

Available online at www.sciencedirect.com

Information Processing Letters 91 (2004) 293–298

Information Processing Letters

www.elsevier.com/locate/ipl

The super-connected property of recursive circulant graphs

Chang-Hsiung Tsai^{a,*}, Jimmy J.M. Tan^b, Lih-Hsing Hsu^c

^a *Department of Computer Science and Information Engineering, Dahan Institute of Technology, Hualien 971, Taiwan, ROC* ^b *Department of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC*

^c *Department of Information Engineering, Ta Hwa Institute of Technology, Hsinchu 307, Taiwan, ROC*

Received 23 October 2003; received in revised form 19 April 2004

Available online 24 June 2004

Communicated by M. Yamashita

Abstract

In a graph *G*, a *k*-container $C_k(u, v)$ is a set of *k* disjoint paths joining *u* and *v*. A *k*-container $C_k(u, v)$ is k^* -container if every vertex of *G* is passed by some path in $C_k(u, v)$. A graph *G* is k^* -connected if there exists a k^* -container between any two vertices. An *m*-regular graph *G* is super-connected if *G* is k^* -connected for any k with $1 \leq k \leq m$. In this paper, we prove that the recursive circulant graphs *G(*2*m,* 4*)*, proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35–62], are super-connected if and only if $m \neq 2$.

2004 Elsevier B.V. All rights reserved.

Keywords: Super-connected; Container; Recursive circulant; Interconnection networks

1. Introduction

For the graph definitions and notations we follow Bondy and Murty [2]. $G = (V, E)$ is a graph if *V* is a finite set and *E* is a subset of $\{(a, b) \mid$ (a, b) is an unordered pair of *V* }. We say that *V* is the *vertex set* and *E* is the *edge set*. Two vertices *a* and *b* are *adjacent* if $(a, b) \in E$. A *path* of length *k* from *x* to *y* is a finite set of distinct vertices $\langle v_0, v_1, v_2, \ldots, v_k \rangle$, where $x = v_0, y = v_k$, *(v_{i−1}, v_i)* ∈ *E* for all $1 \le i \le k$. For convenience, we use the sequence $\langle v_0, \ldots, v_i, Q, v_j, \ldots, v_k \rangle$, where $Q = \langle v_i, v_{i+1}, \ldots, v_j \rangle$ to denote the path $\langle v_0, v_1, v_2, v_1 \rangle$ \dots, v_k). Note that we allow *Q* to be a path of length zero. Let *P* be the path $\langle v_0, v_1, \ldots, v_{k-1}, v_k \rangle$. We say that the vertex v_i , $0 \le i \le k$, is passed by the path *P*. We use P^{-1} to denote the path $\langle v_k, v_{k-1}, \ldots, v_1, v_0 \rangle$. In particular, let $l(P)$ denote the length of the path *P*. The distance between *u* and *v* in *G*, denoted by $d(u, v)$, is the length of the shortest path joining u and *v*. A path is a *Hamiltonian path* if its vertices are distinct and span *V* . A graph, *G*, is *Hamiltonian connected* if there exists a Hamiltonian path joining any two vertices of *G*. A *cycle* is a path (except the first vertex is the same as the last vertex) that contains at least three vertices. A *Hamiltonian cycle* of *G* is a cycle that traverses every vertex of *G* exactly once. A graph is *Hamiltonian* if it has a Hamiltonian cycle.

A circulant graph can be defined as follows. Let *n* be a positive integer and let $S = \{k_1, k_2, \ldots, k_r\}$ with $1 \leq k_1 < k_2 < \cdots < k_r \leq n/2$. Then the vertex set of

Corresponding author. *E-mail address:* chtsai@ms01.dahan.edu.tw (C.-H. Tsai).

