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Abstract

In a graphG, a k-containerCk(u, v) is a set ofk disjoint paths joiningu andv. A k-containerCk(u, v) is k∗-container
if every vertex ofG is passed by some path inCk(u, v). A graphG is k∗-connected if there exists ak∗-container between
any two vertices. Anm-regular graphG is super-connected ifG is k∗-connected for anyk with 1 � k � m. In this paper, we
prove that the recursive circulant graphsG(2m,4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35–62
super-connected if and only ifm �= 2.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction zero. LetP be the path〈v0, v1, . . . , vk−1, vk〉. We say
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that the vertexvi , 0� i � k, is passed by the pathP .
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For the graph definitions and notations we follo
Bondy and Murty [2]. G = (V ,E) is a graph if
V is a finite set andE is a subset of{(a, b) |
(a, b) is an unordered pair ofV }. We say thatV is
the vertex set and E is the edge set. Two vertices
a and b are adjacent if (a, b) ∈ E. A path of
length k from x to y is a finite set of distinc
vertices 〈v0, v1, v2, . . . , vk〉, where x = v0, y = vk ,
(vi−1, vi) ∈ E for all 1 � i � k. For convenience
we use the sequence〈v0, . . . , vi,Q,vj , . . . , vk〉, where
Q = 〈vi, vi+1, . . . , vj 〉 to denote the path〈v0, v1, v2,

. . . , vk〉. Note that we allowQ to be a path of length
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We useP−1 to denote the path〈vk, vk−1, . . . , v1, v0〉.
In particular, letl(P ) denote the length of the pa
P . The distance betweenu and v in G, denoted by
d(u, v), is the length of the shortest path joiningu
and v. A path is aHamiltonian path if its vertices
are distinct and spanV . A graph,G, is Hamiltonian
connected if there exists a Hamiltonian path joinin
any two vertices ofG. A cycle is a path (except th
first vertex is the same as the last vertex) that cont
at least three vertices. AHamiltonian cycle of G is
a cycle that traverses every vertex ofG exactly once.
A graph isHamiltonian if it has a Hamiltonian cycle.

A circulant graph can be defined as follows. Len
be a positive integer and letS = {k1, k2, . . . , kr} with
1 � k1 < k2 < · · · < kr � n/2. Then the vertex set o

.
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the circulant graph(G,S) is {0,1, . . . , n − 1} and the
set of neighbors of the vertexu is {(u ± kj ) modn |
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Aldred and Holton [1]. We say ak-regular graph is
super-connected if it is i∗-connected for all 1� i � k.
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j = 1, . . . , r}. The graph we deal with here is th
circulant graphG(2m,4) proposed by Park and Chw
[7]. This family belongs to the family of circulan
graphs denoted byG(N,d) with N,d ∈ N . The vertex
set of G(N,d) is {0,1, . . . ,N − 1}. Two vertices,u
andv, are adjacent if and only ifu ± di ≡ v (modN)

for somei with 0 � i � �logd N� − 1. For example
G(8,4) and G(16,4), as shown in Fig. 1. Severa
interesting properties ofG(2m,4) have been studie
in the literature [3,6–8]. For example, it was proved
Park and Chwa [7] thatG(2m,4) is anm connected
and Hamiltonian graph. The embedding of mes
and hypercubes are studied in Park and Chwa
The embedding of trees are studied by Lim et. al.
The Hamiltonian decomposable property is studied
Micheneau [6].

A k-container Ck(u, v) is a set ofk disjoint paths
joining u andv. Theconnectivity of G, κ(G), is the
minimum number of vertices whose removal leav
the remaining graph disconnected or trivial. WhenG

is a graph withκ(G) � k, it follows from Menger’s
theorem [5] that there is ak-container between any tw
different vertices ofG. In this paper, we are intereste
in another type of container. Ak-containerCk(u, v)

is a k∗-container if every vertex ofG is passed by
some path inCk(u, v). A graphG is k∗-connected if
there exists ak∗-container between any two vertice
In particular,G is 1∗-connected if and only ifG is
Hamiltonian connected, andG is 2∗-connected if and
only if G is Hamiltonian. Obviously, all 1∗-connected
graphs, exceptK1 and K2, are 2∗-connected. The
study of k∗-connected graphs is motivated by t
globally 3∗-connected graphs proposed by Albe

Fig. 1. GraphsG(8,4) andG(16,4).
Lin et al. [4] prove that the pancake graphPn is super-
connected if and only ifn > 3. In this paper, we prov
thatG(2m,4) is super-connected if and only ifm �= 2.

