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Abstract

The star graph possess many nice topological properties. Edge fault tolerance is an

important issue for a network since the edges in the network may fail sometimes. In this

paper, we show that the n-dimensional star graph is (n� 3)-edge fault tolerant hamil-

tonian laceable, (n� 3)-edge fault tolerant strongly hamiltonian laceable, and (n� 4)-

edge fault tolerant hyper hamiltonian laceable. All these results are optimal in a sense

described in this paper.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Star graph; Hamiltonian laceable; Strongly hamiltonian laceable; Hyper hamiltonian

laceable; Fault tolerant
1. Introduction

Network topology is a crucial factor for a network since it determines the

performance of the network. For convenience of discussing their properties,

networks are usually represented by graphs. In this paper, a network topology

is represented by a simple undirected graph, which is loopless and without
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multiple edges. For the graph definition and notation we follow [5]. G ¼ ðV ;EÞ
is a graph if V is a finite set and E is a subset of fða; bÞja 6¼ b 2 V g, where (a; b)
denotes an unordered pair. We call V the vertex set and E the edge set. a and b
are adjacent if and only if ða; bÞ 2 E. A path is a sequence of adjacent vertices,
denoted by hv0; v1; . . . ; vki, in which v0; v1; . . . ; vk are distinct except that pos-

sibly v0 ¼ vk. The length of the path is k. For ease of description, we may use P
or hv0; P ; vki to denote the path. A hamiltonian path of G is a path which

crosses all vertices of G. A graph G is hamiltonian connected if there exists a

hamiltonian path joining any two vertices of G.
Hypercubes [12] and stars [1] are bipartite graphs. A graph G ¼ ðV0 [ V1;EÞ

is bipartite if V0 \ V1 ¼ ; and E � fða; bÞja 2 V0 and b 2 V1g. Given vertices x
and y, we say that x and y are in the same partite set if x; y 2 Vi or in different
partite sets if x 2 Vi and y 2 V1�i for i 2 f0; 1g. However, the concept of

hamiltonian connectivity does not apply to bipartite graphs because bipartite

graphs are definitely not hamiltonian connected except for a few exceptions

such as K2 or K1. As such a property is important, Wong [19] introduced the

concept of hamiltonian laceability on bipartite graphs. A bipartite graph

G ¼ ðV0 [ V1;EÞ is hamiltonian laceable if there is a hamiltonian path between

any two vertices x and y which are in different partite sets. It is trivial that jV0j
must be equal to jV1j. On the condition of jV0j ¼ jV1j, Hsieh et al. [10] extended
this concept and proposed the concept of strongly hamiltonian laceability. G is

strongly hamiltonian laceable if it is hamiltonian laceable and there is a path of

length jV0j þ jV1j � 2 between any two vertices in the same partite set. Lewinter

and Widulski [13] introduced another concept, hyper hamiltonian laceability. G
is hyper hamiltonian laceable if it is hamiltonian laceable and for any vertex

v 2 Vi , there is a hamiltonian path of G� v between any two vertices in V1�i. So

hyper hamiltonian laceability is definitely also strongly hamiltonian laceabil-

ity.
Fault tolerance is an important property of network performance. Hsieh,

Chen, and Ho [9] proposed the edge fault-tolerant hamiltonicity to measure the

performance of the hamiltonian property in the faulty networks. A graph G is

k-edge-fault tolerant hamiltonian if G� F remains hamiltonian for every

F � EðGÞ with jF j6 k. Extending this concept, we introduce the following

indicators. The edge fault tolerant hamiltonian laceability of the graph G is the

integer value f such that for any F � EðGÞ with jF j6 f , G� F is still hamil-

tonian laceable and there exits F 0 � EðGÞ with jF 0j ¼ f þ 1 such that G� F 0 is
not hamiltonian laceable. We use eftHLðGÞ to denote this capacity. Similarly,

we can define the edge fault tolerant strongly hamiltonian laceability of G, de-
noted by eftSHLðGÞ, and the edge fault tolerant hyper hamiltonian laceability of

G, denoted by eftHHLðGÞ. eftSHLðGÞ is the integer f such that for any

F � EðGÞ with jF j6 f , G� F is still strongly hamiltonian laceable and there

exits F 0 � EðGÞ with jF 0j ¼ f þ 1 such that G� F 0 is not strongly hamiltonian

laceable. eftHHLðGÞ is the integer f such that for any F � EðGÞ with jF j6 f ,
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G� F is still hyper hamiltonian laceable and there exits F 0 � EðGÞ with

jF 0j ¼ f þ 1 such that G� F 0 is not hyper hamiltonian laceable. We say a

graph G is optimal with respect to eftHL (eftSHL, eftHHL, respectively) if for

a fixed number of vertices, G contains the least number of edges among all
graphs G0 with eftHLðG0Þ¼eftHLðGÞ (eftSHLðG0Þ¼eftSHLðGÞ, eftHHLðG0Þ¼
eftHHLðGÞ).

