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Abstract. This paper studies the following variations of arboricity of graphs. The vertex (respectively, tree)
arboricity of a graph G is the minimum number va(G) (respectively, ta(G)) of subsets into which the vertices of G
can be partitioned so that each subset induces a forest (respectively, tree). This paper studies the vertex and the tree
arboricities on various classes of graphs for exact values, algorithms, bounds, hamiltonicity and NP-completeness.
The graphs investigated in this paper include block-cactus graphs, series-parallel graphs, cographs and planar
graphs.
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1. Introduction

Our graph terminology and notation are standard, see Chartrand and Lensniak (1981) and
West (1996) except as indicated. For convience, parallel edges are allowed as in West (1996).
In particular, parallel eges may occur in the definition of series-parallel graphs in Section
4, and the planar graphs in Theorem 12. This is in fact does not affect as the main objects
we are dealing with are vertices.

The arboricity of a graph G is the minimum number a(G) of edge subsets into which
E(G) can be partitioned so that each subset induces an acyclic graph. The well-known
theorem by Nash-Williams (1964) says that

a(G) = max�|E(H )|/(|V (H )| − 1)�,
where the maximum is taken over all nontrivial induced subgraphs H of G. This theorem
can also be viewed in terms of matroids (see Welsh’s book, 1976). Variations of arboricity
have been studied extensively in the literature. Typical examples are linear arboricity, linear
k-arboricity and star arboricity, whose definitions are the same as arboricity except that each
subset of E(G) induces a graph whose components are paths, paths of length at most k and
stars, respectively.

∗This research was partially supported by the National Science Council under grants NSC89-2115-M-009-037
and NSC89-2121-M-009-026.
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The vertex arboricity of a graph G is the minimum number va(G) of subsets into
which V (G) can be partitioned so that each subset induces an acyclic graph; such a par-
tition is called an acyclic partition of V (G). This vertex version of arboricity was first
introduced by Chartrand et al. (1968), who called it point-arboricity. They proved that
va(G) ≤ �(�(G) + 1)/2� for any graph G, where �(G) is the maximum degree of vertices
in G; and va(G) ≤ 3 for any planar graph G. Since then, many results for vertex arboricity
along these two directions have been established in the literature.

For the upper bound in terms of degrees, Chartrand and Kronk (1969) proved

va(G) ≤ ρ(G) ≡ 1 + max�δ(H )/2�,

where the maximum is taken over all induced subgraphs H of G and δ(H ) is the minimum
degree of vertices of H Chen (2000) gave the first linear-time algorithm for finding an
acyclic partition of size ρ(G). He also discussed parallel algorithms. On the other hand,
the improvements on the upper bounds from �(�(G) + 1)/2� to the Brook-type bound
��(G)/2� were studied by Catlin (1979), Catlin and Lai (1995), Kronk and Mitchem
(1974/75), and Mitchem (1978).

The upper bound 3 for va(G) on planar graphs has also been studied by Chartrand and
Kronk (1969), Goddard (1991), Grünbaum (1973), Hakimi and Schmeichel (1989), Stein
(1971), and Wegner (1973). Among them, Goddard (1991) proved a stronger result that the
vertex set of any planar graph can be partitioned into three sets such that each set induces a
linear forest. The path version of vertex arboricity, called linear vertex arboricity, has also
been studied (see Alavi et al., 1991, 1994; Matsumoto, 1990; Poh, 1990). Another interesting
result is that, for a maximal planar graph G with at least 4 vertices, va(G) = 2 if and only if
its dual graph G∗ is hamiltonian; see Stein (1971) and Hakimi and Schmeichel (1989). It was
known (Garey and Johnson, 1979, p. 193) that determining the vertex arboricity of a graph
is NP-hard. Hakimi and Schmeichel (1989) showed that determining whether va(G) ≤ 2 is
NP-complete for maximal planar graphs G. Roychoudbury and Sur-Kolay (1995) gave an
O(n2)-time algorithm for finding an acyclic partition of size 2 of a planar graph of order n,
if such an acyclic partition exists (i.e., if the condition va(G) ≤ 2 is known).