Hypercubes are one of the most popular interc
nection networks being used. A hypercubeQm is a
graph with 2m vertices. Two vertices inQm are joined
by an edge if and only if their binary representatio
differ in exactly one bit position. The number of ve
tices of G(2m,4) is 2m, which is equal to that o
Qm. The connectivity ofG(2m,4) is m, which is the
best possible. The diameter ofG(2m,4) is less than
that of Qm. G(2m,4) has good fault-tolerant Hami
tonian properties [8]. The super-connected propert
G(2m,4) is important in such a sense that it can
considered as a measure of the reliability ofG(2m,4).

In Section 2, we give some basic properties
G(2m,4). Then in Section 3, we discuss the sup
connected property ofG(2m,4). Finally, conclusions
are given in Section 4.

2. Basic properties

For 0 � i < 2m, let fi be the function from
V (G(2m,4)) into itself defined byfi(x) ≡ (x +
i) (mod 2m). It is easy to see thatfi is an auto-
morphism ofG(2m,4). Similarly, let g be the func-
tion from V (G(2m,4)) into itself defined byg(x) ≡
−x (mod 2m). Again, g is an automorphism o
G(2m,4). Let hi be the function fromV (G(2m,4))

into itself defined byhi(x) ≡ (x − i) (mod 2m) for
all 0 � i < 2m. Similarly, hi is an automorphism o
G(2m,4). Thus,G(2m,4) is vertex transitive. Mich-
eneau [6] also pointed out thatG(2m,4) has the fol-
lowing recursive property: For 0� j � 3, let Gj be
the subgraph ofG(2m,4) induced by vertices{v |
v ≡ j (mod 4)}. The edge setR in E(G(2m,4)), but
not in E(G0) ∪ E(G1) ∪ E(G2) ∪ E(G3), is {(i, i +
1 (mod 2m)) | 0 � i � 2m − 1}. Thus, R forms a
Hamiltonian cycles ofG(2m,4). Moreover, eachGj

is isomorphic toG(2m−2,4). We have the following
theorems.

Theorem 1 [7]. The diameter of G(2m,4) is �(3m −
1)/4�.
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Theorem 2 [8]. Assume that F is a subset of
V (G(2m,4)) ∪ E(G(2m,4)). Then G(2m,4) − F is

x

ts
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k � m. Then there exists a k∗-container Ck(x, y) =
{P1,P2, . . . ,Pk} of G(2m,4) such that P1 = 〈x, y〉.

y
e
or
e

a

e

Hamiltonian if |F | � m − 2 and G(2m,4) − F is
Hamiltonian connected if |F | � m − 3, where m � 3.

Therefore, we have the following corollary.

Corollary 1. G(2m,4) are both 1∗-connected and 2∗-
connected if m � 3.

Corollary 2. Let (x, y) be any edge of G(2m,4) with
m � 3. Then there are two Hamiltonian cycles C1
and C2 of G(2m,4) such that (x, y) ∈ E(C1) and
(x, y) /∈ E(C2).

Lemma 1. Assume that x and y are any two different
vertices of G(2m,4) with m � 3. Then there exists a
3∗-container C3(x, y) = {P1,P2,P3} joining x and
y such that P1 is a shortest path between x and y .
Hence, G(2m,4) is 3∗-connected if m � 3.