This paper is to study these three indicators of the star graphs. The star

graphs [2] are Cayley graphs. They have many nice properties such as recur-

siveness, vertex and edge symmetry, maximal fault tolerance, sublogarithmic

degree and diameter [2]. These properties are important for designing inter-

connection topologies for parallel and distributed systems. Star graphs are able

to embed cycles [19], grids [11], trees [3], and hypercubes [16]. Many efficient
communication algorithms for shortest-path routing [17], multiple-path rout-

ing [6], broadcasting [15], gossiping [4], and scattering [8] were proposed. And

many efficient algorithms designed for sorting and merging [14], selection [17],

Fourier transform [7], and computational geometry [18] have been proposed.

As a result, star graphs are recognized as an attractive alternative to the hy-

percubes.

In this paper, we show that the n-dimensional star graphs are optimal with

respect to the edge fault tolerant hamiltonian laceability, the edge fault tolerant
strongly hamiltonian laceability, and the edge fault tolerant hyper hamiltonian

laceability. In the next section, we introduce the definition of star graphs. And

then in Section 3, we show our main result. Finally, we make our conclusion in

Section 4.
2. Definition and basic properties

In this section, we introduce the definition and some properties of the star

graph.

Definition 1. The n-dimensional star graph is denoted by Sn. The vertex set V of
Sn is fa1 . . . anja1 . . . an is a permutation of 1; 2; . . . ; ng and the edge set E is

fða1a2 . . . ai�1aiaiþ1 . . . an; aia2 . . . ai�1a1aiþ1 . . . anÞja1 . . . an 2 V and 26 i6 ng.

By definition, Sn contains n! vertices and each vertex is of degree (n� 1). For

example, vertex 1234 in S4 connects to 2134, 3214, and 4231. S1, S2, and S3 are a
vertex, an edge, and a cycle of length 6, respectively. We show S4 in Fig. 1. It is

easy to observe that there are four vertex-disjoint S3’s embedded in S4. The
following proposition states this property.

Proposition 1. There are n!
k! vertex-disjoint Sk’s embedded in Sn for kP 1.
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Fig. 1. Four-dimensional star graph.
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Proof. Let B ¼ fbkþ1 . . . bnjbkþ1 . . . bn is a permutation of any ðn� kÞ elements

of 1; 2; . . . ; ng. So jBj ¼ n!
k!. For any bkþ1 . . . bn 2 B, let Sbkþ1...bn

k denote the in-

duced subgraph of Sn with vertex set fa1 . . . anjakþ1 . . . an ¼ bkþ1 . . . bng. Obvi-

ously, Sbkþ1...bn
k and S

b0kþ1
���b0n

k are vertex-disjoint for bkþ1 � � � bn 6¼ b0kþ1 � � � b0n and
V ðSnÞ ¼

S
bkþ1���bn2B V ðS

bkþ1���bn
k Þ.

Let u ¼ u1 . . . ukbkþ1 � � � bn be some vertex in Sbkþ1...bn
k . Define f k

u ða1 . . . anÞ ¼
i1 . . . ik for aj ¼ uij and 16 j6 k. For example, let u ¼ 54123 be a vertex in S5.
Then f 2

u ð54123Þ ¼ 12 and f 2
u ð45123Þ ¼ 21. We can easily check that

ff k
u ðvÞjv 2 V ðSbkþ1...bn

k Þg ¼ V ðSkÞ and ðf k
u ðv1Þ; f k

u ðv2ÞÞ is an edge if and only if

(v1; v2) is an edge. So Sbkþ1...bn
k ffi Sk and the proposition follows. h

In the following discussion, we will frequently use the notation Sbkþ1...bn
k de-

fined in the proof above. We call Sbkþ1...bn
k a substar of Sn or specifically, a k-

dimensional substar of Sn. Let u be a vertex not in Sbkþ1...bn
k . We say that u is

adjacent to Sbkþ1...bn
k if u is adjacent to a vertex in Sbkþ1...bn

k . And we call Sbkþ1...bn
k

an adjacent substar of u. The following proposition and corollary are con-

cerning adjacent substars:

Proposition 2. Given k with 16 k6 n� 1 and bkþ1 . . . bn, a vertex u ¼ u1 . . . un is
adjacent to Sbkþ1...bn

k if and only if ukþ1 . . . ui�1u1uiþ1 . . . un ¼ bkþ1bkþ2 . . . bn for
some i with k þ 16 i6 n.
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Corollary 1. There are ðk � 1Þ! edges between Sbkþ1...bn
k and S

b0kþ1
...b0n

k if there is
exactly one different bit between bkþ1 . . . bn and b0kþ1 . . . b

0
n.

Proof. Without loss of generality, assume that bkþ1 6¼ b0kþ1 and bkþ2 . . . bn ¼
b0kþ2 . . . b

0
n. The first bit of all vertices in Sbkþ1...bn

k being adjacent to S
b0kþ1

...b0n
k must

be b0kþ1. So the number of these vertices is ðk � 1Þ!. And the corollary

follows. h

For example, there are ðn� 2Þ!-edges between Si
n�1 and Sj

n�1 for 16 i 6¼ j6 n.
We use Ei;jðSnÞ to denote the set of these edges. And we call these edges out-

going edges of Si
n�1 (or S

j
n�1). Particularly, we say (u; v) an outgoing edge of u if

ðu; vÞ 2 Ei;jðSnÞ for some 16 i 6¼ j6 n.
It has been shown that the star graphs are edge symmetric [2], i.e., for any

two edges ðx; yÞ; ðu; vÞ 2 EðSnÞ, there is an automorphism of Sn mapping x; y
into u; v, respectively. For ease of description, we use pðF Þ to denote the edge

set fðpðuÞ; pðvÞÞjðu; vÞ 2 F g if p is an automorphism of Sn and F � ðSnÞ. Thus,
we have following proposition.

Proposition 3. Let F � EðSnÞ. Then there is an edge set F 0 � EðSnÞ and an
automorphism p of Sn such that pðF Þ ¼ F 0 and jF 0 \ EðSi

n�1Þj6 jF j � 1 for each
16 i6 n.

Proof. If jF \ EðSi
n�1Þj6 jF j � 1 for each 16 i6 n, let F 0 be F and p be the

identity mapping. Then the statement follows. Otherwise, choose an arbitrary

edge ðx; yÞ 2 F . With the edge symmetric property, there is an automorphism p
of Sn such that pðxÞ ¼ 123 . . . ðn� 1Þn and pðyÞ ¼ n23 . . . ðn� 1Þ1. Let

F 0 ¼ pðF Þ. So ð123 . . . ðn� 1Þn; n23 . . . ðn� 1Þ1Þ 2 F 0. But ð123 . . . ðn� 1Þn;
n23 . . . ðn� 1Þ1Þ 62 EðSi

n�1Þ for all 16 i6 n. Thus, jF 0 \ EðSi
n�1Þj6 jF j � 1 for

each 16 i6 n. h

By this proposition, given any edge set F � EðSnÞ, we may assume that

jF \ EðSi
n�1Þj6 jF j � 1 for each 16 i6 n. This property will help us simplify the

proof a lot.
3. Main result

In this section, we present our main result on the three indicators, which are

the edge fault tolerant hamiltonian laceability (eftHL), edge fault tolerant

strongly hamiltonian laceability (eftSHL), and edge fault tolerant hyper

hamiltonian laceability (eftHHL) of the star graphs. We provide a lemma to

give three upper bounds for the bipartite graphs and then three theorems to
give the exact values for the three indicators on the star graphs. We will see that
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all the values match the upper bounds. So the star graphs are optimal with

respect to these properties. Now we show the upper bounds.

Lemma 1. Let G ¼ ðV0 [ V1;EÞ be a bipartite graph with jV0j ¼ jV1j and let d be
the minimum degree of G among all vertices. We have eftHLðGÞ6 d� 2,
eftSHLðGÞ6 d� 2 for dP 2, and eftHHLðGÞ6 d� 3 for dP 3.

