
The Computer Journal, Vol. 47 No. 5, © The British Computer Society; all rights reserved

Cache-Aware Real-Time Disk
Scheduling

Hsung-Pin Chang
1
, Ray-I Chang

2
, Wei-Kuan Shih

3
and

Ruei-Chuan Chang
4

1Department of Computer Science, National Chung Hsing University, Taichung, Taiwan, R.O.C.
2Department of Information Management, National Central University, Jhongli City, Taoyuan,

Taiwan, R.O.C.
3Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
4Department of Computer & Information Science, National Chiao Tung University, Hsinchu,

Taiwan, R.O.C.
Email: hpchang@cs.nchu.edu.tw

Previous real-time disk scheduling algorithms assume that each disk request incurs a physical disk
mechanical operation and only consider how to move the disk head under real-time constraints.
However, with the increased capacity of on-disk cache, modern disk drives read-ahead data
aggressively. Thus, the on-disk cache may service many disk requests without incurring physical
disk access. By exploring the design methodology of on-disk cache, in this paper, we propose cache-
aware real-time disk scheduling algorithms that take the on-disk cache into consideration during
scheduling. Therefore, the scheduling algorithm can help the cache replacement scheme to minimize
the cache miss ratio. Besides, the service timing estimation is more accurate in schedulability analysis
since the cache effect is considered during scheduling. A simulation-based evaluation shows the
proposed scheduling algorithms to be highly successful as compared with the classical real-time disk
scheduling algorithms. For example, under sequential workload with 10 sequential streams, the

data throughput of our scheme is 1.1 times that of DM-SCAN.

Received 16 April 2003; revised 3 February 2004

1. INTRODUCTION

1.1. Motivation

With the immense popularity of the Web or broadcasting
servers, the world is witnessing an unprecedented demand
for data services. Nevertheless, in some cases, the delivery
of data may have real-time constraints. For example, a radar
system would need to compare images of objects against
a database of known aircraft type. In the stock trading
system, the stock price would be recorded and retrieved to
broadcast to the subscribed clients. At the same time, the
development of a speech-based information retrieval system
for the blind, in which users can talk into the microphone and
find the intended audio book, news or music directly, is under
way. In this system they can hear the streaming audio from
the server. All these applications have the characteristics that
the requested data must be retrieved and delivered before a
deadline; otherwise the data will be meaningless and even
damaged. In this paper, we address real-time data retrieval
by taking advantage of the on-disk cache and seek-optimizing
the real-time disk scheduling scheme. The techniques for the
delivery of real-time data can be found in [1, 2].

In a computer system, after disk scheduling, the scheduled
requests are sent to and served by the disk drive [3]. However,
because of the excess delay caused by the disk mechanical
operation, a random access memory, i.e. an on-disk cache,

is provided in disk controllers to bridge the speed gap between
the main memory and disk and acts as a speed-matching
buffer. Nevertheless, in the last couple of years, the drastic
improvement in hardware technology has caused an increase
in the capacity of the on-disk cache. Therefore, when a
disk task is sent to the disk drive, the disk drive retrieves
the requested data item to the on-disk cache. Furthermore,
if read-ahead is enabled, the disk drive does read-ahead
data following the requested data item to the on-disk cache.
Accordingly, the data in the on-disk cache consist of both the
read-ahead data and data read by previous requests.

However, there exists a read-ahead overhead since the disk
head and track switches waste time and cannot be aborted
once initiated. Nevertheless, under sequential workload, a
disk with read-ahead caching still outperforms the disk with-
out read-ahead caching [3, 4]. This is because, without read-
ahead, if two back-to-back disk tasks are issued, the disk and
host processing time for initiating the second request would
be larger than the inter-sector gap. As a result, the second re-
quest would be delayed by almost a full revolution [3]. Since
caches work on the premise that the issued tasks have spatial
and temporal locality, with the hope of repeated or sequential
access patterns, the on-disk cache can service many requests
without incurring physical disk operations. If the majority
of the accesses to disk are serviced by the on-disk cache, the
I/O delay will be reduced significantly [5, 6, 7].