Proof. Since G(2m,4) is vertex transitive, we only
need to find a desired 3∗-container between verte
0 and any vertexx of G(2m,4) with x �= 0. Let
P1 be a shortest path joining 0 andx. By Theo-
rem 1, l(P1) � �(3m − 1)/4�. We may writeP1 as
〈0, x1, x2, . . . , xk, x〉. Since�(3m− 1)/4� � m− 1 for
m � 3,k � m−2, therefore by Theorem 2, there exis
a Hamiltonian cycleC of G(2m,4) − {xi | 1 � i � k}.
Clearly,C can be written as〈0,P2, x, (P3)

−1,0〉. Ac-
cordingly,P1, P2 andP3 form a 3∗-container joining
0 andx. Therefore,G(2m,4) is 3∗-connected. �
Lemma 2. Let x and y be any two different vertices of
G(16,4). Then there exists a 4∗-container C4(x, y) =
{P1,P2,P3,P4} joining x and y . In particular, P1 =
〈x, y〉 if x and y are adjacent.

Proof. Since G(2m,4) is vertex transitive, we only
need to find a desired 4∗-container between vertex
to any vertexx of G(2m,4) with x �= 0. We list this
4∗-container in Table 1.

The lemma is proved completely.�

3. Super-connected property

Lemma 3. Let x and y be two adjacent vertices in
G(2m,4) with m � 3 and k be an integer with 2 �
Proof. We prove this lemma by induction onm. With
Corollary 2, the lemma is true for anym � 3 and
k = 2. With Lemma 1, the lemma is true for an
m � 3 andk = 3. With Lemma 2, the lemma is tru
for m = 4 andk = 4. Assume that the lemma holds f
anyG(2t ,4) with t < m. We only need to consider th
casem � 5 and 4� k � m. SinceG(2m,4) is vertex
transitive, we only need to find a desiredk∗-container
of G(2m,4) between vertex 0 and any neighborx for
4 � k � m. Since the functiong is an automorphism
of G(2m,4), we have the following cases: (1)x = 1
and (2)x ≡ 4l (mod 2m) for all 1 � l � �m/2� − 1.

Case 1: x = 1. By induction, there is a(k − 2)∗-
container{Q1,Q2, . . . ,Qk−2} of G0 between 0 and 4
such thatQ1 = 〈0,4〉. Obviously,l(Qi) � 2 for 2 �
i � k − 2. Thus, we can writeQi as〈0,Ri, bi,4〉 with
bi /∈ {0,4} for 2 � i � k − 2. Let {f1(Q1), f1(Q2),

. . . , f1(Qk−2)} be the image of{Q1,Q2, . . . ,Qk−2}
under the functionf1. Thus, {f1(Q1), f1(Q2), . . . ,

f1(Qk−2)} forms a(k−2)∗-container ofG1 between 1
and 5. Since there are 2m−2 vertices inG2 andm � 4,
|V (G2)| � 4. Then there is a vertexy in G2 such that
y �= 2 andy �= 2m − 2. By Theorem 2, there exists
Hamiltonian pathS2 of G2 joining y to 2, and there
exists a Hamiltonian pathS3 of G3 joining 2m − 1 to
y + 1. We set

Pi =




〈0,1〉 for i = 1,

〈0,Ri, bi, bi + 1, (f1(Ri))
−1,1〉

for 2� i � k − 2,

〈0,4,5,1〉
for i = k − 1,

〈0,2m − 1, S3, y + 1, y, S2,2,1〉 for i = k.

Thus,{P1,P2, . . . ,Pk} forms a desiredk∗-container
of G(2m,4) between 0 andx.

Case 2: x ≡ 4l (mod 2m) for all 1 � l � �m/2�−1.
Thusx ∈ V (G0). By induction, there is a(k − 2)∗-
container{P1,P2, . . . ,Pk−2} of G0 between 0 andx
such thatP1 = 〈0, x〉. Sincex �= 0, x + 1 �= 1 and
x − 1 �≡ 2m − 1 (mod 2m). SinceGi is isomorphic
to G(2m−2,4) for all 0 � i � 3, by Theorem 2, ther
exists a Hamiltonian pathQ1 of G1, joining 1 to
x + 1; and there exists a Hamiltonian pathQ2 of G3,
joining 2m − 1 to x − 1. We rewriteQ2 as 〈2m −
1, S, t, x − 1〉. Therefore,t − 1 and x − 2 are two
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Table 1