Proof. Assume that the degree of vertex u is d. Removing (d� 1)-edges con-

necting to u. Suppose that v is the remainder vertex connecting to u and v0 is a
neighbor of v which is not u (see Fig. 2). Then it is easy to check that there is no

hamiltonian path from v to v0. So G is at most (d� 2)-edge fault tolerant

hamiltonian laceable and obviously, at most (d� 2)-edge fault tolerant
strongly hamiltonian laceable.

Then consider removing (d� 2)-edges which connect to u. Suppose that v1
and v2 are the remainder vertices connecting to u and let u0 be a vertex con-

necting to v1 which is not u (see Fig. 3). Then it is easy to check that there is no

hamiltonian path of G� u0 from v1 to v2. So G is at most (d� 3)-edge fault

tolerant hyper hamiltonian laceable.

Hence, the lemma follows. h
u

v

v'

Fig. 2. Upper bound for eftHLðGÞ.

u

v
1

u'

v
2

Fig. 3. Upper bound for eftHHLðGÞ.
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Next, we show the capacity of star graphs on these three indicators. First, we

use a computer program to check the base case S4 (see Fig. 1) and the case

indeed holds for S4. So we state the results in the following lemma. Then we

prove our results by induction.

Lemma 2. S4 is 1-edge fault tolerant hamiltonian laceable, 1-edge fault tolerant
strongly hamiltonian laceable, and hyper hamiltonian laceable.

To make the proofs clear, we introduce the following transform:

Definition 2. Given a fixed n, let V � f1; 2; . . . ; ng and F � EðSnÞ. Then

STGnðV ; F Þ is the graph GðV ;EÞ such that E ¼ fði; jÞji; j 2 V and
Ei;jðSnÞ \ F < ðn�2Þ!

2
g. (STG means to transmit a star graph to another graph.)

In fact, STGn maps the substar Si
n�1 in (Sn � F ) into the vertex i in G for all

i 2 V . And for i 6¼ j 2 V , if i and j are adjacent in G, there is a vertex in each

partite set of Si
n�1 adjacent to Sj

n�1 in (Sn � F ). So we have following lemma:

Lemma 3. Let G ¼ STGnðV ; F Þ for V � f1; 2; . . . ; ng with jV jP 2 and
F � EðSnÞ. And let x 2 Sj1

n�1 and y 2 Sj2
n�1 with j1 6¼ j2 2 V such that x; y are in

different partite sets. Assume that Si
n�1 � F is hamiltonian laceable for each

i 2 V . Then there is a path from x to y crossing all vertices in all Si
n�1 for i 2 V

without crossing edges in F if there is a hamiltonian path from j1 to j2 in G.

Proof. Let jV j ¼ h. And let hj1; j3; j4; . . . ; jh; j2i be a hamiltonian path from j1 to
j2 in G. Since j1 and j3 are adjacent in G, we can find a vertex v1 2 V ðSj1

n�1Þ
adjacent to Sj3

n�1 such that v1; x are in different partite sets and the outgoing

edge, say (v1; u3), of v1 is not in F (see Fig. 4). Similarly, we can find vertices
v3 2 Sj3

n�1; v
4 2 Sj4

n�1; . . . ; v
h 2 Sjh

n�1 adjacent to Sj4
n�1; S

j5
n�1; . . . ; S

j2
n�1, respectively,

such that v1; v3; v4; . . . ; vh are in the same partite set and the outgoing edges of

these vertices are not in F . Assume that the outgoing edges of these vertices are

ðv3; u4Þ; ðv4; u5Þ; . . . ; ðvh; v2Þ. Then by assumption that each Si
n�1 � F is hamil-

tonian laceable, we can construct a path from x to y crossing all vertices in all

Si
n�1 for i 2 V as follows:
1
1

j
nS  

2

1
j

nS  
hj

nS 1 
4
1

j
nS  

3

1
j

nS  - - - - -

x

v 1

u 3

v 3

u 4

v 4

u h

v h

u 2

y

Fig. 4. Remaining path.
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hx; . . . ; v1; u3; . . . ; v3; u4; . . . . . . . . . ; vh; u2; . . . ; yi
Hence, the lemma follows. h

Now we can show our first result:

Theorem 1. Sn is (n� 3)-edge fault tolerant hamiltonian laceable for nP 4.

