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Optimal Approximate Inverse of
Linear Periodic Filters

Jwo-Yuh Wu and Ching-An Lin

Abstract—We propose a method for constructing optimal causal
approximate inverse for discrete-time single-input single-output
(SISO) causal periodic filters in the presence of measurement
noise. The analysis is based on block signals and multi-input
multi-output (MIMO) time-invariant models for periodic filters.
The objective function to be minimized is the asymptotic block
mean square error. The optimization problem is formulated in
terms of transfer matrices as an optimal model-matching problem
with nonsquare model and plant. Based on an inner–outer
factorization on the transpose of the plant rational matrix, it is
shown that the problem can be further reduced to one with a
lower dimensional square model and plant, which is then solved
in the time-domain, and a closed-form solution is obtained. A
lower bound on the objective function is given. It is shown that
the lower bound can be asymptotically achieved as the order of
the optimal transfer matrix increases. The proposed method is
extended to MIMO periodic systems. Numerical examples are
used to illustrate the performance of the proposed approximate
inverse.

Index Terms—Approximate inverse, block signal processing,
deconvolution, inner–outer factorization, inverse, optimal
model-matching, periodic filters.

I. INTRODUCTION

PERIODIC filters and systems have been found useful in
the areas of signal processing and communications, e.g., in

subband coding [20], in transmultiplexer modeling and design
[16], in speech scrambling [9], in co-channel interference can-
cellation [4], and in blind equalization [15], [17]. The inverse,
or approximate inverse, of periodic filters is used for recovering
the scrambled speech signals [9] and for equalization of periodi-
cally time-varying channels [17], [24]. Inverting periodic filters
is discussed in [8], [10], and [21] for noiseless case and, recently,
in [23] and [24] when measurement noise is present.

It is well known that associated with each -periodic filter,
there is an -input -output time-invariant system that exhibits
an input-output (I/O) relation that is identical to that of the filter
[7], [13], [20]. This MIMO time-invariant model corresponds
to the block filter implementation [20, p. 428]. For a general
study of periodic systems, in particular, in the inverse filtering
problem, this model is often adopted since the time-invariant
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nature would allow considerable simplification in problem for-
mulation as well as in analysis and design. Indeed, based on
such a model, there is a very simple procedure for determining
the invertibility condition in the absence of noise [8], [10]; also,
the well-established design techniques for time-invariant sys-
tems can be used for inverse filter design [10], [23]. It is known
that such a filter model must satisfy an additional structure con-
straint owing to causality [7, p. 1090]. As a result, the inverse
filter design problem thus formulated will be closely related
to constructing an appropriate “inverse” time-invariant system
subject to this constraint to guarantee the existence of a corre-
sponding single-input single-output (SISO) causal periodic re-
alization (as is required in real-time operations). In the noiseless
case, Lin and King [10] proposed a method for finding such an
“inverse” transfer matrix; however, the stability issue of the so-
lution toward a causal periodic implementation has yet to be
addressed. For the general case when noise is present, there has
yet to be a related study of approximate inverse design based
on such MIMO time-invariant formulation (see the introductory
comments in [24, p. 1685–1686]). Zhang et al. in [23] and [24],
on the other hand, propose an alternative “direct” approach:
They formulate the problem directly in terms of the state equa-
tion for periodic filters; the optimal inverse filter coefficients are
computed, in an iterative manner, based on the linear-matrix-in-
equality (LMI) method.

This paper is a generalization of the previous work in [10].
Based on block signals and MIMO time-invariant models for
periodic filters, we study the problem of constructing an approx-
imate inverse for a given periodic filter [either infinite impulse
response (IIR) or finite impulse response (FIR)] when there is
noise. For a given reconstruction delay, we show how to con-
struct an approximate inverse, which is a causal and stable peri-
odic filter with the same period, such that the average energy of
the block reconstruction error is kept small. There is a natural
formulation of the optimization problem in terms of transfer ma-
trices of periodic filters as an optimal model-matching problem
[2], [5]. Owing to the noise effect, it is seen that the resultant
model and plant are nonsquare rational matrices. Based on an
inner–outer factorization on the transpose of the plant rational
matrix, it is shown that the problem is further reduced to one
with lower dimensional square model and plant. The reduc-
tion in dimensions of model and plant using inner–outer fac-
torization leads to a simple procedure for obtaining an optimal
transfer matrix subject to the causality constraint; it also enables
us to obtain a lower bound on the objective function. Compared
with the LMI-based method [23], [24], our solution is in closed
form. With the optimal solution, it can be shown that the ob-
jective function can be made arbitrarily close to the obtained
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lower bound if a sufficiently large reconstruction delay is al-
lowed. Our formulation, moreover, allows a direct extension of
the proposed method for constructing an MIMO approximate
inverse of a given MIMO periodic system.

The organization of this paper is as follows. Section II is
the problem statement and some preliminary results. Section III
proposes the optimality criterion. Section IV shows that the
problem is equivalent to solving an optimal model-matching
problem and gives a lower bound on the objective function. The
construction of the solution is given in Section V. Section VI
extends the proposed method to MIMO periodic systems. Sec-
tion VII is the simulation results. Finally, Section VIII is the
conclusion.