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 561

Virtual File System

RT-Task 2

User mode

Kernel mode

RT-Task 1 RT-Task n

Ext2 NTFS JFS /proc

Buffer Cache

Direct I/O
Transfers

Device drivers

Request Queue

…

Cache-Aware
RT Scheduling

On-Disk Cache

FIGURE 1. The system architecture.

The cache design methodology gives cache designers a
competitive edge in the market. Therefore, manufacturers
either patent them or consider their implementation a trade
secret. However, if the parameters of the on-disk cache
were disclosed, the caching effect would be taken into
consideration during the disk scheduling. Consequently,
not just the cache replacement scheme, but the scheduling
algorithm also can help in preserving the principles of spatial
and temporal locality. Besides, the service timing estimation
is more accurate in schedulability analysis since a task’s
service time is accounted as cache transfer time if a cache
hit occurred. Otherwise, a task’s execution time must
assume, in the worst case, that a mechanical disk access is
incurred. As a result, during the schedulability testing, we
must make worst-case assumptions of physical disk access
time if we ignore the on-disk cache influence. This results in
an overestimation of system resource usage and a decrease
in system performance.

The idea of taking the on-disk cache into account in
disk scheduling is also seen in [8]. The authors mentioned
that requests that can be satisfied by the cache should be
given higher priority to be accessed from the disk cache.
However, they only simulate the caching effect for the
performance evaluations of conventional disk scheduling
algorithms, which have no timing requirements.

1.2. System architecture

Figure 1 shows the system architecture. In Unix-like systems,
e.g. Linux, all system calls related to a standard file system are
directed to the virtual file system (VFS). After receiving the
issued system call, VFS invokes the appropriate file system
function, say Ext2, to service this request. However, before
accessing the disk, the system would look up the buffer
cache to determine if the requested data are in the buffer
cache or not. If the data are in the buffer cache, the system

performance can be improved by reducing disk access. If the
data are not in the buffer cache, a disk request is issued to the
device driver.

Furthermore, file systems would also read ahead of files.
In addition to the requested data, several adjacent blocks of
data are also read. Nevertheless, some application programs
would like to have full control of the whole I/O data transfer
mechanism. Therefore, the operating system also offers
direct I/O transfer to bypass the buffer cache. Thus, when
a real-time task wishes to retrieve data from disks, it may
access them through the file system or use direct I/O transfer
to bypass the buffer cache.

Below the file system is the device driver. All disk access
requests are sent to the device driver and queued in the request
queue. Then, an appropriate disk scheduling algorithm
selects one of the requests from the queue and sends it to the
disk. As mentioned above, since modern disks are equipped
with considerable on-disk cache, in this paper, we propose
the on-disk cache-aware real-time disk scheduling algorithm
that reduces the disk access time while guaranteeing tasks’
real-time constraints.

Notably, both the file systems and disks have their own
buffers and may issue read-ahead respectively. In this paper,
the proposed algorithms only address the on-disk cache
and the disk’s read-ahead mechanism. In other words, we
assume the real-time disk requests are from the direct I/O
transfer. A combinational consideration of on-disk cache
and buffer cache will be the subject of future work.

1.3. Contributions

On the basis of an existing real-time disk scheduling
algorithm, DM-SCAN [9], three different cache-aware
algorithms are proposed in this paper. They are the deadline
shift scheme, the collaboration scheme, and the CARDS
(Cache-Aware Real-Time Disk Scheduling) scheme.

The Computer Journal, Vol. 47, No. 5, 2004

562 H.-P. Chang et al.

In the deadline shift scheme, if requests are ordered in
Earliest Deadline First (EDF) sequence, the tasks’ deadlines
are shifted if they are to be served by the on-disk cache, i.e.
having spatial locality. Then, tasks with their shifted deadline
are scheduled by the DM-SCAN scheme. In other words,
disk tasks whose accesses have spatial locality are brought
closer to meet their temporal locality by the deadline shift
operation, thus increasing the cache hit probability.