x 4∗-containerC (0, x)
4

1 〈0,1〉, 〈0,4,3,2,1〉, 〈0,15,14,13,1〉, 〈0,12,11,10,9,8,7,6,5,1〉
2 〈0,1,2〉, 〈0,15,3,2〉, 〈0,4,5,6,2〉, 〈0,12,8,7,11,10,9,13,14,2〉
3 〈0,4,3〉, 〈0,15,3〉, 〈0,1,13,14,2,3〉, 〈0,12,11,10,6,5,9,8,7,3〉
4 〈0,4〉, 〈0,1,5,4〉, 〈0,15,3,4〉, 〈0,12,11,10,9,13,14,2,6,7,8,4〉
5 〈0,4,5〉, 〈0,1,5〉, 〈0,15,3,2,6,5〉, 〈0,12,13,14,10,11,7,8,9,5〉
6 〈0,1,5,6〉, 〈0,4,3,2,6〉, 〈0,12,11,10,6〉, 〈0,15,14,13,9,8,7,6〉
7 〈0,15,11,7〉, 〈0,12,8,7〉, 〈0,1,2,3,7〉, 〈0,4,5,9,13,14,10,6,7〉
8 〈0,4,8〉, 〈0,12,8〉, 〈0,15,11,10,6,5,9,8〉, 〈0,1,13,14,2,3,7,8〉
9 〈0,1,13,9〉, 〈0,12,8,9〉, 〈0,4,3,7,11,10,9〉, 〈0,15,14,2,6,5,9〉

10 〈0,15,11,10〉, 〈0,4,5,6,10〉, 〈0,12,13,14,10〉, 〈0,1,2,3,7,8,9,10〉
11 〈0,12,11〉, 〈0,15,11〉, 〈0,1,13,14,10,11〉, 〈0,4,3,2,6,5,9,8,7,11〉
12 〈0,12〉, 〈0,4,8,12〉, 〈0,15,14,13,12〉, 〈0,1,2,3,7,6,5,9,10,11,12〉
13 〈0,12,13〉, 〈0,1,13〉, 〈0,15,11,10,14,13〉, 〈0,4,5,6,2,3,7,8,9,13〉
14 〈0,15,14〉, 〈0,12,11,10,14〉, 〈0,4,3,2,14〉, 〈0,1,5,6,7,8,9,13,14〉
15 〈0,15〉, 〈0,1,2,3,15〉, 〈0,12,13,14,15〉, 〈0,4,5,6,7,8,9,10,11,15〉

distinct vertices inG2. By Theorem 2, there exists a x �≡ ±4l (mod 2m) for all 1 � l � �m/2�, (2) x ≡
m
Hamiltonian pathQ3 of G2, joining t − 1 to x − 2.

r,

hat

.

d

±1 (mod 4), x �= 1, andx �= 2 − 1, (3) x = 2 or

th

e

Consequently, we setPk−1 as〈0,1,Q1, x + 1, x〉 and
Pk as〈0,2m −1, S, t, t −1,Q3, x −2, x −1, x〉. Thus,
{P1,P2, . . . ,Pk} forms a k∗-container ofG(2m,4)

between 0 andx. �
Theorem 3. G(2m,4) is super-connected if and only
if m �= 2.

Proof. It is easy to see thatG(2m,4) is isomorphic
to K2 if m = 1 andG(2m,4) is isomorphic toC4 if
m = 2. Clearly,G(21,4) is super-connected. Howeve
C4 is not Hamiltonian connected. Hence,G(22,4) is
not super-connected. Now, by induction we prove t
G(2m,4) is super-connected form � 3. With Corol-
lary 1 and Lemma 1,G(23,4) is super-connected
With Corollary 1, Lemma 1, and Lemma 2,G(24,4)

is super-connected. Assume thatG(2n,4) is super-
connected for anyn with 3 � n < m with m � 5. By
Corollary 1 and Lemma 1,G(2m,4) is k∗-connected
with k = 1,2, and 3. Assume that 4� k � m. By
Lemma 3, ifx andy are adjacent then there exists ak∗-
containerCk(x, y) = {P1,P2, . . . ,Pk} of G(2m,4).
Consequently, we need to find ak∗-container between
any two nonadjacent vertices ofG(2m,4) for 4 � k �
m.