List of Notations: Let be the set of all real ma-
trices. The notations and , respectively, stand for the

zero matrix and the identity matrix. We say a real
rational matrix is proper if is a constant matrix
with finite entries. Let be the set of all proper
real rational matrices in with all its poles in the open unit
disk . The notation denotes the unit circle

. Let be the set of all real rational
matrices in with no poles on . The convolution of two se-
quences X Y is defined as X Y X z Y, where
z is the -step delay such that z Y Y . The no-
tation denotes the expected value of the random variable .

II. PROBLEM STATEMENT AND PRELIMINARY

A. Problem Statement

Consider the discrete-time linear causal -periodic filter de-
scribed by the following state equation1

(2.1)

where , are respectively, the input,
output, and state vector; , and

are -periodic, that is

and

(2.2)

We assume that filter (2.1) is (asymptotically) stable [1].
Consider the block diagram shown in Fig. 1. Let be the

observed signal, which is the sum of the filter output and a
measurement noise , i.e.,

(2.3)

and let be a -step delay of the input to filter (2.1), that is

(2.4)

1Other models for periodic filters include polyphase representation, periodic
difference equation, etc. The state equation seems most convenient for the
problem addressed since there is an associated well-known formula for the
MIMO time-invariant filter model.

Fig. 1. Schematic description of periodic inverse filtering problem.

An approximate inverse of filter (2.1) is a causal stable -pe-
riodic filter with input and output described by

(2.5)

where , and are -periodic such that, with
, the output is close to , i.e., the error signal

(2.6)

is small for the input signal of interest.
The following assumptions are made in the sequel.

1) The input to filter (2.1) is a white
sequence with zero-mean and unit variance.

2) The noise is a white sequence with
zero-mean and variance and is uncorrelated with the
input .

In this paper, we propose a method for constructing an ap-
proximate inverse of the form (2.5), with which the average en-
ergy of the block reconstruction error signal is kept small.

B. Preliminary

1) Transfer Matrix Representation of Periodic Fil-
ters: Consider again the filter (2.1). Define the block input ,
output , and state as

(2.7a)

and

(2.7b)

There is an -input -output linear time-invariant system as-
sociated with filter (2.1) described by

(2.8)

where , and ,
with lower triangular, are such that, with and ,
the systems (2.1) and (2.8) have an identical I/O relation, except
that in (2.8), the input and output are sequences of vectors of
dimension . The matrix is lower triangular since filter (2.1)
is causal [7, p. 1090]. Formulas for , and can be found
in [13]. The transfer matrix of the system (2.8) is

(2.9)

Thus, each linear causal -periodic filter is represented by an
proper rational matrix with lower trian-

gular. Conversely, any proper rational matrix with
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lower triangular can be implemented as an -periodic
filter of the form (2.1) [7]. An algorithm for computing minimal

-periodic realizations can be found in [11]. In the sequel, we
will simply call the transfer matrix of the periodic filter
(2.1). We need the following results.

Proposition 2.1 [7]: If filter (2.1) is stable, then its
transfer matrix . Conversely, each

, with lower triangular, can be
realized as an -periodic filter of the form (2.1), which is
stable.

Proposition 2.2 [10]: The transfer matrix of a -step delay,
viewed as an -periodic system, is

(2.10)

where , and are non-negative integers with
.

2) Some Properties of Real Rational Matrices in
: Let be the space of all sequences of ma-

trices X X X , satisfying Tr X X
X , where Tr and denote, re-

spectively, the trace and the Frobenius norm. Define the inner
product on as

X Y Tr X Y X Y (2.11)

which induces a norm on X X , for
all X . Let be the rational subspace of , that is, if
X , then its -transform

X (2.12)

The region of convergence of in (2.12) is an annular region
containing . If X is causal, i.e., X for all

, then X . The 2-norm of
is defined as

Tr (2.13)

We say i) , is inner if

(2.14)

(ii) is outer if . Inner
and outer rational matrices are sometimes called, respectively,
allpass and minimum-phase. Note from (2.14) that if

is square and inner, then . For
each with , there exists an inner

and an outer such that
[25]

(2.15)

The product expression (2.15) is called an inner–outer factor-
ization of and is a generalization of the allpass-minimum-
phase factorization [14, p. 240] of scalar rational functions to

rational matrix case. We need the following fact, which is the
Parseval’s relation for matrix sequences.

Proposition 2.3 [25]: Let X be the inverse -trans-
form of . Then, we have X .

III. OPTIMALITY CRITERION

In this section, we propose an optimality criterion for approx-
imate inverse design. Our analysis is based on block signals and
MIMO time-invariant models of periodic filters. As we will see,
the characterization of the block reconstruction error is simple,
and the selection of design criterion is natural and convenient.

Let the block reconstructed output , reconstruction error
, and noise be defined in an analog way as in (2.7a). Let

, and be, respectively, the transfer matrices of
the -step delay [see (2.10)], filter (2.1), and filter (2.5); denote
by D G, and F the respective inverse -transforms. Then, we
have

F G F (3.1)

Since D and from (3.1), we can write as

D F G F D F G F (3.2)

To reliably recover the input signal , we must keep the block re-
construction error “small” for each . A commonly used
measure of the “size” of is the mean square value ,
i.e., the average energy. The following proposition provides a
characterization of this quantity. Specifically, we will see that,
owing to the causality of the signal and noise is an
increasing function of and asymptotically approaches a con-
stant as . The result will allow a very natural optimal
criterion for approximate inverse design. The proof of the propo-
sition is given in Appendix A.

