, T^{-1}, x+1, x \rangle \\ & \text{for } i = k. \end{cases}$$

Thus, $\{Q_1, Q_2, \dots, Q_k\}$ forms a k^* -container of $G(2^m, 4)$ between 0 and x. \Box

4. Conclusions

Recursive circulant graphs $G(2^m, 4)$ are the major concern in this paper. $G(2^m, 4)$ has the connectivity m and the diameter $\lceil (3m - 1)/4 \rceil$; which is less than m, the diameter of the hypercube Q_m . The main result

of this paper is proving that the recursive circulant graphs $G(2^m, 4)$ have super-connected property if and only if $m \neq 2$. A k-container $C_k(u, v)$ between two distinct vertex u and v in G is a set of k disjoint paths between u and v. The length of a $C_k(u, v)$, written as $l(C_k(u, v))$, is the length of the longest path in $C_k(u, v)$. The k-wide distance between u and v is $d_k(u, v)$, which is the minimum length among all k-containers between u and v. Let κ be the connectivity of G. The wide diameter of G, denoted by $D_{\kappa}(G)$, is the maximum of κ -wide distances among all pairs of vertices u, v in $G, u \neq v$. Assume that G is k^* -connected. We may define the k^* -wide distance between any two vertices u and v, denoted by $d_k^*(u, v)$, which is the minimum length among all k^{*}-containers between u and v. Let $D_k^*(G) =$ $\max\{d_k^*(u, v) \mid u \text{ and } v \text{ are two different vertices of } \}$ G}. We say that $D_k^*(G)$ is the k^* -diameter of G. In our future work, we are interested to find $D_k^*(G(2^m, 4))$ for $2 \leq k \leq m$.

References

- M. Albert, E.R.L. Alderd, D. Holton, J. Sheehan, On 3*-connected graphs, Australasian J. Combin. 24 (2001) 193–207.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1980.
- [3] H.S. Lim, J.H. Park, K.Y. Chwa, Embedding trees in recursive circulants, Discrete Appl. Math. 69 (1996) 83–99.
- [4] C.K. Lin, H.M. Huang, L.H. Hsu, The super connectivity of pancake graphs and the super laceability of star graphs, manuscript.
- [5] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 95–115.
- [6] C. Micheneau, Disjoint Hamiltonian cycles in recursive circulant graphs, Inform. Process. Lett. 61 (1997) 259–264.
- [7] J.H. Park, K.Y. Chwa, Fundamental study recursive circulants and their embedding among hypercubes, Theoret. Comput. Sci. 244 (2000) 35–62.
- [8] C.H. Tsai, Jimmy J.M. Tan, Y.C. Chuang, L.H. Hsu, Hamiltonian properties of faulty recursive circulant graphs, J. Interconnection Networks 3 (2002) 273–289.