^{0020-0190/\$ –} see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.ipl.2004.05.013

the circulant graph (G, S) is $\{0, 1, \ldots, n-1\}$ and the set of neighbors of the vertex *u* is $\{(u \pm k_i) \text{ mod } n\}$ $j = 1, \ldots, r$. The graph we deal with here is the circulant graph *G(*2*m,* 4*)* proposed by Park and Chwa [7]. This family belongs to the family of circulant graphs denoted by $G(N, d)$ with $N, d \in \mathcal{N}$. The vertex set of $G(N, d)$ is $\{0, 1, \ldots, N-1\}$. Two vertices, *u* and *v*, are adjacent if and only if $u \pm d^i \equiv v \pmod{N}$ for some *i* with $0 \le i \le \lceil \log_d N \rceil - 1$. For example, *G(*8*,* 4*)* and *G(*16*,* 4*)*, as shown in Fig. 1. Several interesting properties of $G(2^m, 4)$ have been studied in the literature [3,6–8]. For example, it was proved by Park and Chwa [7] that $G(2^m, 4)$ is an *m* connected and Hamiltonian graph. The embedding of meshes and hypercubes are studied in Park and Chwa [7]. The embedding of trees are studied by Lim et. al. [3]. The Hamiltonian decomposable property is studied by Micheneau [6].

A *k*-container $C_k(u, v)$ is a set of *k* disjoint paths joining *u* and *v*. The *connectivity* of G , $\kappa(G)$, is the minimum number of vertices whose removal leaves the remaining graph disconnected or trivial. When *G* is a graph with $\kappa(G) \geq k$, it follows from Menger's theorem [5] that there is a *k*-container between any two different vertices of *G*. In this paper, we are interested in another type of container. A *k*-container $C_k(u, v)$ is a *k*∗*-container* if every vertex of *G* is passed by some path in $C_k(u, v)$. A graph *G* is k^* -connected if there exists a *k*∗-container between any two vertices. In particular, *G* is 1∗-connected if and only if *G* is Hamiltonian connected, and *G* is 2[∗]-connected if and only if *G* is Hamiltonian. Obviously, all 1∗-connected graphs, except K_1 and K_2 , are 2^* -connected. The study of *k*∗-connected graphs is motivated by the globally 3∗-connected graphs proposed by Albert,

Fig. 1. Graphs *G(*8*,* 4*)* and *G(*16*,* 4*)*.

Aldred and Holton [1]. We say a *k*-regular graph is *super-connected* if it is *i*^{*}-connected for all $1 \le i \le k$. Lin et al. [4] prove that the pancake graph P_n is superconnected if and only if *n >* 3. In this paper, we prove that $G(2^m, 4)$ is super-connected if and only if $m \neq 2$.

Hypercubes are one of the most popular interconnection networks being used. A hypercube *Qm* is a graph with 2^m vertices. Two vertices in Q_m are joined by an edge if and only if their binary representations differ in exactly one bit position. The number of vertices of $G(2^m, 4)$ is 2^m , which is equal to that of Q_m . The connectivity of $G(2^m, 4)$ is *m*, which is the best possible. The diameter of $G(2^m, 4)$ is less than that of Q_m . $G(2^m, 4)$ has good fault-tolerant Hamiltonian properties [8]. The super-connected property of $G(2^m, 4)$ is important in such a sense that it can be considered as a measure of the reliability of $G(2^m, 4)$.

In Section 2, we give some basic properties of $G(2^m, 4)$. Then in Section 3, we discuss the superconnected property of *G(*2*m,* 4*)*. Finally, conclusions are given in Section 4.

2. Basic properties

For $0 \le i < 2^m$, let f_i be the function from *V*($G(2^m, 4)$) into itself defined by $f_i(x) \equiv (x + 1)^n$ *i*) (mod 2^m). It is easy to see that f_i is an automorphism of $G(2^m, 4)$. Similarly, let *g* be the function from $V(G(2^m, 4))$ into itself defined by $g(x) \equiv$ −*x (*mod 2*m)*. Again, *g* is an automorphism of $G(2^m, 4)$. Let h_i be the function from $V(G(2^m, 4))$ into itself defined by $h_i(x) \equiv (x - i) \pmod{2^m}$ for all $0 \leq i < 2^m$. Similarly, h_i is an automorphism of $G(2^m, 4)$. Thus, $G(2^m, 4)$ is vertex transitive. Micheneau [6] also pointed out that $G(2^m, 4)$ has the following recursive property: For $0 \le j \le 3$, let G_j be the subgraph of $G(2^m, 4)$ induced by vertices $\{v \mid$ $v \equiv j \pmod{4}$. The edge set *R* in $E(G(2^m, 4))$, but not in $E(G_0) \cup E(G_1) \cup E(G_2) \cup E(G_3)$, is {*(i, i* + 1 (mod 2^m)) | $0 \le i \le 2^m - 1$. Thus, *R* forms a Hamiltonian cycles of *G(*2*m,* 4*)*. Moreover, each *Gj* is isomorphic to $G(2^{m-2}, 4)$. We have the following theorems.