Proposition 3.1: Let the block error be defined in the same
way as in (2.7a). Then, we have

D F G F (3.3)

In particular, increases with and, as , ap-
proaches

(3.4)

Based on Proposition 3.1, we propose to construct an approx-
imate inverse by minimizing the asymptotic block mean square
error defined in (3.4). This is because if is small, then the
monotone increasing property guarantees that is small
for each . Moreover, the objective function will also allow
a natural formulation of the optimization problem in terms of
transfer matrices as an optimal model-matching problem, based
on which a closed-form solution can be obtained. This will be
shown in the next two sections.

Remarks:

a) We note that is transfer matrix of the cascade
connection of filters (2.1) and (2.5) [7, p. 1089]. As a re-
sult, the first term of the objective function in (3.4) can
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be regarded as a measure of the imperfectness of signal
resolution (filter inversion). The second term represents
the noise contribution to the approximation error with re-
spect to a signal resolution quality attained by .

b) We note from (3.4) that large noise variance tends to
emphasize large reduction in noise effect. However, this
is done at the expense of the signal resolution quality. On
the other hand, small leads to better signal resolution
quality but with smaller noise reduction. Hence, there is
a tradeoff between signal resolution quality and noise re-
duction.

c) The problem of constructing an approximate inverse for
a given periodic filter in the presence of noise is also ad-
dressed in [23] and [24]. By regarding the signal and
noise as the input to the signal reconstruction system
shown in Fig. 1 and error as the corresponding output,
the optimality criterion adopted in [23] and [24] is to min-
imize the squared H -norm of the I/O map from the aug-
mented input to the error . In terms of block sig-
nals, such an objective function is shown to be equal to
[23, p. 2698]

... (3.5)

By the definition of the 2-norm [see (2.13)], it can be
easily checked that the quantity given in (3.5) is a spe-
cial case of the proposed objective function in (3.4) with
noise variance fixed at . The resultant minimiza-
tion problem in [23] and [24] is formulated in terms of
the state equations associated with the augmented transfer

matrix
... and is solved via the

LMI-based approach.

IV. OPTIMAL MODEL-MATCHING PROBLEM

A. Problem Formulation

From (3.4), it appears that an optimal , if it exists, will
tend to keep the two quantities and small or,
equivalently, to keep and .
The observation thus indicates that an optimal approximate in-
verse (which is stable and causal) can be obtained if we can
find an , with lower triangular, such
that the above two “matching” conditions hold as exact as pos-
sible. This suggests that we can formulate the problem as an
optimal model-matching problem. Since such formulation in-
volves only time-invariant transfer matrices, the related proper-
ties of rational matrices can be further used for deriving a solu-
tion.

To see this, we should note that the objective function in
(3.4), which is a weighted sum of the two quantities
and , can be further rewritten by using only one single
term. More precisely, by definition of 2-norm and from (3.4),
we have

... (4.1)

Define the following two augmented rational matrices:

... (4.2)

and

... (4.3)

From (4.1)–(4.3), we can express the objective function in the
so-called model-matching form [2], [5], [6], as

(4.4)

In (4.4), the rational matrix represents the target “model”
to be achieved: and are the desired models, re-
spectively, for signal resolution and noise reduction, whereas

is the given “plant” ( for signal, and with re-
spect to noise) based on which we are to design an to keep

as close to as possible in the 2-norm sense.
The problem of optimal approximate inverse design, therefore,
can be formulated as follows: Given a model and a plant

, find an , with lower triangular,
such that the objective function in (4.4) is minimized.

Remarks:

a) Consider the noiseless case ; hence, (4.4) reduces
to

(4.5)

We note that in this case, the model and plant (
and , respectively) are square rational matrices. If

has all its poles inside and the reconstruc-
tion delay is large enough, it is shown in [10] that we can
choose

(4.6)

to yield the reconstructed output identical to the -step
delay of the input , viz., . We note that with
in (4.6), the model is exactly matched in this case,
and hence, . The procedure for constructing one
such with minimal possible reconstruction delay is
given in [10, p. 198].

b) Formulation of other signal design and reconstruction
problems as an optimal model-matching problem is also
found in the designs of rate-changing multirate elements
[2], [18], and perfect reconstruction filterbank, e.g., see
[19] [where the same 2-norm criterion as in (4.4) is used],
and [3], [5], [6] (in which an criterion is used). We
should note, however, that the problems addressed in all
these works do not consider the noise effect.

B. Equivalent Problem with Lower Dimension

Due to noise effect, the model and plant ( and ,
respectively) are nonsquare rational matrices. In what follows,
based on an inner–outer factorization on , we will show
that the proposed model-matching problem can be equivalently
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reduced to one in which both the model and plant are square
rational matrices with lower dimensions. The reduction in di-
mension of model and plant will lead to a simple procedure for
finding the optimal solution (in Section V). In addition, it will
allow us to obtain a lower bound on the objective function. As
we will see, this bound is an indication of the best achievable
performance.

To be specific, write an inner–outer factorization of as
, where is inner

and is outer. Thus, we have

(4.7)

Write

... where

(4.8)

Based on (4.4) and with (4.7) and (4.8), we have the following
proposition, whose proof is given in Appendix B.