SinceG(2m,4) is vertex transitive, we only nee
to find a k∗-container between 0 andx with x �= 0,
x is not adjacent to 0, and 4� k � m. We have
the following five cases: (1)x ≡ 0 (mod 4) and
x = 2m − 2, (4)x ≡ 2± 4l (mod 2m) andx �= 2m − 2
for all 1 � l � �m/2� − 1, and (5)x ≡ 2 (mod 4) and
x �≡ 2± 4l (mod 2m) for all 1 � l � �m/2�.

Case 1: x ≡ 0 (mod 4) andx �≡ ±4l (mod 2m) for
all 1 � l � �m/2�. Thus x ∈ V (G0). By induction,
there is a(k − 2)∗-container{P1,P2, . . . ,Pk−2} of
G0 between 0 andx. Sincex �= 0, x + 1 �= 1 and
x − 1 �≡ 2m − 1 (mod 2m). Note thatGi is isomorphic
to G(2m−2,4) for all 0 � i � 3. By Theorem 2, there
exists a Hamiltonian pathQ1 of G1 joining 1 tox + 1
and there exists a Hamiltonian pathQ2 of G3 joining
2m − 1 tox − 1. We writeQ2 as〈2m − 1, S, t, x − 1〉.
Therefore,t − 1 andx − 2 are two distinct vertices in
G2. By Theorem 2, there exists a Hamiltonian pa
Q3 of G2 joining t − 1 to x − 2. We setPk−1 as
〈0,1,Q1, x + 1, x〉 andPk as 〈0,2m − 1, S, t, t − 1,

Q3, x − 2, x − 1, x〉. Thus,{P1,P2, . . . ,Pk} forms a
k∗-container ofG(2m,4) between 0 andx.

Case 2: x ≡ ±1 (mod 4), x �= 1, andx �= 2m − 1.
Thus,x ∈ V (G1) or x ∈ V (G3). Since the function
g is an automorphism ofG(2m,4), we may assume
thatx ∈ V (G1). Thus,x − 1 �= 0. By induction, there
exists a(k − 2)∗-container{P1,P2, . . . ,Pk−2} of G0

between 0 andx − 1. Without loss of generality, w
assume thatl(P1) � l(Pi) for all 2 � i � k−2. Hence,
l(Pi) � 2 for 2� i � k − 2. Thus, we can writePi as
〈0,Ri, bi, x −1〉 for 1 � i � k−2. Note thatl(R1) = 0
if b1 = 0.
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Obviously,bi + 1 is a neighborhood ofx for 1 �
i � k − 2. Let B = {(x, x ± 4i (mod 2m)) | 1 � i �

s

,
r

th

s
e

of G0 between 0 and 4 such thatP1 = 〈0,4〉. Hence
l(Pi) � 2 for 2� i � k − 2. Without loss of general-

t

-
e

a

�m/2� − 1 and x ± 4i �≡ bj + 1 (mod 2m) for all
1 � j � k − 2}. We setF1 to be the union ofB
and the set{ai | 3 � i � k − 2 and ai = bi + 1}.
Clearly, |F1| = m − 4 and the only neighbors ofx in
G1 − F1 are a1 and a2. By Theorem 2, there exist
a Hamiltonian cycleC of G1 − F1. We can writeC

as 〈x, a1, S1,1, S2, a2, x〉. Without loss of generality
we may assume thatl(S1) � l(S2). Since the numbe
of vertices inG1 − F1 are 2m−2 − k + 4 with k �
m, l(C) � 7. Thus,l(S2) � 3. We can rewriteS2 as
〈1, v, T ,u, a2〉 with l(T ) � 0.