Theorem 1 [7]. *The diameter of* $G(2^m, 4)$ *is* $\lceil (3m - 1) \rceil$ 1*)/*4*.*

Theorem 2 [8]. *Assume that F is a subset of V*(*G*(2^{*m*}, 4)) ∪ *E*(*G*(2^{*m*}, 4))*. Then G*(2^{*m*}, 4) − *F is Hamiltonian if* $|F| \le m - 2$ *and* $G(2^m, 4) - F$ *is Hamiltonian connected if* $|F| \le m - 3$ *, where* $m \ge 3$ *.*

Therefore, we have the following corollary.

Corollary 1. $G(2^m, 4)$ *are both* 1^{*}-connected and 2^* *connected if* $m \geqslant 3$.

Corollary 2. Let (x, y) be any edge of $G(2^m, 4)$ with $m \geqslant 3$. Then there are two Hamiltonian cycles C_1 *and* C_2 *of* $G(2^m, 4)$ *such that* $(x, y) \in E(C_1)$ *and* $(x, y) \notin E(C_2)$ *.*

Lemma 1. *Assume that x and y are any two different vertices of* $G(2^m, 4)$ *with* $m \geq 3$ *. Then there exists a* 3^* -container $C_3(x, y) = \{P_1, P_2, P_3\}$ *joining x and y such that P*¹ *is a shortest path between x and y. Hence,* $G(2^m, 4)$ *is* 3^* -*connected if* $m \ge 3$ *.*

Proof. Since $G(2^m, 4)$ is vertex transitive, we only need to find a desired 3∗-container between vertex 0 and any vertex *x* of $G(2^m, 4)$ with $x \neq 0$. Let *P*¹ be a shortest path joining 0 and *x*. By Theorem 1, $l(P_1)$ ≤ $\lceil (3m - 1)/4 \rceil$. We may write P_1 as $(0, x_1, x_2, ..., x_k, x)$. Since $\lceil (3m-1)/4 \rceil \leq m-1$ for $m \geqslant 3, k \leqslant m-2$, therefore by Theorem 2, there exists a Hamiltonian cycle *C* of $G(2^m, 4) - \{x_i \mid 1 \leq i \leq k\}.$ Clearly, *C* can be written as $(0, P_2, x, (P_3)^{-1}, 0)$. Accordingly, P_1 , P_2 and P_3 form a 3[∗]-container joining 0 and *x*. Therefore, $G(2^m, 4)$ is 3[∗]-connected. $□$

Lemma 2. *Let x and y be any two different vertices of G*(16*,* 4*). Then there exists a* 4^{*}*-container* $C_4(x, y) = C_4(x, y)$ ${P_1, P_2, P_3, P_4}$ *joining x and y. In particular,* $P_1 =$ $\langle x, y \rangle$ *if x and y are adjacent.*

Proof. Since $G(2^m, 4)$ is vertex transitive, we only need to find a desired 4∗-container between vertex 0 to any vertex *x* of $G(2^m, 4)$ with $x \neq 0$. We list this 4∗-container in Table 1.

The lemma is proved completely. \square

3. Super-connected property

Lemma 3. *Let x and y be two adjacent vertices in* $G(2^m, 4)$ *with* $m \geq 3$ *and k be an integer with* $2 \leq$

 $k \leq m$ *. Then there exists a* k^* -container $C_k(x, y)$ = ${P_1, P_2, \ldots, P_k}$ *of* $G(2^m, 4)$ *such that* $P_1 = \langle x, y \rangle$ *.*

Proof. We prove this lemma by induction on *m*. With Corollary 2, the lemma is true for any $m \geq 3$ and $k = 2$. With Lemma 1, the lemma is true for any $m \geq 3$ and $k = 3$. With Lemma 2, the lemma is true for $m = 4$ and $k = 4$. Assume that the lemma holds for any $G(2^t, 4)$ with $t < m$. We only need to consider the case $m \geq 5$ and $4 \leq k \leq m$. Since $G(2^m, 4)$ is vertex transitive, we only need to find a desired *k*∗-container of $G(2^m, 4)$ between vertex 0 and any neighbor x for $4 \leq k \leq m$. Since the function *g* is an automorphism of $G(2^m, 4)$, we have the following cases: (1) $x = 1$ and (2) $x \equiv 4^l \pmod{2^m}$ for all $1 \le l \le \lceil m/2 \rceil - 1$.