In contrast, the collaboration scheme directly considers
the on-disk cache effect in the DM-SCAN algorithm. First,
the selection scheme of a reschedulable group (called MSG
in DM-SCAN) is extended to consider the on-disk cache.
Therefore, in addition to the original tasks identified by
DM-SCAN, tasks that have the chance to be cache hits are
also grouped into a reschedulable group. Besides, a cache-
aware rescheduling scheme is proposed to augment the seek-
optimizing SCAN rescheduling scheme to increase the cache
hit ratio. Note that, reordering tasks may cause the schedule
derived by DM-SCAN to become infeasible; therefore,
feasibility checking must be performed for each reordering
operation, and this consumes significant computational
overhead. In this paper, techniques to accelerate the checking
operation are also proposed.

Different from the two schemes above, the CARDS scheme
is proposed that reorders the tasks if a cache hit is guaranteed
after such a reordering, after the completion of the DM-
SCAN algorithm. Experimental results shows that, under
sequential accesses, our proposed cache-aware algorithms
obtain larger data throughput than DM-SCAN, because of
the increased cache hit ratio. For example, under sequential
workload with 10 sequential streams, the data throughput
of the CARDS scheme is 1.1 times that of DM-SCAN.
Note that, although the proposed cache-aware real-time disk
scheduling schemes are related tightly to the caching strategy
and underlying on-disk cache characteristics, the proposed
algorithms do not depend on any specific on-disk cache. That
is, if the parameters of a different on-disk cache are disclosed,
the proposed algorithms can be adapted easily to this disk.

In the rest of this paper, we shall first introduce the disk
service model in a real-time environment, including on-disk
cache design methodology, the timing characteristics of real-
time tasks and the objective of a real-time disk scheduling
algorithm in Section 2. Section 3 reviews the related work.
In Section 4, we introduce the terms used in this paper.
Section 5 presents the proposed three cache-aware real-time
disk scheduling algorithms. The experimental results are
shown in Section 6. Section 7 discusses some related issues
about this paper. Finally, Section 8 summarizes this paper.

2. BACKGROUND

2.1. Design methodology of on-disk cache

Many applications process data sequentially, i.e. the next
request will be for data following the current request. As
a result, in addition to the service of requested data blocks,
most disks, based on analyzing the access and usage pattern
of recent requests, also perform the read-ahead. By reading-
ahead, the requested data of subsequent accesses will reside in

the on-disk cache and shorten the service time. Furthermore,
some disk controllers even read-ahead aggressively to cross
the track and cylinder boundaries. Nevertheless, since the
on-disk cache has limited size, if very large read requests are
issued, they may bypass the cache.

A single read-ahead cache can only support a single
sequential stream. As a result, if two or more sequential
streams are interleaved, this single read-ahead cache is no
benefit at all. To remedy this pitfall, nowadays, the on-
disk cache is often organized as a number of segments. A
segment is a sequence of data blocks managed as a unit;
i.e. each segment contains data that is disjointed from all
other segments. Therefore, several unrelated data items can
be cached at different segments. Some disk drives even
dynamically resize the number (and size) of cache segments
based on the recent access characteristics to ensure greater
cache utilization. More details on the caching algorithm can
be found in [3, 10, 11].

Compared with the capacity of a disk drive, the on-disk
cache is small. Consequently, a segment replacement
occurs when the cache is full of data and a new data block
is requested. Note that, the replacement algorithm has a
profound impact on the cache performance. A good replace-
ment scheme should evict the segment that has no immediate
access and retain the data more likely to be accessed soon.
For example, random replacement (RR), least recently used
(LRU) and least frequently used (LFU) are some of the
well-known cache replacement algorithms [11, 12, 13, 14].

2.2. Real-time system

Assume that the start-time and finish-time denote the actual
times at which a task is started and completed respectively.
To characterize the timing characteristics of a real-time task,
two parameters are associated with it to determine the proper
start-time and finish-time.

• Ready time: the earliest time at which a task can start.
• Deadline: the latest time at which a task must be

completed.