In this paper we introduce the following variation of the vertex arboricity. The tree
arboricity of a graph G is the minimum number ta(G) of subsets into which V (G) can be
partitioned so that each subset induces a tree; such a partition is called a tree partition of
V (G). The purpose of this paper is to study the vertex and the tree arboricities on various
classes of graphs for exact values, algorithms, bounds, hamiltonicity and NP-completeness.
The graphs investigated in this paper include block-cactus graphs, series-parallel graphs,
cographs and planar graphs. For a good reference on graph classes (see Brandstädt et al.,
1999).

2. Block-cactus graphs

This section gives exact formulas for the vertex and the tree arboricities of block-cactus
graphs.
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A block is a maximal connected subgraph containing no cut-vertices. Block-cactus graphs
are graphs whose blocks are complete graphs or cycles. These graphs include two interesting
subclasses, which are frequently studied in the literature:

(1) block graphs, which are graphs whose blocks are complete graphs;
(2) cactus graphs, which are graphs whose blocks are cycles or complete graphs of

order 2.

The following lemma is obvious.

Lemma 1. If G is the disjoint union of graphs G1, G2, . . . , Gr , then

va(G) = max
1≤i≤r

va(Gi ) and ta(G) =
r∑

i=1

ta(Gi ).

Lemma 2. If vi is a specified vertex in graph Gi (1 ≤ i ≤ r ) and G is the graph obtained
from the disjoint union of these r graphs by identifying v1, v2, . . . , vr as a vertex v, then

va(G) = max
1≤i≤r

va(Gi ) and ta(G) =
(

r∑
i=1

ta(Gi )

)
− r + 1.

Proof: The first equality is obvious. The second equality follows from the fact that P is
a tree partition of V (G) if and only if it is the disjoint union of Pi − {Ai,1} (1 ≤ i ≤ r )
and {⋃1≤i≤r Ai,1}, where Pi = {Ai,1, Ai,2, . . . , Ai,ta(Gi )} is a tree partition of V (Gi ) with
v = vi ∈ Ai,1.

Theorem 3. If G is a connected graph with b blocks G1, G2, . . . , Gb, then

va(G) = max
1≤i≤b

va(Gi ) and ta(G) =
(

b∑
i=1

ta(Gi )

)
− b + 1.

Proof: By induction on b using Lemma 2 with r = 2.

As va(Kn) = ta(Kn) = �n/2� and va(Cm) = ta(Cm) = 2, we have

Corollary 4. If G is a connected block-cactus graph with r blocks of complete graphs
Kn1 , Kn2 , . . . , Knr and s blocks of cycles Cm1 , Cm2 , . . . , Cms , then

va(G) = max

{
max
1≤i≤r

�ni/2�, s ′
}

and ta(G) =
(

r∑
i=1

�ni/2�
)

− r + s + 1,

where s ′ = 0 for s = 0 and s ′ = 2 for s ≥ 1.
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Figure 1. Series and parallel compositions.

3. Series-parallel graphs

This section establishes a linear algorithm for the tree arboricities of series-parallel graphs
(with two terminals) which are defined recursively as follows:

(SP1) The complete graph K2 is a series-parallel graph.
(SP2) Suppose Gi is a series-parallel graph with terminals xi and yi for i = 1, 2. Then

so are the series composition G1σ G2, which is obtained from G1 ∪ G2 by identifying
y1 with x2; and the parallel composition G1πG2, which is obtained from G1 ∪ G2 by
identifying x1 with x2 and y1 with y2 (see figure 1).

Suppose G is a graph with two terminals x and y. A tree partition of V (G) is of Type-1
(respectively, Type-2) if x and y are in the same subset (respectively, two different subsets).
A tree partition of Type-2 is of Type-2c (respectively, Type-2d) if the union of the subset
containing x and the subset containing y induces a connected (respectively, disconnected)
graph. Denote by ta1(G), ta2(G), ta2c(G), ta2d(G) the minimum size of a tree partition of
Type-1, Type-2, Type-2c, Type-2d, respectively. We have the following results.

Lemma 5. For any graph G with two terminals x and y,

ta(G) = min{ta1(G), ta2(G)} and ta2(G) = min{ta2c(G), ta2d(G)}.

Lemma 6. ta(K2) = ta1(K2) = 1, ta2(K2) = ta2c(K2) = 2 and ta2d(K2) = ∞.