Case 1: $x = 1$. By induction, there is a $(k-2)^*$ container $\{Q_1, Q_2, \ldots, Q_{k-2}\}\$ of G_0 between 0 and 4 such that $Q_1 = (0, 4)$. Obviously, $l(Q_i) \ge 2$ for $2 \le$ $i \leq k - 2$. Thus, we can write Q_i as $\langle 0, R_i, b_i, 4 \rangle$ with $b_i \notin \{0, 4\}$ for $2 \le i \le k - 2$. Let $\{f_1(Q_1), f_1(Q_2),$ *...,f*₁(Q_{k-2})} be the image of { $Q_1, Q_2, ..., Q_{k-2}$ } under the function f_1 . Thus, $\{f_1(Q_1), f_1(Q_2), \ldots, f_k(Q_k)\}$ $f_1(Q_{k-2})$ } forms a $(k-2)$ [∗]-container of G_1 between 1 and 5. Since there are 2^{m-2} vertices in G_2 and $m \ge 4$, $|V(G_2)| \ge 4$. Then there is a vertex *y* in G_2 such that $y \neq 2$ and $y \neq 2^m - 2$. By Theorem 2, there exists a Hamiltonian path S_2 of G_2 joining y to 2, and there exists a Hamiltonian path S_3 of G_3 joining $2^m - 1$ to $y + 1$. We set

$$
P_i = \begin{cases} \langle 0, 1 \rangle & \text{for } i = 1, \\ \langle 0, R_i, b_i, b_i + 1, (f_1(R_i))^{-1}, 1 \rangle & \text{for } 2 \leq i \leq k - 2, \\ \langle 0, 4, 5, 1 \rangle & \text{for } i = k - 1, \\ \langle 0, 2^m - 1, S_3, y + 1, y, S_2, 2, 1 \rangle & \text{for } i = k. \end{cases}
$$

Thus, $\{P_1, P_2, \ldots, P_k\}$ forms a desired k^* -container of $G(2^m, 4)$ between 0 and *x*.

Case 2: $x \equiv 4^{l} \pmod{2^{m}}$ for all $1 \le l \le \lceil m/2 \rceil - 1$. Thus $x \in V(G_0)$. By induction, there is a $(k-2)^*$ container $\{P_1, P_2, \ldots, P_{k-2}\}$ of G_0 between 0 and *x* such that $P_1 = (0, x)$. Since $x \neq 0$, $x + 1 \neq 1$ and $x - 1 \not\equiv 2^m - 1 \pmod{2^m}$. Since *G_i* is isomorphic to $G(2^{m-2}, 4)$ for all $0 \le i \le 3$, by Theorem 2, there exists a Hamiltonian path Q_1 of G_1 , joining 1 to $x + 1$; and there exists a Hamiltonian path Q_2 of G_3 , joining $2^m - 1$ to $x - 1$. We rewrite Q_2 as $\langle 2^m -$ 1*, S, t, x* − 1*)*. Therefore, $t - 1$ and $x - 2$ are two

distinct vertices in *G*2. By Theorem 2, there exists a Hamiltonian path Q_3 of G_2 , joining $t - 1$ to $x - 2$. Consequently, we set P_{k-1} as $\langle 0, 1, Q_1, x+1, x \rangle$ and *P_k* as $(0, 2^m - 1, S, t, t - 1, Q_3, x - 2, x - 1, x)$. Thus, ${P_1, P_2, ..., P_k}$ forms a *k*^{*}-container of $G(2^m, 4)$ between 0 and x . \Box

Theorem 3. $G(2^m, 4)$ *is super-connected if and only if* $m \neq 2$.