Proposition 4.1: Let defined in (2.10) be the transfer
matrix associated with the -step delay. Let the augmented
transfer matrix be defined in (4.3). Factorize as in
(4.7), and express as in (4.8). Then, the objective function

can be expressed as

(4.9)

where

(4.10)

Based on (4.9), it follows immediately that, for a given ,
the second term on the right-hand side (RHS) of (4.9) is in-
dependent of that is to be determined. Hence, to find an
optimal , it is equivalent to solving the following optimal
model-matching problem, in which the model and plant are

square rational matrices:

subject to and

is lower triangular. (4.11)

Remarks:

a) We note that in the equivalent problem (4.11), the plant
is an outer rational matrix. In the next section, this

property will be further exploited for deriving the solu-
tion.

b) Consider the noiseless case, i.e., . Then, the fac-
torization (4.7) is replaced by

(4.12)

where is an inner–outer factoriza-
tion of (both and are square
with dimension ). In this case, we have

instead, and (4.9) reduces
to

(4.13)

c) Algorithms for computing an inner–outer factorization of
can be found in, e.g., [12], [19, p. 975], and [25,

p. 555].

In addition, from (4.9), it can be easily seen that no matter
which is used, a lower bound on the objective function
is

(4.14)

Note that in noiseless case, the lower bound in (4.14) equals
zero, and the objective function in (4.9) reduces to the one
given in (4.13). Therefore, for a given noise variance , the
bound in (4.14) can be regarded as the inherent approximation
error incurred due to noise. In general, this lower bound can
be asymptotically achieved as the value of reconstruction delay

approaches infinity. To see this, we will first find an optimal
solution by solving problem (4.11). This is done in the next sec-
tion.

V. OPTIMAL SOLUTION

In this section, we solve problem (4.11) for an optimal .
Section V-A reformulates problem (4.11) in the time-domain.
Section V-B then derives a solution. Finally, Section V-C dis-
cusses some properties of the optimal solution.

A. Optimization Problem in the Time-Domain

To solve problem (4.11), we propose to rewrite the problem
in time-domain and in terms of the inverse -transforms of the
related rational matrices. With such a time-domain formulation,
there is a simple procedure for obtaining an optimal solution
that satisfies the required constraints. To this end, we need some
additional notations.

Recall that is the space of all square summable sequences
of real matrices X X with -transforms

. In the sequel, we set . For integer
, let X X , and

X X . Clearly, we

have . Note that is the subspace of
causal sequences, and is the subspace of anti-causal se-
quences, respectively. For X , let X be the projection
of X onto and X be the projection of X onto .
Thus, X X X . Denote by the matrix
unit-impulse sequence, i.e., for and
otherwise.

Let H F, and G be, respectively, the inverse -transforms
of , and . Then, with Proposition 2.3, problem
(4.11) is equivalent to

H F G subject to F and

F is lower triangular. (5.1)

Remarks:

a) We note that in problem (5.1), F and G are causal se-
quences, but H is generally not.
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b) In the noiseless case, based on (4.12), the sequences H
and G in (5.1) are, respectively, the inverse -transforms
of and .

B. Optimal Solution

The derivation of a solution is based on a rearrangement of
the time-domain objective function H F G . Specifically,
it is shown in Appendix C that the quantity H F G can
be decomposed as a sum of three terms as

H F G H H F G H F G

F G (5.2)

We note that the first term on the RHS of (5.2), which is the
energy of the anticausal component of H, is independent of F. In
addition, since is outer, we have, by definition,

and, hence, its inverse -transform G . As
a result, for a given initial value F , we can choose

F H F G G (5.3)

to make the third term on the RHS of (5.2) equal to zero. Hence,
if we can first find the lower triangular matrix F , the initial
value, which minimizes the second term on the RHS of (5.2),
namely

H F G (5.4)

then the quantity H F G is minimized by choosing F
as in (5.3) and F F .

The optimal F is constructed as follows. Factorize G as

G (5.5)

where is unitary, and is lower triangular. This is

simply a QR-factorization of the matrix G . Since
G is nonsingular, as is

. Write H , where is the th entry .
Define the lower triangular matrix by

(5.6)

We note that the matrix thus defined is simply obtained from
H by nullimg its entries on the upper diagonals. Then, the
optimal F is given in the following proposition.

Proposition 5.1: The lower triangular matrix that minimizes
the Frobenius norm (5.4) is F , where and are,
respectively, defined in (5.6) and (5.5).

Proof: Since, from (5.5), G and the
Frobenius norm is unitary invariant, we have

H F G H F H F

H F (5.7)

Since F is lower triangular, it follows from (5.7) that the min-
imum norm is attained if we choose F to eliminate the entries

on the main and lower diagonals of H . This immediately im-
plies that F , and the result follows.