Theorem 7. Suppose Gi is a series-parallel graph with terminals xi and yi for i = 1, 2.
Then the following formulas hold.
(1) ta1(G1σ G2) = ta1(G1) + ta1(G2) − 1.
(2) ta2c(G1σ G2) = min{ta1(G1) + ta2c(G2) − 1, ta2c(G1) + ta1(G2) − 1}.
(3) ta2d(G1σ G2) = min{ta1(G1) + ta2d(G2) − 1, ta2d(G1) + ta1(G2) − 1, ta2(G1) +

ta2(G2) − 1}.
(4) ta1(G1πG2) = min{ta1(G1) + ta2d(G2) − 2, ta2d(G1) + ta1(G2) − 2}.
(5) ta2c(G1πG2) = min{ta2c(G1) + ta2(G2) − 2, ta2(G1) + ta2c(G2) − 2}.
(6) ta2d(G1πG2) = ta2d(G1) + ta2d(G2) − 2.

Proof: We only prove (4) and omit the proofs of others as they are similar.
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Suppose P = {A1, A2, . . . , Ar } is a minimum tree partition of Type-1 of V (G1πG2).
Assume that x1, y1, x2, y2 ∈ A1. Then, for 2 ≤ j ≤ r , either A j ⊆ V (G1) or A j ⊆ V (G2).
Let Pi = {A j : 2 ≤ j ≤ r and A j ⊆ V (Gi )} for i = 1, 2. Let A1,1 = A1 ∩ V (G1)
and A1,2 = A1 ∩ V (G2). Since G[A1] is a tree, either G1[A1,1] is a tree and G2[A1,2]
is a forest containing exactly two trees or G1[A1,1] is a forest containing exactly two
trees and G2[A1,2] is a tree. In the former case, we may write A1 = A1,1 ∪ A′

1,2 ∪ A′′
1,2

such that G2[A′
1,2] is the tree containing x2 and G2[A′′

1,2] is the tree containing y2. Then,
P1 ∪ {A1,1} is a tree partition of Type-1 of V (G1) and P2 ∪ {A′

1,2, A′′
1,2} is a tree partition

of Type-2d of V (G2). Thus, ta1(G1πG2) ≥ |P1| + |P2| + 1 ≥ ta1(G1) + ta2d(G2) − 2.
In the latter case, we may write A1 = A′

1,1 ∪ A′′
1,1 ∪ A1,2 such that G1[A′

1,1] is the tree
containing x1 and G1[A′′

1,1] is the tree containing y1. Then, P1 ∪ {A′
1,1, A′′

1,1} is a tree
partition of Type-2d of V (G1) and P2 ∪{A1,2} is a tree partition of Type-1 of V (G2). Again,
ta1(G1πG2) ≥ |P1| + |P2| + 1 ≥ ta1(G1) + ta2d(G2) − 2.

On the other hand, a minimum tree partition of Type-1 (respectively, Type-2d) of V (G1)
together with a minimum tree partition of Type-2d (respectively, Type-1) of V (G2) can
be combined as a tree partition of Type-1 of V (G1πG2). This gives another side of the
inequality of the formula.

Based on Lemmas 5 and 6 and Theorem 7, we may design a linear-time algorithm for
finding the tree arboricity of a series-parallel graph.

4. Cographs

This section establishes polynomial-time algorithms for the vertex and the tree arboricities
of cographs which are defined recursively as follows:

(C1) The trivial graph K1 is a cograph.
(C2) If G1 and G2 are cographs, then so are their disjoint union G1 ∪ G2 and their join

G1 + G2 which is obtained from G1 ∪ G2 by joining each vertex in G1 to each vertex in
G2.

Note that a graph is a cograph if and only if it contains no induced paths of 4 vertices
(Brandstädt et al., 1999). Also note that there is a linear recognition algorithm for cographs
(Corneil et al.,1985).