Proof. It is easy to see that $G(2^m, 4)$ is isomorphic to K_2 if $m = 1$ and $G(2^m, 4)$ is isomorphic to C_4 if $m = 2$. Clearly, $G(2^1, 4)$ is super-connected. However, C_4 is not Hamiltonian connected. Hence, $G(2^2, 4)$ is not super-connected. Now, by induction we prove that $G(2^m, 4)$ is super-connected for $m \ge 3$. With Corollary 1 and Lemma 1, $G(2^3, 4)$ is super-connected. With Corollary 1, Lemma 1, and Lemma 2, $G(2^4, 4)$ is super-connected. Assume that $G(2^n, 4)$ is superconnected for any *n* with $3 \le n < m$ with $m \ge 5$. By Corollary 1 and Lemma 1, $G(2^m, 4)$ is k^* -connected with $k = 1, 2$, and 3. Assume that $4 \leq k \leq m$. By Lemma 3, if *x* and *y* are adjacent then there exists a k^* container $C_k(x, y) = \{P_1, P_2, \ldots, P_k\}$ of $G(2^m, 4)$. Consequently, we need to find a *k*∗-container between any two nonadjacent vertices of $G(2^m, 4)$ for $4 \le k \le n$ *m*.

Since $G(2^m, 4)$ is vertex transitive, we only need to find a k^* -container between 0 and *x* with $x \neq 0$, *x* is not adjacent to 0, and $4 \leq k \leq m$. We have the following five cases: (1) $x \equiv 0 \pmod{4}$ and

 $x \neq \pm 4^l \pmod{2^m}$ for all $1 \le l \le \lceil m/2 \rceil$, (2) $x \equiv$ $\pm 1 \pmod{4}$, $x \neq 1$, and $x \neq 2^m - 1$, (3) $x = 2$ or $x = 2^m - 2$, (4) $x \equiv 2 \pm 4^l \pmod{2^m}$ and $x \neq 2^m - 2$ for all $1 \le l \le \lceil m/2 \rceil - 1$, and (5) $x \equiv 2 \pmod{4}$ and $x \not\equiv 2 \pm 4^l \pmod{2^m}$ for all $1 \le l \le \lceil m/2 \rceil$.

Case 1: $x \equiv 0 \pmod{4}$ and $x \not\equiv \pm 4^l \pmod{2^m}$ for all $1 \leq l \leq \lceil m/2 \rceil$. Thus $x \in V(G_0)$. By induction, there is a $(k - 2)^*$ -container $\{P_1, P_2, ..., P_{k-2}\}\$ of G_0 between 0 and *x*. Since $x \neq 0$, $x + 1 \neq 1$ and $x - 1 \neq 2^m - 1 \pmod{2^m}$. Note that G_i is isomorphic to *G*(2^{m-2} , 4) for all 0 ≤ *i* ≤ 3. By Theorem 2, there exists a Hamiltonian path Q_1 of G_1 joining 1 to $x + 1$ and there exists a Hamiltonian path *Q*² of *G*³ joining $2^m - 1$ to $x - 1$. We write Q_2 as $\langle 2^m - 1, S, t, x - 1 \rangle$. Therefore, $t - 1$ and $x - 2$ are two distinct vertices in *G*2. By Theorem 2, there exists a Hamiltonian path Q_3 of G_2 joining $t-1$ to $x-2$. We set P_{k-1} as $(0, 1, Q_1, x + 1, x)$ and P_k as $(0, 2^m - 1, S, t, t - 1,$ $Q_3, x - 2, x - 1, x$. Thus, $\{P_1, P_2, \ldots, P_k\}$ forms a k^* -container of $G(2^m, 4)$ between 0 and *x*.

Case 2: $x \equiv \pm 1 \pmod{4}$, $x \neq 1$, and $x \neq 2^m - 1$. Thus, $x \in V(G_1)$ or $x \in V(G_3)$. Since the function *g* is an automorphism of $G(2^m, 4)$, we may assume that $x \in V(G_1)$. Thus, $x - 1 \neq 0$. By induction, there exists a $(k - 2)$ ^{*}-container $\{P_1, P_2, ..., P_{k-2}\}$ of G_0 between 0 and $x - 1$. Without loss of generality, we assume that $l(P_1) \leq l(P_i)$ for all $2 \leq i \leq k-2$. Hence, $l(P_i)$ ≥ 2 for $2 \le i \le k - 2$. Thus, we can write P_i as $\langle 0, R_i, b_i, x-1 \rangle$ for $1 \leq i \leq k-2$. Note that $l(R_1) = 0$ if $b_1 = 0$.