With (5.3) and F in Proposition 5.1, the optimal F is thus

F F H F G G . With some rearrangement, the
expression of F can be further simplified as

F F G H G (5.8)

By taking the -transform of both sides of (5.8), the transfer ma-
trix of the optimal approximate inverse is immediately obtained
as

F (5.9)

where is the -transform of H .
Remark: The proposed optimal approximate inverse in

(5.9) is, in general, IIR. One way to obtain a th-order FIR ap-
proximate inverse is to keep the first terms of F to get the
FIR transfer matrix

F (5.10)

C. Some Properties of the Optimal Approximate Inverse

With optimal in (5.9), it can be verified, using (5.2) and
Proposition 2.3, that

H (5.11)

where is the -transform of the anticausal sequence
H . From (4.9) and (5.11), the minimal value of the

objective function is thus

H (5.12)

Note that since has all its poles
outside , and therefore, its inverse -transform is an infi-
nite-duration sequence belonging to . Since defined
in (2.10) is the transfer matrix of the -step delay, the sequence
H, which is the inverse -transform of ,
is thus a delayed version of the one associated with .
Hence, as the reconstruction delay is sufficiently large, we can
make the sequence H arbitrarily close to a zero sequence
and, hence, the two quantities and H ar-
bitrarily close to zero. From (5.12), we thus have the following
asymptotic property.

Proposition 5.2: The minimal value of the objective function
as the reconstruction delay . For the

special case , the limit value of is zero.
From Proposition 5.2, the quantity can therefore

be regarded as the “best achievable” performance for a given
noise variance . In particular, if, for some choice of delay,
the resultant is substantially larger than this quantity, we
can further improve the performance by introducing more de-
lays. Since increasing the delay will, at the same time, increase
the order of , and hence the order of optimal [see
(5.9)], there is a tradeoff between the achievable performance
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and the order of the transfer matrix associated with the optimal
approximate inverse.

Remark: Consider the noiseless case . Assume that
has a nonminimum phase zero (viz., lying out-

side ). From (4.12) and since is outer, must be
a zero of the inner factor and, hence, a pole of .
Since is square inner when there is no noise, we have

[by definition (2.14)]. This immediately
implies that ; the se-
quence H is thus a delayed version of G (the inverse -trans-
form of ). Since is a pole of G has an
anticausal component of infinite duration. If is close to ,
then the significant part of the anticausal component of G
will last a long time. As a result, it would require a large recon-
struction delay and, therefore, a high order to keep H
close to a zero sequence and, hence, achieve a good approxima-
tion performance. For the case , although a nonminimum
phase zero of is no longer a pole of , simula-
tion results (see Simulation 4) show that this tendency, however,
seems to hold.

VI. EXTENSION TO MIMO -PERIODIC SYSTEMS

Suppose that the state equations (2.1) and (2.5), instead,
represent two -periodic systems, each with inputs and
outputs. Our goal is to design an approximate inverse (2.5) of
system (2.1) such that, for , the signal in the th
output channel of system (2.5) is close to a -step delay of the
th input signal of system (2.1). Assume that i) the input

signals to system (2.1) are uncorrelated white sequences and
that ii) the additive noises are uncorrelated white sequences
and are uncorrelated with the input signals to system (2.1).
Under these assumptions, the proposed method for the scalar
case can be extended. This is seen as follows.

Note that each -input -output -periodic system
of the form (2.1) is represented by a rational matrix

with -block lower
triangular (and vice versa) [7]. The optimality criterion in
terms of transfer matrices described in Section III thus applies;
the objective function is of the same form as in (3.4), except that
the transfer matrices involved are of dimensions .
By following the same procedures as in Section IV, it amounts
to solving a model-matching problem as in (4.11), subject to

and being -block lower
triangular. Note that the transfer matrix , in this case, is
associated with the -input -output time-invariant system
whose th output is a -step delay of the th input
(one way to construct such a is given in Appendix D).
Since the problem is essentially the same with the one in the
SISO case, except for the constraint on F , we still
need to determine the -block lower triangular matrix
F that minimizes the Frobenius norm (5.4). To this end,
factorize G as in (5.5). Since is lower triangular, F is

-block lower triangular. Equation (5.7) shows that the
optimal F is chosen so that F eliminates the entries on the

-block main and lower diagonals of the matrix H .
This implies that F , where is the

-block lower triangular matrix obtained from H by

nulling its entries on the -block upper diagonals [ is
constructed similarly as in (5.6)].

VII. SIMULATION RESULTS

In this section, we use several numerical simulations to illus-
trate the performance of the proposed optimal approximate in-
verse. In our simulations, we estimate the block mean squared
error at time , viz., , via the time-average

(7.1)

where is the total number of independent Monte Carlo real-
izations, and is the th block error sample in the th realiza-
tion. Based on the computed , we determine the associated
steady-state region by selecting a time instant such that
approaches a constant for all . The estimated value of
the asymptotic block mean squared error in (3.4) is then com-
puted as

(7.2)

where is the total number of estimated block mean squared
errors in the steady state. For each conducted Monte Carlo re-
alization, the input to filter (2.1) is a white Gaussian sequence
with 100 samples. The signal-to-noise ratio (SNR) is defined as
SNR . In all simulations, the number of trials
is . To compute the optimal approximate inverse, we
use the algorithm in [25, p. 555] to compute an inner–outer fac-
torization of the rational matrix .