Proof. We prove it by induction. By Lemma 2, we know that S4 is 1-edge fault
tolerant hamiltonian laceable. In the induction step, we assume that Sn�1 is

(n� 4)-edge fault tolerant hamiltonian laceable for nP 5. Then consider Sn.
Let F � EðSnÞ be arbitrary faulty edge set such that jF j6 n� 3. By Propo-

sition 3, we may assume that jF \ EðSi
n�1Þj6 n� 4 for each 16 i6 n. So

Si
n�1 � F is still hamiltonian laceable for each 16 i6 n. Let x 2 V ðSj1

n�1Þ and

y 2 V ðSj2
n�1Þ such that x; y are in different partite sets. We shall construct a fault-

free hamiltonian path from x to y. Consider the following two cases:

Case 1. j1 6¼ j2. Let V ¼ f1; 2; . . . ; ng. Since jF j6 n� 3 < ðn�2Þ!
2

for nP 5,

Ei;jðSnÞ \ F < ðn�2Þ!
2

for any i 6¼ j 2 V . So G ¼ STGnðV ; F Þ is a complete graph.

It is easy to find a hamiltonian path of G from j1 to j2. By Lemma 3, there is a

hamiltonian path of Sn from x to y.
Case 2. j1 ¼ j2 ¼ j. There is a hamiltonian path P of Sj

n�1 from x to y. The
length of P is ðn� 1Þ!� 1. So we can find an edge, say (u; v), on path P such

that the outgoing edges of u and v are fault-free. (If such (u; v) does not exist,
jF jP ðn�1Þ!�1

2
> n� 3 for nP 5.) Let P ¼ hx; P1; u; v; P2; yi and ðu; v0Þ; ðv; u0Þ are

the outgoing edges of u and v, where v0 2 Sj3
n�1 and u0 2 Sj4

n�1 (see Fig. 5). v
0 and

u0 are in different partite sets of Sn and j3 6¼ j4. Let V ¼ f1; 2; . . . ; ng � j. Then
j
S

3
j

n -1

n -1

n -1
S 4

j
S  

x

y

u v

v' u'

Fig. 5. x and y are in the same substar.
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G ¼ STGnðV ; F Þ is a complete graph with (n� 1) vertices since ðn�2Þ!
2

> jF j for
nP 5. Thus, there is a hamiltonian path of G from j3 to j4. By Lemma 3, there

is a path P3 crossing all vertices of all Si
n�1 for i 2 V from v0 to u0. So a ham-

iltonian path of Sn from x to y can be constructed as follows:
hx; P1; u; v0; P3; u0; v; P2; yi
Hence, the theorem follows. h

Since Sn is (n� 1) regular, by Lemma 1, Sn is optimal with respect to edge

fault tolerant hamiltonian laceability and eftHLðSnÞ ¼ n� 3.

Theorem 2. Sn is (n� 3)-edge fault tolerant strongly hamiltonian laceable for
nP 4.

Proof. We also prove it by induction. S4 is shown to be 1-edge fault tolerant

strongly hamiltonian laceable in Lemma 2. So we need only to consider the

induction step. Assume that Sn�1 is (n� 4)-edge fault tolerant strongly hamil-

tonian laceable for nP 5 and consider Sn.
Given any fault edge set F in Sn with jF j6 n� 3, by Proposition 3, we can

assume that jF \ EðSi
n�1Þj6 n� 4 for each 16 i6 n. So Si

n�1 � F is still strongly

hamiltonian laceable for each 16 i6 n. Let x 2 V ðSj1
n�1Þ and y 2 V ðSj2

n�1Þ such
that x and y are in the same partite set. Consider the following two cases:

Case 1. j1 6¼ j2. Let Ve be the number of vertices which are in the different

partite set from x and which are not adjacent to Sj2
n�1. Then Ve is equal to

ðn�1Þ!
2

� ðn�2Þ!
2

which is strictly greater than jF j. So there is a fault-free edge

(u1; v3), i.e., not in F , such that u1 2 V ðSj1
n�1Þ, v3 2 V ðSj3

n�1Þ for j3 62 fj1; j2g, and
x; y; u1 are in the same partite set of Sn (see Fig. 6). By the induction hypothesis,

there is a path P1 of length ðn� 1Þ!� 2 in Sj1
n�1 from x to u1. Then consider the

remainder subgraphs. Let V ¼ f1; 2; . . . ; ng � fj1g. Thus, jV jP 2 and
G ¼ STGnðV ; F Þ is a complete graph. There is a hamiltonian path of G from j3
to j2. Since u1 and y are in the same partite set, y and v3 are in different partite