Obviously, $b_i + 1$ is a neighborhood of x for $1 \leq$ *i* ≤ *k* − 2. Let *B* = { $(x, x \pm 4^i \pmod{2^m}$ } | 1 ≤ *i* ≤ $\lceil m/2 \rceil - 1$ and $x \pm 4^i \not\equiv b_j + 1 \pmod{2^m}$ for all $1 \leq j \leq k - 2$. We set F_1 to be the union of *B* and the set $\{a_i \mid 3 \leq i \leq k-2 \text{ and } a_i = b_i + 1\}.$ Clearly, $|F_1| = m - 4$ and the only neighbors of x in $G_1 - F_1$ are a_1 and a_2 . By Theorem 2, there exists a Hamiltonian cycle *C* of $G_1 - F_1$. We can write *C* as $\langle x, a_1, S_1, 1, S_2, a_2, x \rangle$. Without loss of generality, we may assume that $l(S_1) \leq l(S_2)$. Since the number of vertices in $G_1 - F_1$ are $2^{m-2} - k + 4$ with k ≤ $m, l(C) \geq 7$. Thus, $l(S_2) \geq 3$. We can rewrite S_2 as $\langle 1, v, T, u, a_2 \rangle$ with $l(T) \geq 0$.

Clearly, $u + 1$ and $v + 1$ are two distinct vertices in *G*2. By Theorem 2, there exists a Hamiltonian path *S* of G_2 joining $u + 1$ and $v + 1$. We write *S* as $\langle u+1, S_3, w, x+1, t, S_4, v+1 \rangle$. Thus, one of vertices *w* and *t* is not $2^m - 2$. Without loss of generality, we assume that $t \neq 2^m - 2$. Again, we can write *S* as $\langle u+1, S_5, x+1, t, S_4, v+1 \rangle$. Since G_3 is Hamiltonian connected, there exists a Hamiltonian path S_6 of G_3 joining $2^m - 1$ and $t + 1$. We set

$$
Q_i = \begin{cases} \n\langle 0, P_1, x - 1, x \rangle & \text{for } i = 1, \\ \n\langle 0, R_i, b_i, b_i + 1, x \rangle & \text{for } 2 \leq i \leq k - 2, \\ \n\langle 0, 1, S_1, a_1, x \rangle & \text{for } i = k - 1, \\ \n\langle 0, 2^m - 1, S_6, t + 1, t, S_4, v + 1, v, T, u, \\ \n u + 1, S_5, x + 1, x \rangle & \text{for } i = k. \n\end{cases}
$$

Apparently, $\{Q_1, Q_2, \ldots, Q_k\}$ forms a k^* -container of $G(2^m, 4)$ between vertices 0 and *x*, as shown by Fig. 2.

Case 3: $x = 2$ or $x = 2^m - 2$. Since *g* is an automorphism of $G(2^m, 4)$, we consider only the case $x = 2$. Note that 0 and 4 are adjacent in G_0 . By Lemma 3, there exists a $(k - 2)$ ^{*}-container $\{P_1, P_2, ..., P_{k-2}\}$

Fig. 2. Illustration of Theorem 3, Case 2.

of G_0 between 0 and 4 such that $P_1 = (0, 4)$. Hence $l(P_i)$ ≥ 2 for $2 \le i \le k - 2$. Without loss of general*ity*, we assume that $l(P_{k-2}) \ge l(P_i)$ for $1 \le i \le k-3$. Therefore, we can write P_i as $\langle 0, a_i, R_i, b_i, 4 \rangle$ for $2 \le i \le k - 3$. Note that $a_i = b_i$ if $l(R_i) = 0$. Ob- $\text{viously, } l(P_{k-2}) \geqslant \lceil (2^{m-2} - 2)/(k-3) \rceil + 1.$ Since $4 \leq k \leq m$ and $m \geq 5$, $l(P_{k-2}) \geq 4$. We can write P_{k-2} as $\langle 0, a_{k-2}, R_{k-2}, y, z, 4 \rangle$. Note that $l(R_{k-2}) = 0$ if $l(P_{k-2}) = 4$. Therefore, $z \neq 0$. Suppose that $m \ge 6$. By Theorem 2, there exists a Hamiltonian path *S* of $G_1 - \{1\}$ joining $y - 3$ and $z - 3$. Suppose that $m = 5$. Then $V(G_0) = \{0, 4, 8, 12, 16, 20, 24, 28\}$ and G_0 is isomorphic to $G(8, 4)$. There are three vertices 0, 8, and 20 in G_0 adjacent to vertex 4. Since $z \neq 0, z \in \{8, 20\}$. Hence $z - 3 \in \{5, 17\}$. Consequently, $(y - 3, z - 3)$ is an edge of G_1 and hence *(y* −3*, z*−3*)* ∈ {*(*9*,* 5*), (*21*,* 5*), (*13*,* 17*), (*21*,* 17*)*}. We can find a Hamiltonian path *S* of *G*1−{1} joining *y*−3 and $z - 3$ in Table 2.