To satisfy the real-time requirements, the start-time of a task
should not be earlier than its ready time. Additionally, its
finish-time should not be later than the related deadline [15].
Depending on the consequence of a missed deadline, real-
time tasks are further classified into hard and soft. A real-time
task is said to be hard if missing its timing constraints
will cause serious damage and the system will misbehave.
In contrast, a real-time task is said to be soft if meeting
its timing constraints is desirable for performance, but a
missed deadline does not influence the correctness of system
behavior. A schedule of real-time tasks is said to be feasible if
all tasks can be sequentially served according to the specified
real-time requirements. In this paper, we address hard real-
time systems.

2.3. Real-time disk scheduling problem

As stated above, tasks in a real-time system must be
associated with timing characteristics to describe their timing

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 563

constraints. Accordingly, a real-time disk task Ti is denoted
by five parameters (ti , li , bi, ri , di), where ti is the track
location, li the sector number, bi the data size, ri the ready
time and di its deadline. Assume that the schedule sequence
is TjTi . Because disk tasks are non-preemptive, the start-time
si and finish-time fi of a real-time task Ti with schedule TjTi

are thus computed by si = max{ri, fj } and fi = si + cj,i

respectively, where cj,i denotes the service time of task
Ti with schedule sequence TjTi . If Ti is a cache hit, cj,i

is the value of cache access time. Otherwise, cj,i represents
the time spent to access the physical disk.

Given a set of real-time disk tasks T = {T1, T2, . . . , Tn},
where n is the number of input disk tasks and the ith disk
task Ti is denoted by (ri, di, ti , li , bi), the objective of a real-
time disk scheduling algorithm is to find a feasible schedule
T Z = Tz(1)Tz(2) · · · Tz(n) with maximal throughput. The
index function Z(i), for i = 1 to n, is a permutation of
{1, 2, . . . , n}. Define the schedule finish-time as the finish-
time it takes to serve all input tasks according to their
respective timing constraints. Clearly, this is the finish-time
of the latest task fz(n). Therefore, the disk throughput is
calculated as follows:

Throughput =
n∑

i=1

bz(i)

/
fz(n) ∝ (fz(n))

−1 (1)

The obtained disk throughput is related to the inverse of
the schedule finish-time. If the input schedule is com-
pleted earlier, more data throughput is obtained. The data
throughput improvement of scheduler Z compared with
scheduler X can be computed as

Throughput improvement = (1 − fz(n)/fx(n)) ∗ 100% (2)

Therefore, the problem objective defined to maximize
throughput can be achieved by minimizing the schedule
finish-time. We formally define the real-time disk scheduling
problem as follows.

Definition 1. Real-time disk scheduling. Given a set of
n real-time disk tasks T = {T1, T2, . . . , Tn} where the ith
task Ti is (ri, di, ti , li , bi), find a feasible schedule T Z =
TZ(1)TZ(2) . . . TZ(n) that resolves min∀Z{fZ(n)}under rZ(i) ≤
sZ(i) and fZ(i) ≤ dZ(i) for 1 ≤ z(i) ≤ n.

3. RELATED WORK

3.1. Real-time disk scheduling algorithms

In this subsection, previous real-time disk scheduling
algorithms are investigated. EDF is a well-known real-time
scheduling algorithm [16, 17]. By scheduling requests in
the order of their deadlines, EDF has been shown as optimal
if tasks are independent. However, for disk scheduling, the
service time of a disk task depends on its previous task’s
location. The assumption that tasks are independent does not
hold. Actually, taking only deadlines into account without
considering service time, EDF incurs excessive seek-time
costs and results in poor disk throughput [3].

Actually, real-time disk scheduling has been shown to
be NP-complete [18]. Consequently, various approaches

have been dedicated to combine the seek-optimizing SCAN
scheme [19] with real-time characteristics of the EDF
method. These real-time disk scheduling algorithms start
from an EDF schedule and then reschedule requests so as
to reduce seek and/or rotational latency overhead under the
real-time constraints [20, 21, 22].