To find the vertex and the tree arboricities of cographs, we introduce the following
definitions. For nonnegative integers p and q, a (p, q)-acyclic (respectively, (p, q)-tree)
partition of V (G) is a partition of V (G) into

C1, C2, . . . , C p, I1, I2, . . . , Iq , S1, S2, . . . , Sr

such that each Ci is of size 1, each I j is an independent set, and each Sk induces a forest
(respectively, tree). We notice that the sizes of I j and Sk are possibly 0. We denote by
va(G, p, q) (respectively, ta(G, p, q)) the minimum value of r of a (p, q)-acyclic (respec-
tively, (p, q)-tree) partition of V (G). Notice that as va(G, p, q) = ta(G, p, q) = 0 for
p + q ≥ |V (G)|, we only consider the case when p + q ≤ |V (G)|.
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Lemma 8. For any graph G, we have va(G) = va(G, 0, 0) and ta(G) = ta(G, 0, 0).

Lemma 9. va(K1, 0, 0) = ta(K1, 0, 0) = 1 and va(K1, 1, 0) = va(K1, 0, 1) = ta(K1, 1, 0)
= ta(K1, 0, 1) = 0.

Theorem 10. Suppose G1 and G2 are two graphs, p and q are two nonnegative integers
such that p + q ≤ |V (G1)| + |V (G2)|. Then the following formulas hold.
(1) va(G1 ∪ G2, p, q) = min{max{va(G1, p1, q), va(G2, p − p1, q)} : 0 ≤ p1 ≤ p,

p1 + q ≤ |V (G1)|, and p − p1 + q ≤ |V (G2)|}.
(2) ta(G1 ∪ G2, p, q) = min{ta(G1, p1, q) + ta(G2, p − p1, q) : 0 ≤ p1 ≤ p, p1 + q ≤

|V (G1)|, and p − p1 + q ≤ |V (G2)|}.
(3) va(G1 + G2, p, q) = min{va(G1, p1 + r, q1 + s) + va(G2, p − p1 + s, q − q1 + r )

+ r + s : 0 ≤ p1 ≤ p, 0 ≤ q1 ≤ q, r ≥ 0, s ≥ 0, p1 + r + q1 + s ≤ |V (G1)|, and
p − p1 + s + q − q1 + r ≤ |V (G2)|}.

(4) ta(G1 + G2, p, q) = min{ta(G1, p1 + r, q1 + s) + ta(G2, p − p1 + s, q − q1 + r )
+ r + s : 0 ≤ p1 ≤ p, 0 ≤ q1 ≤ q, r ≥ 0, s ≥ 0, p1 + r + q1 + s ≤ |V (G1)|, and
p − p1 + s + q − q1 + r ≤ |V (G2)|}.

Proof: (1) Suppose

C1, C2, . . . , C p1 , I1, I2, . . . , Iq , S1, S2, . . . , Sr

is a (p1, q)-acyclic partition of G1, and

C ′
1, C ′

2, . . . , C ′
p−p1

, I ′
1, I ′

2, . . . , I ′
q , S′

1, S′
2, . . . , S′

s

a (p − p1, q)-acyclic partition of G2. We may assume r = s by properly adding empty sets
into the partitions if necessary. Then

C1, C2, . . . , C p1 , C ′
1, C ′

2, . . . , C ′
p−p1

, I1 ∪ I ′
1, I2 ∪ I ′

2, . . . , Iq ∪ I ′
q ,

S1 ∪ S′
1, S2 ∪ S′

2, . . . , Sr ∪ S′
r

is a (p, q)-acyclic partition of G1 ∪ G2. This gives that the left-hand side of the equality is
less than or equal to the right-hand side.

On the other hand, suppose

C1, C2, . . . , C p, I1, I2, . . . , Iq , S1, S2, . . . , Sr

is a (p, q)-partition of G. We may assume that Ci are in G1 for all i ≤ p1 and in G2 for all
i > p1. Then

C1, C2, . . . , C p1 , I1 ∩ V (G1), I2 ∩ V (G1), . . . , Iq ∩ V (G1),

S1 ∩ V (G1), S2 ∩ V (G1), . . . , Sr ∩ V (G1)
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is a (p1, q)-partition of G1; and

C p1+1, C p1+2, . . . , C p, I1 ∩ V (G2), I2 ∩ V (G2), . . . , Iq ∩ V (G2),

S1 ∩ V (G2), S2 ∩ V (G2), . . . , Sr ∩ V (G2)

is a (p − p1, q)-partition of G2. This gives that the left-hand side of the equality is greater
than or equal to the right-hand side.