Now, we set

$$
Q_{i} = \begin{cases} \langle 0, 4, 3, 2 \rangle & \text{for } i = 1, \\ \langle 0, a_{i}, R_{i}, b_{i}, b_{i} - 1, (h_{1}(R_{i}))^{-1}, a_{i} - 1, \\ a_{i} - 2, h_{2}(R_{i}), b_{i} - 2, 2 \rangle & \text{for } 2 \leq i \leq k - 3, \\ \langle 0, a_{k-2}, R_{k-2}, y, z, z - 1, y - 1, \\ (h_{1}(R_{k-2}))^{-1}, a_{k-2} - 1, a_{k-2} - 2, \\ h_{2}(R_{k-2}), y - 2, y - 3, S, z - 3, z - 2, 2 \rangle & \text{for } i = k - 2, \\ \langle 0, 1, 2 \rangle & \text{for } i = k - 1, \\ \langle 0, 2^{m} - 1, 2^{m} - 2, 2 \rangle & \text{for } i = k. \end{cases}
$$

Apparently, $\{Q_1, Q_2, \ldots, Q_k\}$ forms a k^* -container of $G(2^m, 4)$ between 0 and *x*.

Case 4: $x \equiv 2 \pm 4^l \pmod{2^m}$ and $x \neq 2^m - 2$ for all $1 \le l \le \lceil m/2 \rceil - 1$. Clearly, *x* is in *G*₂. Therefore, *x*−2 is adjacent to 0 in *G*0. By Lemma 3, there exists a $(k − 2)$ ^{*}-container $\{P_1, P_2, \ldots, P_{k-2}\}$ of G_0 between 0 and $x - 2$ such that $P_1 = (0, x - 2)$. Hence $l(P_i) \ge 2$ for $2 \le i \le k - 2$. We can write P_i as $\langle 0, a_i, R_i, b_i, x -$ 2) for $2 \le i \le k - 2$. Since $x \ne 2^m - 2$, $x + 1$ and 2*^m* − 1 are two distinct vertices of *G*3. By Theorem 2,

there exists a Hamiltonian path *T* of G_3 joining $x + 1$ and $2^m - 1$. We set

$$
Q_i = \begin{cases} \langle 0, x-2, x-1, x \rangle & \text{for } i = 1, \\ \langle 0, a_i, R_i, b_i, f_1(b_i), (f_1(R_i))^{-1}, f_1(a_i), \\ f_2(a_i), f_2(R_i), f_2(b_i), x \rangle & \text{for } 2 \le i \le k - 2, \\ \langle 0, 1, 2, x \rangle & \text{for } i = k - 1, \\ \langle 0, 2^m - 1, T, x + 1, x \rangle & \text{for } i = k. \end{cases}
$$

Thus, $\{Q_1, Q_2, \ldots, Q_k\}$ forms a k^* -container of $G(2^m, 4)$ between 0 and *x*.