Clearly,u + 1 andv + 1 are two distinct vertices in
G2. By Theorem 2, there exists a Hamiltonian pa
S of G2 joining u + 1 and v + 1. We write S as
〈u+1, S3,w,x +1, t, S4, v +1〉. Thus, one of vertice
w andt is not 2m − 2. Without loss of generality, w
assume thatt �= 2m − 2. Again, we can writeS as
〈u+1, S5, x+1, t, S4, v+1〉. SinceG3 is Hamiltonian
connected, there exists a Hamiltonian pathS6 of G3
joining 2m − 1 andt + 1. We set

Qi =




〈0,P1, x − 1, x〉 for i = 1,

〈0,Ri, bi, bi + 1, x〉 for 2� i � k − 2,

〈0,1, S1, a1, x〉 for i = k − 1,

〈0,2m − 1, S6, t + 1, t, S4, v + 1, v, T ,u,

u + 1, S5, x + 1, x〉 for i = k.

Apparently,{Q1,Q2, . . . ,Qk} forms ak∗-container
of G(2m,4) between vertices 0 andx, as shown by
Fig. 2.

Case 3:x = 2 orx = 2m−2. Sinceg is an automor-
phism ofG(2m,4), we consider only the casex = 2.
Note that 0 and 4 are adjacent inG0. By Lemma 3,
there exists a(k − 2)∗-container{P1,P2, . . . ,Pk−2}

Fig. 2. Illustration of Theorem 3, Case 2.
ity, we assume thatl(Pk−2) � l(Pi) for 1 � i � k − 3.
Therefore, we can writePi as 〈0, ai,Ri, bi,4〉 for
2 � i � k − 3. Note thatai = bi if l(Ri) = 0. Ob-
viously, l(Pk−2) � �(2m−2 − 2)/(k − 3)� + 1. Since
4 � k � m and m � 5, l(Pk−2) � 4. We can write
Pk−2 as〈0, ak−2,Rk−2, y, z,4〉. Note thatl(Rk−2) = 0
if l(Pk−2) = 4. Therefore,z �= 0. Suppose thatm � 6.
By Theorem 2, there exists a Hamiltonian pathS

of G1 − {1} joining y − 3 andz − 3. Suppose tha
m = 5. ThenV (G0) = {0,4,8,12,16,20,24,28} and
G0 is isomorphic toG(8,4). There are three ver
tices 0, 8, and 20 inG0 adjacent to vertex 4. Sinc
z �= 0, z ∈ {8,20}. Hence z − 3 ∈ {5,17}. Conse-
quently, (y − 3, z − 3) is an edge ofG1 and hence
(y −3, z−3) ∈ {(9,5), (21,5), (13,17), (21,17)}.We
can find a Hamiltonian pathS of G1−{1} joiningy−3
andz − 3 in Table 2.

Now, we set

Qi =




〈0,4,3,2〉 for i = 1,

〈0, ai,Ri, bi, bi − 1, (h1(Ri))
−1, ai − 1,

ai − 2, h2(Ri), bi − 2,2〉 for 2 � i � k − 3,

〈0, ak−2,Rk−2, y, z, z − 1, y − 1,

(h1(Rk−2))
−1, ak−2 − 1, ak−2 − 2,

h2(Rk−2), y − 2, y − 3, S, z − 3, z − 2,2〉
for i = k − 2,

〈0,1,2〉 for i = k − 1,

〈0,2m − 1,2m − 2,2〉 for i = k.

Apparently,{Q1,Q2, . . . ,Qk} forms ak∗-container of
G(2m,4) between 0 andx.