1) Simulation 1—Comparision with Previous Work
[10]: The performance of the proposed optimal approximate
inverse is compared with that obtained by the minimal-delay
inverse filter constructed in the noiseless case [10]. We consider
the 2-periodic filter described as

(7.3)

The associated transfer matrix is

(7.4)

By computations, is proper and has all its poles inside
. According to [10], the minimal achievable reconstruction

delay is zero, and the transfer matrix associated with the inverse
filter is simply [cf. (4.6)]. For a fair comparison, the
proposed optimal approximate inverse based on (5.9) is imple-
mented by setting . Fig. 2 shows the re-
spective computed objective function with respect to different
values of SNR. As we can see from the figure, for SNR
dB, the performances obtained by the two methods are roughly
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Fig. 2. Computed ^J versus SNR: Proposed method versus method in [10].

the same. For SNR dB, the proposed method leads to im-
proved performance since it does the task of noise reduction.
For the particular case SNR dB, the transfer matrix of the
optimal approximate inverse is computed as in (7.5), shown at
the bottom of the page. Using the algorithm in [11], a minimal
2-periodic realization of in (7.5) is obtained as

(7.6)

2) Simulation 2—Comparison with the LMI-Based Method
[23], [24]: The performance of the proposed approximate in-
verse is compared with that obtained by the LMI approach in
[23] and [24]. We consider the following 2-periodic FIR filter,
which is used in simulation in [23] and [24]:

(7.7)

and use both methods to design an FIR approximate inverse. At
each SNR level, an optimal approximate inverse is first designed
according to (5.9) (we choose reconstruction delay as in

Fig. 3. Computed ^J versus SNR: FIR approximate inverse filters obtained by
two methods.

the simulations in [23] and [24]). Then, a ninth-order FIR ap-
proximate inverse is obtained using (5.10) (computations
show that this choice yields a good match in performance to the
computed optimal IIR at each SNR). By computations,
the dimension of a minimal realization of the obtained ,
at each SNR, is 19. For a fair comparison, an FIR 2-periodic
filter with the same dimension of realization is designed based
on [24]. In particular, we obtain the LMI-based solution by prop-
erly scaling a parameter in the design equation (the matrix
in [24, p. 1688, (3.11)]) by noise standard deviation to further
reflect the actual noise variance; the solution thus obtained then
minimizes the same objective function as ours. Fig. 3 shows the
respective computed versus SNR. From the figure, we can see
that the performances of the proposed analytical solution and
the one based on the LMI method are roughly the same; this is
not unexpected since both solutions tend to minimize the same
objective function.

3) Simulation 3—Effects of Reconstruction Delay: In this
simulation, we demonstrate the effect of reconstruction delay. In
particular, we will show that when the optimal is used, the
computed objective function , as the delay increases, will be
close to the lower bound (4.14). We consider the 2-periodic filter
obtained via replacing the vector in state (7.3) by .
We fix the SNR at 20 dB. For each , the optimal

is implemented. Fig. 4 shows the respective computed
versus delay . In addition, at each delay, the associated theoret-
ical minimal value based on (5.12) and lower bound (4.14)
are calculated and shown in the figure. The result shows that the
experimental values are very close to the theoretical and
exhibit the expected tendency.

4) Simulation 4—Effect of Nonminimum Phase Zero of
: In this simulation, we demonstrate the dependence of

(7.5)
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Fig. 4. Computed ^J and theoretical values versus delay. SNR = 20 dB.

Fig. 5. Computed Ĵ and theoretical values versus delay, filter with zero at
Z = �1:08; SNR = 20 dB.

performance on the locations of nonminimum phase zeros of
. We consider the filter used in the previous simulation

and another filter obtained by replacing the vector in state
(7.3) by (in the sequel, we will call them
“filter (a)” and “filter (b),” respectively). By computations,
the respective transfer matrices have a single nonminimum
phase zero at and . For fixed SNR at
20 dB, Fig. 5 shows the computed for filter (b), together
with the corresponding theoretical values and the lower
bound, at various values of delay . From Figs. 4 and 5, we
can see that for filter (b), the value of delay required to keep

close to the lower bound is relatively large. If fact, based on
the theoretical values for each filter, the required delay
such that are, respectively,

for filter (a) and for filter (b); the orders of
respective optimal are 3 and 14. Hence, if contains
a nonminimum phase zero close to , a large delay and,
hence, an approximate inverse of high order, would be required

Fig. 6. Computed Ĵ and theoretical values versus SNR (MIMO case).

to achieve an approximation error close to the lower bound
.

5) Simulation 5—MIMO Periodic Systems: In this simula-
tion, we demonstrate the performance of the proposed method
when it applies to MIMO periodic systems. We consider the
2-input 2-output 2-periodic system given as

(7.8)

An approximate inverse of system (7.8) is designed based on
(5.9); the reconstruction delays in channels 1 and 2 are, respec-
tively, 6 and 7. The input signal to each channel is a white se-
quence of 100 samples. The resultant vector error signal (of di-
mension 2) is obtained, and the (experimental) objective func-
tion is computed. Fig. 6 shows the computed and the theo-
retical versus SNR. The result shows that the experimental
values are very close to the theoretical values.

VIII. CONCLUSION

We study the problem of constructing an approximate
inverse of SISO linear causal discrete-time periodic filters in
the presence of measurement noise. In terms of block signals
and block time-invariant filter model, the characterization of
the block error signal is simple, and the selection of design
criterion is very natural and convenient. The proposed opti-
mality criterion, which minimizes the asymptotic block mean
square error, allows us to formulate the problem in terms
of transfer matrices as an optimal model-matching problem.
The problem is solved using an inner–outer factorization
and in terms of related time-domain sequences. In particular,
the proposed time-domain approach for a solution yields a
simple procedure for obtaining a closed-form optimal transfer
matrix subject to the causality constraint. The computations
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required are inner–outer factorizations for rational matrices and
QR-factorizations but do not involve numerical optimization
(as is required in existing LMI method). We also obtain a lower
bound incurred by noise on the objective function, which can
be considered as the “target performance” for a given noise
variance. The bound can be asymptotically achieved as the
order of optimal transfer matrix increases. In fact, there is a
tradeoff between the achievable performance and the order of
the solution. The optimal transfer matrix is, in general, IIR,
but an FIR approximate inverse can simply be obtained by
truncating the associated inverse -transform. The proposed
method is also extended to MIMO periodic systems.