(2) The proof for this case is similar to (1) except now we only have that a tree in G1 ∪G2

is either entirly in G1 or in entirly G1.
(3) Let P be a minimum (p, q)-acyclic partition of V (G1 + G2) and suppose that r + s

subsets in P contain vertices in both V (G1) and V (G2). Then, each of the r + s subsets
induces a star. Moreover, each of the r + s stars has its center in some V (Gi ) and the other
vertices in V (G3−i ). Assume that r of the r + s stars have their centers in G1 and s of the
r + s stars have their centers in G2. The r centers in G1 must match r independent sets in
G2 to form the r stars and the s centers in G2 must match s independent sets in G1 to form
the s stars. Then, formula (3) is easily seen.

The proof of formula (4) is similar to that of (3) and is therefore omitted.

Based on Lemmas 8 and 9 and Theorem 10, we may design a polynomial-time algorithm
for finding the vertex and the tree arboricities of cographs.

5. Tree arboricity and girth

This section establishes an upper bound for the tree arboricity in terms of girth. The girth
g(G) of a graph G is the minimum length of a cycle in G; for an acyclic graph, its girth is
defined to be ∞.

Theorem 11. If G is a connected graph of order n and girth g(G) ≥ m + 1, where m is
a positive integer, then ta(G) ≤ � n

m �. Moreover, for any integer k with 2 ≤ k ≤ � n
m �, there

exists a connected planar graph G of order n and girth g(G) = m +1 satisfying ta(G) = k.

Proof: The theorem is trivial for n ≤ m, since a connected graph of order less than its girth
is a tree. Assume that n ≥ m +1. We may assume that G is not a tree and choose an r -cycle
C = (v1, v2, . . . , vr , v1). Note that r ≥ g(G) ≥ m +1. As G is connected, a revised breadth
first search using all vertices in C as the first level will make it possible to partition V (G)
into disjoint union of V1, V2, . . . , Vr such that each Vi contains vi and induces a connected
subgraph of G. Let ni = |Vi | for 1 ≤ i ≤ r . By the pigeonhole principle, there exist
1 ≤ i < j ≤ r such that

∑
1≤k≤i nk ≡ ∑

1≤k≤ j nk (mod m), or equivalently,
∑

i<k≤ j nk

is a multiple of m. Therefore, A = ⋃
i<k≤ j Vk induces a connected subgraph of G that is

of order a multiple of m, and G − A is also connected. Since g(G[A]) ≥ g(G) ≥ m + 1
and g(G − A) ≥ g(G) ≥ m + 1, by the induction hypothesis, ta(G[A]) ≤ � |A|

m � = |A|
m and

ta(G − A) ≤ � n−|A|
m �. Note that a tree partition of V (G[A]) together with a tree partition of
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V (G − A) form a tree partition of V (G). Therefore,

ta(G) ≤ ta(G[A]) + ta(G − A) ≤ |A|
m

+
⌈

n − |A|
m

⌉
=

⌈
n

m

⌉
.

Finally, for any integer k with 2 ≤ k ≤ � n
m �, consider a connected cactus graph G with

n − mk + m − 1 blocks of K2 and k − 1 blocks of Cm+1. Note that G is also a connected
planar graph of order n and girth m + 1. By Corollary 4, we have ta(G) = k.

6. Hamiltonicity and NP-completeness

This section studies the relationship between tree arboricity and hamiltonicity of planar
graphs. We first develop a necessary and sufficient condition for the dual of a planar graph
to be hamiltonian in terms of its tree arboricity. NP-completeness of the tree arboricity
problem then follows. This is similar to the result for the vertex arboricity given by Hakimi
and Schmeichel (1989). For completeness we keep the proof in the paper.

Theorem 12. For a connected planar graph G, ta(G) = 2 if and only if its dual G∗ is
hamiltonian.

Proof: Suppose ta(G) = 2. Choose a tree partition {V1, V2} of V (G). Denote E(V1, V2)
the set of edges in G joining a vertex in V1 to a vertex in V2, and consider the corresponding
set of edges E ′ in G∗. Since G is connected and G[V1] and G[V2] are trees, E(V1, V2) is
a nonempty minimal edge cut of G, and so, E ′ is a cycle in G∗. Since every cycle of G
contains an edge of E(V1, V2), we have that every facial cycle of G contains an edge of
E(V1, V2) and then G∗[E ′] spans G∗. Thus, G∗ is hamiltonian.