In [23], the authors proposed the Earliest Deadline SCAN
(D-SCAN) that uses the location of the task with the earliest
deadline to determine the scan direction. While moving
the disk head to the track of the task that has the earliest
deadline, the requests whose access data are along the path
are also served. Chen et al. [24] proposed the Shortest
Seek Earliest Deadline by Order (SSEDO) and Shortest Seek
Earliest Deadline by Value (SSEDV). Both algorithms start
from an EDF schedule and then SSEDO uses a weighted
seek distance for rescheduling, while SSEDV checks whether
deadlines are feasible prior to service.

In 1993, the well-known SCAN-EDF scheme was
proposed that first schedules disk tasks with the earliest
deadlines [21, 22]. If two or more disk tasks have the same
deadline, these tasks are served according to their relative
track locations, i.e. by the SCAN algorithm. Since only tasks
with the same deadline are seek-optimized, the obtained data
throughput improvement is limited.

To increase the probability of applying the SCAN
algorithm to reschedule input tasks, DM-SCAN (Deadline
Modification-SCAN) proposed the concept of a maximum-
scannable-group (MSG) [9]. An MSG is a set of continuous
tasks that can be rescheduled by SCAN without missing
their respective timing constraints. Given an EDF schedule
T = T1, T2 · · · Tn, an MSG Gi starting from task Ti is defined
as the sequential tasks Gi = TiTi+1Ti+2 · · · Ti+m where task
Tj satisfies the following criteria:

fj ≤ di and rj ≤ si for j = i to i + m (3)

A simple example to demonstrate the identification of MSGs
is shown in Figure 2. Given an EDF schedule T =
T1T2T3T4T5, to calculate MSG G2, we have f2 ≤ d2, r2 ≤ s2
and f3 ≤ d2, r3 ≤ s2, but f4 > d2 although r4 ≤ s2. Thus,
G2 = T2T3. Following the same approach, other MSGs
can be obtained as G1 = T1, G3 = T3T4, G4 = T4T5 and
G5 = T5 respectively.

After the identification of MSGs, DM-SCAN reschedules
tasks in each MSG by the seek-optimizing SCAN scheme to
minimize service time. Note that the rescheduled result will
destroy the EDF sequence. Because DM-SCAN requires the
input tasks based on an EDF order, a deadline modification
scheme is proposed to modify the tasks’ deadlines and
transfers the rescheduled non-EDF sequence into a pseudo
EDF order. Here, ‘pseudo’ means that the tasks are ordered
by the modified deadlines. For example, given the schedule
sequence TiTj , a pseudo deadline ds(i)is derived as ds(i) =
min{di, ds(j)}. Figure 3 presents a simple example to
illustrate the deadline modification scheme. The original
input T = T1T2T3T4T5 is not an EDF schedule because we
have d2 > d3 and d4 > d5. Traversing from the last task T5 to
the first task T1, if any task has its deadline larger than that of
its previous task, the deadline modification scheme is applied.

The Computer Journal, Vol. 47, No. 5, 2004

564 H.-P. Chang et al.

T1

T2

T3

T4

T5

Ready Time; Deadline; Task Execution; MSG

FIGURE 2. An example to demonstrate the identification of MSG.

T1

T2

T3

T4

T5

d1 > d2 d1 = d2

d2 > d3 d2 = d3

d3 < d4 d3 = d3

d4 > d5 d4 = d5

Modified Pseudo Deadline; Deadline; Task Execution;

FIGURE 3. A simple example to illustrate the deadline modification scheme.

For example, d4 is larger than d5 and is modified equal to d5
in order to satisfy the EDF requirement. Following the same
procedure, d2 and d1 are also modified. Note that, although
d1 < d2 in the original input schedule, d1 is also modified as
the value of d1 is larger than that of the modified pseudo
deadline d2. By the deadline modification scheme, DM-
SCAN reschedules tasks iteratively from the derived pseudo
EDF schedule to obtain more data throughput.