APPENDIX A
PROOF OF PROPOSITION 3.1

From (3.2) and since both and are causal, we have

D F G F (A.1)

Note that

Tr Tr

Tr (A.2)

By substituting in (A.1) into (A.2) and since and are mu-
tually uncorrelated white vector processes, (3.3) follows. With
(3.3), we immediately have, for any

D F G F (A.3)

and hence, is an increasing function in . In addition,
letting in (3.3), we have D F G

F . The result (3.4) then follows by Proposition 2.3.

APPENDIX B
PROOF OF PROPOSITION 4.1

To prove Proposition 4.1, we need the following two lemmas.
Lemma B.1 ([22, p. 213]: Let be the

inner rational matrix defined in (4.7). Then, there exists an inner
rational matrix , called the complementary
inner factor of , such that

... (B.1)

is square and inner. In particular, we have

and

(B.2)

Lemma B.2 [25]: Let and
be two square inner rational matrices. Then, for any

, we have ,
that is, pre or post multiplying a rational matrix by a square
inner factor preserves 2-norm.

Write

...

(B.3)

We first claim

(B.4)
It can be shown that

(B.5)

The result thus follows from (B.4) and (B.5).
Proof of Equation (B.4): From (4.4) and (4.7), we have

. Write

...

in (B.1)

(B.6)

Since in (B.1) is square and inner, from (B.6), it follows
that

...

(B.7)

From (B.7) and by Lemma B.2, we immediately have
, and hence, we must still find an expression of .

Since [this follows from
(B.1)], we can express the rational matrix defined in
(B.7) as

...

(B.8)

By definition of in (4.2), and with
and given as in (4.7) and (B.3), we have

and
. Hence, in (B.8)

becomes

... (B.9)

With (B.9) and by the definition of 2-norm [see (2.13)], we thus
have

(B.10)

where the last equality follows since in (2.10), which is
the transfer matrix of the -step delay, is square and inner and
by using Lemma B.2.



WU AND LIN: OPTIMAL APPROXIMATE INVERSE OF LINEAR PERIODIC FILTERS 2381

Proof of Equation (B.5): From (4.3) and (4.7), we can
write

... (B.11)

With and given as in (B.11) and (B.3) and since
[see (B2)], it can be easily checked

that , and hence, again with
(B.3), we have

(B.12)

From (B.12) and since [see (B.2)], we
have

(B.13)

Let be the spectral factor [22, p. 213] of
, that is, . From (B.13), it fol-

lows that

(B.14)

is square and inner. Since, from (B.14),
and is square and inner, we have (from

Lemma B.2) that

Tr

(B.15)

Since is a spectral factor of (i.e.,
), we have, for any

(B.16)

where the last equality follows by definition of [see
(B.13)]. With (B.15) and (B.16), we immediately have

Tr

(B.17)

Since, for any , the two (positive definite) ma-
trices and
have the same eigenvalues, so do the respective inverse
matrices. This implies Tr
Tr , and hence, from (B.17), we
have

Tr

(B.18)

From (4.3) and (4.7), and since is inner, we have, for all

(B.19)

The result follows from (B.18) and (B.19).

APPENDIX C
DERIVATION OF (5.2)

Since F G F z G, we have

H F G H F G F z G

H F G F G (C.1)

Decompose the first term on the RHS of (C.1) as H F G
H F G H F G , and hence, with (C.1), we have

H F G H F G H F G F G

(C.2)

Write

H F G H F G H F G

H H F G (C.3)

where the last equality follows since H F G H
(for F G is causal). Substituting H F G in (C.3) into (C.2)
and by definition of norm in (2.11), the result follows.

APPENDIX D
TRANSFER MATRIX OF MIMO DELAY

For a fixed , we will show how to construct
the transfer matrix associated with the

-input -output system whose I/O relation is a -step delay
in the th channel. Since a MIMO delay can be considered
as a cascade of systems, each of which being a delay in a
single channel, the associated transfer matrix is then obtained
as [7].

We first note that if . If ,
write , where . The resultant

can be obtained from by replacing its th
rows , respectively, by

e
...

e

(D.1)

where e is the th standard unit vector
. The result (D.1) can be verified by investigating

the -transforms of the block input and output [defined similarly
as in (2.7a) but is of dimension ] associated with the system
and using (2.10).



2382 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 9, SEPTEMBER 2004

REFERENCES

[1] F. M. Callier and C. A. Desoer, Linear System Theory. New York:
Springer-Verlag, 1991.

[2] W. M. Campbell and T. W. Parks, “Design of a class of multirate sys-
tems using a maximum relative l -error criterion,” IEEE Trans. Signal
Processing, vol. 45, pp. 561–571, Mar. 1997.