Conversely, suppose G∗ has a hamiltonian cycle C , whose edge set E ′ corresponds to a
minimal edge cut E(V1, V2) of G. Since every edge cut in G∗ contains at least one edge
of E ′, every cycle in G contains at least one edge of E(V1, V2), i.e., G[V1] and G[V2]
are acyclic. Suppose G[V1] is not a tree. We can then partition V1 into nonempty subsets
A and B such that E(A, B) = ∅. Thus, the edge cut E(A, V2) of G is a proper subset of
E(V1, V2), a contradiction. Thus, G[V1] is a tree. Similarly, G[V2] is a tree. These prove that
ta(G) = 2.

Note that for a planar graph G with at least 4 vertices, G is maximal planar if and only
if its dual G∗ is cubic 3-connected.

Theorem 13. It is NP-complete to determine whether ta(G) = 2 for a maximal planar
graph G or for a cubic 3-connected planar graph G.

Proof: The theorem follows from Theorem 12 and the fact that it is NP-complete to
determine whether a cubic 3-connected planar graph (Garey et al., 1976) or a maximal
planar graph (Chvátal, 1985) is hamiltonian.
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Figure 2. Simply-nested inner triangulations (solid lines) with 3 levels and their dual graphs (dashed lines) with
the vertex corresponding to the exterior face omitted.

An inner triangulation is a 2-connected plane graph in which every interior face is a
triangle. Examples of inner triangulations are maximal planar graphs, maximal outerplanar
graphs and Euclidean Delaunay triangulations.

The vertices of a plane graph G can be partitioned into levels according to their “distance”
from the exterior face. Vertices on the exterior face are on level 1. In general, level-i vertices
are the vertices on the exterior face of the subgraph obtained from G by deleting vertices on
levels lower than i . A plane graph with k levels is simply-nested if level 1 through k − 1 are
chordless cycles and level k is either a cycle or a tree. Figure 2 shows examples of simply-
nested inner triangulations with 3 levels and their dual graphs with the vertex corresponding
to the exterior face omitted.

We shall use Theorem 12 to give an alternative proof of the following result obtained by
Cimikowski (1990).

Theorem 14. Every simply-nested inner triangulation G is hamiltonian.

Proof: Assume G has k ′ levels. All vertices of G∗, except the vertex v0 corresponding to
the exterior face of G, are of degree three. Note that G∗ − v0 is a simply-nested plane graph
with k = k ′ (respectively, k = k ′ − 1) levels when level k ′ of G is a cycle (respectively,
tree). Let L1, L2, . . . , Lk be the levels of G∗ − v0, and consider L0 = {v0} as “level 0” of
G∗. Note that for 1 ≤ i ≤ k − 1, each vertex x in Li is adjacent to exactly one vertex P(x)
in Li−1 ∪ Li+1 and adjacent to exactly two vertices in Li . We call P(x) the partner of x .
For x ∈ Li and y ∈ Li+1, P(x) = y implies P(y) = x . Also,

(∗) if 1 ≤ i ≤ k − 1, then Li has at least two vertices whose partners are in Li−1 and at
least two vertices whose partners are in Li+1.

Choose x1, y1, . . . , xk−1, yk−1 as follows. According to (∗), we can choose two adjacent
vertices x1, y1 ∈ L1 such that P(x1) ∈ L0 and P(y1) ∈ L2. Once x1, y1, . . . , xi−1, yi−1

have been chosen, according to (∗), we can choose two adjacent vertices xi , yi ∈ Li such
that P(xi ) ∈ Li−1 − {yi−1} and P(yi ) ∈ Li+1.
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Let A0 = ∅, B0 = L0, Ai = {xi , yi } and Bi = Li − Ai for 1 ≤ i ≤ k − 1. When G∗[Lk]
is a tree, let Ak = ∅ and Bk = Lk . In case G∗[Lk] is a cycle without crossing chords, we
shall prove that Lk can be partitioned into Ak and Bk such that P(yk−1) ∈ Bk , G∗[Bk] is a
tree, and each component of G∗[Ak] is a tree with exactly one vertex whose partner is in
Bk−1. More precisely, it suffices to prove the following claim.