Case 5: $x \equiv 2 \pmod{4}$ and $x \not\equiv 2 \pm 4^l \pmod{2^m}$ for all $1 \le l \le \lceil m/2 \rceil$. By induction, there is a $(k-2)$ [∗]container $\{P_1, P_2, \ldots, P_{k-2}\}$ of G_0 between 0 and *x* − 2. Since $x - 2 \neq \pm 4^l \pmod{2^m}$, $l(P_i) \ge 2$ for all $1 \le i \le k - 2$. We can write P_i as $\langle 0, a_i, R_i, b_i, x - 2 \rangle$ for $1 \leq i \leq k-2$. We recursively define a sequence of vertices in G_3 as follows: Set $z_1 = 3$ and $z_i = z_{i-1} + 4$ for $2 \le i \le 2^{m-2}$. Clearly, $\langle 3 = z_1, z_2, \ldots, z_{2^{m-2}} =$ $2^m - 1$, $3 = z_1$ forms a Hamiltonian cycle *C* of *G*₃. Since $x - 2 \neq \pm 4^l \pmod{2^m}$, $x - 3$, $x + 1$, $2^m - 1$, and 3 are four distinct vertices of *G*3. We may write *C* as $\langle 3, S, x-3, x+1, T, 2^m-1, 3 \rangle$. Now, we set

$$
Q_{i} = \begin{cases} \langle 0, a_{i}, R_{i}, b_{i}, f_{1}(b_{i}), (f_{1}(R_{i}))^{-1}, f_{1}(a_{i}), \\ f_{2}(a_{i}), f_{2}(R_{i}), f_{2}(b_{i}), x \rangle \\ \langle 0, 1, 2, 3, S, x-3, x-2, x-1, x \rangle \\ \langle 0, 2^{m} - 1, T^{-1}, x+1, x \rangle \\ \text{for } i = k. \end{cases}
$$

Thus, $\{Q_1, Q_2, \ldots, Q_k\}$ forms a k^* -container of $G(2^m, 4)$ between 0 and *x*. \Box

4. Conclusions

Recursive circulant graphs $G(2^m, 4)$ are the major concern in this paper. $G(2^m, 4)$ has the connectivity *m* and the diameter $\lceil (3m - 1)/4 \rceil$; which is less than *m*, the diameter of the hypercube Q_m . The main result

of this paper is proving that the recursive circulant graphs $G(2^m, 4)$ have super-connected property if and only if $m \neq 2$. A *k*-container $C_k(u, v)$ between two distinct vertex *u* and *v* in *G* is a set of *k* disjoint paths between *u* and *v*. The length of a $C_k(u, v)$, written as $l(C_k(u, v))$, is the length of the longest path in $C_k(u, v)$. The *k*-wide distance between *u* and *v* is $d_k(u, v)$, which is the minimum length among all *k*-containers between *u* and *v*. Let *κ* be the connectivity of *G*. The wide diameter of *G*, denoted by $D_K(G)$, is the maximum of κ -wide distances among all pairs of vertices u, v in $G, u \neq v$. Assume that *G* is *k*∗-connected. We may define the *k*∗-wide distance between any two vertices *u* and *v*, denoted by $d_k^*(u, v)$, which is the minimum length among all k^* -containers between *u* and *v*. Let $D_k^*(G) =$ $\max\{d_k^*(u, v) \mid u \text{ and } v \text{ are two different vertices of }$ *G*}. We say that $D_k^*(G)$ is the k^* -diameter of *G*. In our future work, we are interested to find $D_k^*(G(2^m, 4))$ for $2 \leq k \leq m$.

References

- [1] M. Albert, E.R.L. Alderd, D. Holton, J. Sheehan, On 3*-connected graphs, Australasian J. Combin. 24 (2001) 193–207.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, Amsterdam, 1980.
- [3] H.S. Lim, J.H. Park, K.Y. Chwa, Embedding trees in recursive circulants, Discrete Appl. Math. 69 (1996) 83–99.
- [4] C.K. Lin, H.M. Huang, L.H. Hsu, The super connectivity of pancake graphs and the super laceability of star graphs, manuscript.
- [5] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 95–115.
- [6] C. Micheneau, Disjoint Hamiltonian cycles in recursive circulant graphs, Inform. Process. Lett. 61 (1997) 259–264.
- [7] J.H. Park, K.Y. Chwa, Fundamental study recursive circulants and their embedding among hypercubes, Theoret. Comput. Sci. 244 (2000) 35–62.
- [8] C.H. Tsai, Jimmy J.M. Tan, Y.C. Chuang, L.H. Hsu, Hamiltonian properties of faulty recursive circulant graphs, J. Interconnection Networks 3 (2002) 273–289.