[3] T. Chen and B. A. Francis, “Design of multirate filter banks by H
optimization,” IEEE Trans. Signal Processing, vol. 43, pp. 2822–2830,
Dec. 1995.

[4] G. Gelli and F. Verde, “Two-stage interference-resistant adaptive period-
ically time-varying CMA blind equalization,” IEEE Trans. Signal Pro-
cessing, vol. 50, pp. 662–672, Mar. 2002.

[5] J. Huang and G. Gu, “A direct approach to the design of QMF banks via
frequency domain optimization,” IEEE Trans. Signal Processing, vol.
46, pp. 2131–2138, Aug. 1998.

[6] J. Huang, G. Gu, and B. A. Shenoi, “Design of multichannel QMF banks
via frequency domain optimization,” IEEE Trans. Circuits Syst. II, vol.
46, pp. 599–607, May 1999.

[7] P. P. Khargonekar, K. Poolla, and A. Tannenbaum, “Robust control of
linear time-invariant plants using periodic compensation,” IEEE Trans.
Automatic Control, vol. AC-30, pp. 1088–1096, Nov. 1985.

[8] K. Kazlauskas, “Inversions of periodically time-varying digital filters,”
IEEE Trans. Circuits Syst. II, vol. 41, pp. 173–175, Feb. 1994.

[9] C. W. King and C. A. Lin, “A unified approach to scrambling filter
design,” IEEE Trans. Signal Processing, vol. 43, pp. 1753–1765, Aug.
1995.

[10] C. A. Lin and C. W. King, “Inverting periodic filters,” IEEE Trans.
Signal Processing, vol. 42, pp. 196–200, Jan. 1994.

[11] , “Minimal periodic realization of transfer matrices,” IEEE Trans.
Automat. Contr., vol. 38, pp. 462–466, Mar. 1993.

[12] Z. Lin, B. M. Chen, and Y. Shamash, “Inner–outer factorization of dis-
crete-time transfer function matrices,” IEEE Trans. Circuits Syst. I, vol.
43, pp. 941–945, Nov. 1996.

[13] R. A. Meyer and C. S. Burrus, “A unified analysis of multirate and peri-
odically time-varying digital filters,” IEEE Trans. Circuits and Systems,
vol. CAS-22, pp. 162–168, 1975.

[14] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[15] A. G. Orozco-Lugo and D. C. Mclernon, “An application of linear peri-
odically time-varying digital filters to blind equalization,” in Proc. IEE
Colloq. Digital Filters: Enabling Technol., London, U.K., Apr. 1998, pp.
11/1–11/6.

[16] J. S. Prater and C. M. Loeffler, “Analysis and design of periodically
time-varying IIR filters, with applications to transmultiplexing,” IEEE
Trans. Signal Processing, vol. 40, pp. 2715–2725, Nov. 1992.

[17] E. Serpedin and G. B. Giannakis, “Blind channel identification and
equalization with modulation-induced cyclostationarity,” IEEE Trans.
Signal Processing, vol. 47, pp. 1930–1944, July 1999.

[18] R. G. Shenoy, D. Burnside, and T. W. Parks, “Linear periodic systems
and multirate filter design,” IEEE Trans. Signal Processing, vol. 42, pp.
2242–2256, Sept. 1994.

[19] M. S. Spurbeck and C. T. Mullis, “Least squares approximation of per-
fect reconstruction filter banks,” IEEE Trans. Signal Processing, vol. 46,
pp. 968–978, Apr. 1998.

[20] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[21] M. Vetterli, “Invertibility of periodically time-varying filters,” IEEE
Trans. Circuits Syst., vol. 36, pp. 148–150, Jan. 1989.

[22] M. Vidyasagar, Control System Synthesis: A Factorization Ap-
proach. Cambridge, MA: MIT Press, 1985.

[23] S. Wang, L. Xie, and C. Zhang, “H optimal inverse of periodic FIR
digital filters,” IEEE Trans. Signal Processing, vol. 48, pp. 2696–2700,
Sept. 2000.

[24] H. Zhou, L. Xie, and C. Zhang, “A direct approach to H optimal decon-
volution of periodic digital channels,” IEEE Trans. Signal Processing,
vol. 50, pp. 1685–1698, July 2002.

[25] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Con-
trol. Englewood Cliffs, NJ: Prentice-Hall, 1996.

Jwo-Yuh Wu was born in Tainan, Taiwan, R.O.C.,
in 1973. He received the B.S. degree in 1996, the
M.S. degree in 1998, and the Ph.D. degree in 2002
from the National Chiao Tung University, Hsinchu,
Taiwan, all in electrical and control engineering.

He is currently a post doctor researcher with
the Department of Communication Engineering,
National Chiao Tung University. His current research
interests are in signal processing.

Ching-An Lin received the B.S. degree from the
National Chiao Tung University, Hsinchu, Taiwan,
R.O.C., in 1977, the M.S. degree from the University
of New Mexico, Albuquerque, in 1980, and the
Ph.D. degree from the University of California,
Berkeley, in 1984, all in electrical engineering.

He was with the Chung Shan Institute of Science
and Technology, Taoyan, Taiwan, from 1977 to
1979 and with Integrated Systems Inc., Palo Alto,
CA, from 1984 to 1986. Since June 1986, he has
been with the Department of Electrical and Control

Engineering, the National Chiao Tung University, where he is a Professor. His
current research interests are in control and signal processing.