Claim. Suppose C = (v1, v2, . . . , vn, v1) is a cycle without crossing chords and each
vertex in C has degree at most three. If v1 has degree two in C, then V (C) can be partitioned
into A and B such that v1 ∈ B, C[B] is a tree, and each component of C[A] is a tree with
exactly one vertex of degree two in C.

Proof of Claim: We shall prove the claim by induction on the number p of noncrossing
chords of C . When p = 0, A = {v2} and B = V (C) − A satisfy the desired property.
Assume p ≥ 1 and the claim holds for p′ < p. Since these p chords of C are noncrossing,
there exists a chord viv j (i + 1 < j) such that there is no chord incident to a vertex in
{vi+1, vi+2, . . . , v j−1}. Let C ′ be the cycle (v1, . . . , vi−1, vi , v j , v j+1, . . . , vn, v1). Then C ′

is a cycle with p −1 noncrossing chords such that v1 has degree two in C ′. By the induction
hypothesis, V (C ′) can be partitioned into A′ and B ′ such that v1 ∈ B ′, C ′[B ′] is a tree, and
each component of C ′[A′] is a tree with exactly one vertex of degree two in C ′. Since vi and
v j are adjacent in C ′ and they are of degree two in C ′, at most one of them is in A′. For the
case in which vi ∈ A′, choose A = A′ ∪ {vi+1} and B = B ′ ∪ {vi+2, vi+3, . . . , v j−1}. For
the case in which vi ∈ B ′, choose A = A′ ∪ {v j−1} and B = B ′ ∪ {vi+1, vi+2, . . . , v j−2}. It
is straightforward to check that A and B satisfy the desired property. This proves the claim.

From the above construction, we have that G∗[Bi ] is a tree for 0 ≤ i ≤ k, G∗[Ai ] is a
tree for 1 ≤ i ≤ k − 1, and G∗[Ak] is acyclic. Also, each Bi (respectively, Ai ) has exactly
one vertex adjacent to a vertex in Ai−1 (respectively, Bi−1) for 2 ≤ i ≤ k (respectively,
1 ≤ i ≤ k − 1), and each component of G∗[Ak] has exactly one vertex adjacent to Bk−1

when Ak �= ∅. Thus, V1 = (∪i even Bi ) ∪ (∪ j odd A j ) and V2 = (∪i odd Bi ) ∪ (∪ j even A j ) form
a tree partition of V (G∗). This proves that ta(G∗) ≤ 2 and so ta(G∗) = 2. The theorem then
follows from Theorem 12.

Cimikowski (1990) raised the problem of searching 3-connected, K4-free, non-
hamiltonian inner triangulations. We close this paper by constructing such triangulations.

Lemma 15. Suppose G and H are two disjoint graphs that each contains a Kn, and G ′

is the graph obtained from the disjoint union of G and H by identifying the Kn in both
graphs. If G is non-hamiltonian, then so is G ′.

Proof: Suppose G ′ has a hamiltonian cycle C . Suppose γ is a run of vertices in V (H ) −
V (G) preceded by x and followed by y. Then x and y are two vertices in Kn . Thus the
deletion of γ from C leaves a cycle. Continuing the same process, we have that the final
cycle is a hamiltonian cycle of G, a contradiction.
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Figure 3. The graph H .

Suppose G is an inner triangulation and H is the graph in figure 3 whose exterior face
can be viewed as a K3. For each interior face of G, which is also a K3, we repeatedly
apply the operation in Lemma 15 to get a new inner triangulation G〈〈H〉〉. Let H1 = H
and Hn+1 = Hn〈〈H〉〉 for n ≥ 1. All Hn are in fact 3-connected, K4-free, maximal planar
graphs. H1 is hamiltonian, but H2 is not. This is because the deletion of the six vertices
in the first copy of H in H〈〈H〉〉 from H〈〈H〉〉 yields 7 K3. However, the deletion of k
vertices from a hamiltonian graph yields a graph of at most k components. By Lemma 15,
Hn is non-hamiltonian for n ≥ 2.
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