sets. So there is a path P2 crossing all vertices of all Si
n�1 for i 2 V from v3 to y.
1
jS 2

j
S3

j
S

x

u 1
v 3

y

| P1  | = (n-1)! -2

| P2  | = (n-1)(n-1)! -1

n -1 n -1 n -1

Fig. 6. x and y are in different substars.
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The length of this path is ðn� 1Þðn� 1Þ!� 1. We can construct a path from x
to y as follows:
hx; P1; u1; v3; P2; yi
The length of this path is
½ðn� 1Þ!� 2� þ 1þ ½ðn� 1Þðn� 1Þ!� 1� ¼ n!� 2
So the theorem follows in this case.

Case 2. j1 ¼ j2 ¼ j. The proof of this case is similar to that of case 2 in
Theorem 1 except that the path in Sj

n�1 from x to y is of length ðn� 1Þ!� 2.

Hence, the theorem follows. h

Since Sn is (n� 1) regular, by Lemma 1, Sn is also optimal with respect to the

edge fault tolerant strongly hamiltonian laceability.

Theorem 3. Sn is (n� 4)-edge fault tolerant hyper hamiltonian laceable for nP 4.

Proof. The proof is a little more complex than the previous two theorems.

Again, S4 is hyper hamiltonian laceable by Lemma 2. So we show that the

statement is true for nP 5. Assume that Sn�1 is (n� 5)-edge fault tolerant hyper

hamiltonian laceable for nP 5.

Let F be a faulty edge set in Sn with jF j6 n� 4. By Proposition 3, we may

assume that jF \ EðSi
n�1Þj6 n� 5 for each 16 i6 n. So Si

n�1 � F is still hyper

hamiltonian laceable and obviously, strongly hamiltonian laceable for each

16 i6 n. Given a vertex v, in the following we will construct a hamiltonian
path of ðSn � F Þ � v between any two vertices in the partite set which v is not

in. Let x and y be two such vertices. Consider the following four cases:

Case 1. v; x; y are in the same substar, say Sj1
n�1 (see Fig. 7(a)). By the

induction hypothesis, there is a hamiltonian path P of ðSj1
n�1 � F Þ � v from x to

y. The length of P is ðn� 1Þ!� 2 > 2jF j for nP 5. So there is an edge (u1; v1) on
P such that the outgoing edges of u1 and v1, say (u1; v2) and (v1; u3), are fault-

free. (x; u1 are not necessary in the same partite set.) Let P ¼ hx; P1; u1; v2; P2; yi.
Clearly, v2 and u3 are in different partite sets of Sn. Assume that v2 2 Sj2

n�1 and
u3 2 Sj3

n�1. So j2 6¼ j3. Let V ¼ f1; 2; . . . ; ng � fj1g. Then STGnðV ; F Þ is a com-

plete graph. There is a hamiltonian path from j2 to j3 and so a path P3 from v2

to u3 crossing all vertices of Si
n�1 for all i 2 V . Therefore, we can construct a

hamiltonian path of ðSn � F Þ � v as: hx; P1; u1; v2; P3; u3; v1; P2; yi.
Case 2. v; x 2 Sj1

n�1 and y 2 Sj2
n�1 with j1 6¼ j2 (see Fig. 7(b)). Let j3 6¼ j2. Since

ðn�2Þ!
2

� 1 > jF j for nP 5, we can easily find a vertex u1 6¼ x 2 Sj1
n�1 such that u1

and x are in the same partite set and the outgoing edge of u1, say (u1; v3), is
fault-free. (Note that since u1 6¼ x, there are ðn�2Þ!

2
� 1 choices for u1 in Sj1

n�1.) By
the induction hypothesis, there is a hamiltonian path P1 of ðSj1

n�1 � F Þ � v from
x to u1. Let V ¼ f1; 2 . . . ; ng � fj1g. Then STGnðV ; F Þ is a complete graph. Note
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that v3 and y are in different partite sets. So there is a hamiltonian path from j3
to j2 and a path P2 from v3 to y crossing all vertices of all Si

n�1 for i 2 V . Hence,

we have a hamiltonian path hx; P1; u1; v3; P2; yi of ðSn � F Þ � v.
Case 3. v 2 Sj1

n�1 and x; y 2 Sj2
n�1 with j1 6¼ j2 (see Fig. 7(c)). Since

ðn�2Þ!
2

> jF j,
there is a vertex v0 2 V ðSj2

n�1Þ adjacent to Sj1
n�1 such that the outgoing edge of v0,

say (v0; u1), is fault-free and v0; v are in the same partite set. By the induction

hypothesis, there is a hamiltonian path P of ðSj2
n�1 � F Þ � v0 from x to y. Since

there are (n� 2) neighbors of v0 in Sj2
n�1 and jF j < ðn� 2Þ, there exists an edge