Case 4: x ≡ 2 ± 4l (mod 2m) andx �= 2m − 2 for
all 1 � l � �m/2� − 1. Clearly,x is in G2. Therefore,
x−2 is adjacent to 0 inG0. By Lemma 3, there exists
(k − 2)∗-container{P1,P2, . . . ,Pk−2} of G0 between
0 andx −2 such thatP1 = 〈0, x −2〉. Hencel(Pi) � 2
for 2� i � k−2. We can writePi as〈0, ai,Ri, bi, x−
2〉 for 2 � i � k − 2. Sincex �= 2m − 2, x + 1 and
2m − 1 are two distinct vertices ofG3. By Theorem 2,

Table 2

(y − 3, z − 3) S

(9,5) 〈9,25,29,13,17,21,5〉
(13,17) 〈13,29,25,9,5,21,17〉
(21,5) 〈21,17,13,29,25,9,5〉
(21,17) 〈21,5,9,25,29,13,17〉
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there exists a Hamiltonian pathT of G3 joining x + 1
and 2m − 1. We set

of

of this paper is proving that the recursive circulant
graphsG(2m,4) have super-connected property if and

t

g

g

f

n-
.
s,

ive

ty
phs,

0

u-

nts
put.

il-
-

Qi =




〈0, x − 2, x − 1, x〉 for i = 1,

〈0, ai,Ri, bi, f1(bi), (f1(Ri))
−1, f1(ai),

f2(ai), f2(Ri), f2(bi), x〉 for 2� i � k − 2,

〈0,1,2, x〉 for i = k − 1,

〈0,2m − 1, T , x + 1, x〉 for i = k.

Thus, {Q1,Q2, . . . ,Qk} forms a k∗-container of
G(2m,4) between 0 andx.

Case 5: x ≡ 2 (mod 4) andx �≡ 2± 4l mod 2m) for
all 1 � l � �m/2�. By induction, there is a(k − 2)∗-
container{P1,P2, . . . ,Pk−2} of G0 between 0 and
x − 2. Sincex − 2 �≡ ±4l (mod 2m), l(Pi) � 2 for all
1 � i � k − 2. We can writePi as〈0, ai,Ri, bi, x − 2〉
for 1 � i � k − 2. We recursively define a sequence
vertices inG3 as follows: Setz1 = 3 andzi = zi−1 +4
for 2 � i � 2m−2. Clearly, 〈3 = z1, z2, . . . , z2m−2 =
2m − 1,3 = z1〉 forms a Hamiltonian cycleC of G3.
Sincex − 2 �≡ ±4l (mod 2m), x − 3, x + 1, 2m − 1,
and 3 are four distinct vertices ofG3. We may writeC
as〈3, S, x − 3, x + 1, T ,2m − 1,3〉. Now, we set

Qi =




〈0, ai,Ri, bi, f1(bi), (f1(Ri))
−1, f1(ai),

f2(ai), f2(Ri), f2(bi), x〉
for 1 � i � k − 2,

〈0,1,2,3, S, x − 3, x − 2, x − 1, x〉
for i = k − 1,

〈0,2m − 1, T −1, x + 1, x〉
for i = k.

Thus, {Q1,Q2, . . . ,Qk} forms a k∗-container of
G(2m,4) between 0 andx. �
4. Conclusions

Recursive circulant graphsG(2m,4) are the major
concern in this paper.G(2m,4) has the connectivitym
and the diameter�(3m − 1)/4�; which is less thanm,
the diameter of the hypercubeQm. The main result
only if m �= 2. A k-containerCk(u, v) between two
distinct vertexu and v in G is a set ofk disjoint
paths betweenu and v. The length of aCk(u, v),
written as l(Ck(u, v)), is the length of the longes
path inCk(u, v). Thek-wide distance betweenu and
v is dk(u, v), which is the minimum length amon
all k-containers betweenu and v. Let κ be the
connectivity ofG. The wide diameter ofG, denoted
by Dκ(G), is the maximum ofκ-wide distances
among all pairs of verticesu,v in G, u �= v. Assume
that G is k∗-connected. We may define thek∗-wide
distance between any two verticesu and v, denoted
by d∗

k (u, v), which is the minimum length amon
all k∗-containers betweenu and v. Let D∗

k (G) =
max{d∗

k (u, v) | u and v are two different vertices o
G}. We say thatD∗

k (G) is thek∗-diameter ofG. In our
future work, we are interested to findD∗

k (G(2m,4))

for 2 � k � m.
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