(u2; v2) on P such that u2 is adjacent to v0 and the outgoing edge of v2, say
(v2; u3), is fault-free. Clearly, j3 62 fj1; j2g since v2; v0 are neighbors of u2 but

v2 6¼ v0. Let P ¼ hx; P1; u2; v2; P2; yi. (Note that P may be hx; P1; v2; u2; P2; yi and
the argument of this case is similar to the following discussion.) Let

j4 62 fj1; j2; j3g. Since ðn�2Þ!
2

� 1 > jF j for nP 5, there is a vertex w1 2 Sj1
n�1

adjacent to Sj4
n�1 such that w1; u1 are in the same partite set and the outgoing
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edge of w1, say (w1; v4), is fault-free. So v4 2 V ðSj4
n�1Þ and v4; u3 are in different

partite sets. By the induction hypothesis, there is a hamiltonian path P3 of

ðSj1
n�1 � F Þ � v from u1 to w1. Let V ¼ f1; 2; . . . ; ng � fj1; j2g. Then STGnðV ; F Þ

is a complete graph. There is a hamiltonian path from j4 to j3 and so a path P4
crossing all vertices of Si

n�1 for all i 2 V from v4 to u3. Thus, we have a ham-

iltonian path of ðSn � F Þ � v as follows:
hx; P1; u2; v0; u1; P3;w1; v4; P4; u3; v2; P2; yi:

Case 4. v 2 Sj1

n�1, x 2 Sj2
n�1, and y 2 Sj3

n�1 for distinct j1, j2, and j3 (see Fig.

7(d)). Since ðn�2Þ!
2

> jF j, there is a vertex u2 2 V ðSj2
n�1Þ adjacent to Sj1

n�1 such that

u2; x are in different partite sets and the outgoing edge of u2, say (u2; v1), is fault-
free. By the induction hypothesis, there is a hamiltonian path P1 of (S

j2
n�1 � F )

from x to u2. Let j4 62 fj1; j2; j3g. In Sj1
n�1, since

ðn�2Þ!
2

� 1 > jF j, there is a vertex

w1 6¼ v1 adjacent to Sj4
n�1 such that w1; v1 are in the same partite set and the

outgoing edge of w1, say (w1; u4), is fault-free. By the induction hypothesis,

there is also a hamiltonian path P2 of ðSj1
n�1 � F Þ � v from v1 to w1. For the

remaining substars, let V ¼ f1; 2; . . . ; ng � fj1; j2g. Then G ¼ STGnðV ; F Þ is a

complete graph. So there is a hamiltonian path of G from j4 to j3 and thus, a

path P3 from u4 to y crossing all vertices of Si
n�1 for all i 2 V . Finally, we have a

hamiltonian path hx; P1; u2; v1; P2;w1; u4; P3; yi of ðSn � F Þ � v.
Hence, the theorem follows. h

Since Sn is (n� 1) regular, by Lemma 1, Sn is optimal with respect to the edge

fault tolerant hyper hamiltonian laceability.
4. Conclusion

Fault tolerance is an important research subject of the multi-process com-

puter systems. Graphs are usually used to represent the interconnection

architecture of these systems, where vertices represent processors and edges

represent links between processors. Many researches concerned the vertex-fault

tolerant or edge-fault tolerant properties of some specific graphs. In this paper,

we study some fault tolerant results of the star graphs. We show that the n-
dimensional star graph is (n� 3)-edge fault tolerant hamiltonian laceable,

(n� 3)-edge fault tolerant strongly hamiltonian laceable, and (n� 4)-edge fault

tolerant hyper hamiltonian laceable.

In particular, we use computer programs to check the base cases. It not only

gives us some preliminary intuition but also simplifies our proof. If we did such

check by theoretical proof, we would have spent too much effort since there

would have been too many subcases to deal with. Apparently, such a method

may be applied in other cases nowadays, especially, for those facts which can
be proved by induction.
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