3.2. Mixed-workload disk scheduling algorithms

Some researchers address the simultaneous support of mixed-
media disk scheduling [25, 26, 27]. In [27], Cello is a
two-level disk scheduling framework that consists of a class-
independent scheduler and a set of class-specific schedulers.
Therefore, a number of class-dependent disk schedulers
schedule requests according to the application’s needs. For
example, in Cello, the soft real-time disk requests are
scheduled by SCAN-EDF and the interactive best-effort disk
requests are scheduled by classic slack stealing techniques
[28]. Then the class-independent scheduler determines when
and how many requests are moved from the class-dependent

queues into the class-independent queue, which employs
a First Come First Serve (FCFS) queuing discipline. For
example, the class-independent scheduler employs a just-in-
time scheduler (which schedules requests just prior to their
deadlines) that moves the real-time disk requests to the class-
independent queue at their latest start time.

However, the Cello disk scheduling framework could
suffer from missing deadlines because of its just-in-
time approach. Thus, in [25], the authors proposed
the �L scheduler that, instead of using the just-in-time
manner, extends Jeffay et al.’s [29] non-preemptive resource
scheduler and uses the slack time (the minimum time between
the end of any executed real-time request and its deadline) to
service the best-effort requests. Notably, Jeffay et al.’s [29]
non-preemptive schedule is a deadline-dynamic scheduling
algorithm and �L employs the EDF scheduler to schedule
the real-time requests.

Cello and �L use SCAN-EDF and EDF separately as
their real-time disk scheduling algorithms. Nevertheless,
taking only deadlines into account during disk scheduling
without considering the seek-time latency, EDF incurs
excessive seek-time costs and results in poor disk throughput

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 565

[21, 22]. Furthermore, in the performance evaluation of the
�Lscheduler, they found that the disk cache is of limited
use because of its small size: the advantages of disk read-
ahead for one stream are nullified by the transfer of other
streams. This is because they read and write blocks of 1 MB
each for a high bandwidth application, e.g. video stream
playback. However, in this paper, we address other real-time
applications, as stated in Section 1, which use small block
sizes. Furthermore, the issues concerning the number of
streams and on-disk cache will be addressed in Section 6.2.3.

3.3. Cache-aware CPU scheduling algorithms

Taking the cache effect into consideration during the
scheduling has been done in CPU scheduling. To analyze
the schedulability of a given CPU task set, the estimation of
a task’s execution is simplified at the cost of a number of worst
case assumptions. In order to obtain more accurate timing for
schedulability analysis, Lee et al. [30, 31] analyzed the cache-
related preemption delays of tasks in the context of fixed-
priority preemptive scheduling. An enhanced technique for
analyzing the cache-related preemption delay is proposed in
[32].

With the knowledge of the number of useful cache blocks,
a scheduling scheme, called limited preemptive scheduling
(LPS), which limits preemptions to occur at time points with
the smallest cache-related preemption costs is introduced
in [33]. Therefore, the overall task switching costs are
reduced. However, this results in an increase in block delay
of higher priority tasks; thus LPS makes an optimal trade-off
in decreasing task switching costs and increasing blocking
latency.

The cache miss can be classified as intrinsic and extrinsic.
Extrinsic misses are caused by the interaction of different
tasks on the cache; i.e., is due to preemptions in multi-
processes systems. Intrinsic cache misses are caused by the
contention on cache blocks of different codes in a program.
In [30, 31, 32], only the extrinsic cache behavior is addressed.
In reality, the cache misses caused by context switches
(extrinsic cache miss) influence the cache miss probability
during the internal execution of a program (intrinsic cache
miss). Therefore, an integrated analysis of the intrinsic and
extrinsic cache misses is proposed in [34]. The authors
proposed a CPU scheduling methodology that integrates
scheduling and timing analyses, and takes the caching effect
into consideration. By offline analyzing the control flow
graph (CFG) of a task, they derived a schedule by using a
simulated annealing algorithm to minimize the cache miss
probability.

From the discussion above, the cache-aware CPU
scheduling either extends the previous classical schedula-
bility analysis of EDF to include the cache effect or ana-
lyzes the CFG to determine the schedule that minimizes the
cache miss probability. However, for disk scheduling, no
optimal scheduling scheme (like EDF for CUP scheduling)
is available. In addition, it is difficult to analyze the CFG
since the interference of file system’s buffer cache. Further-
more, because of the different characteristics of CPU and

disk mechanisms, new on-disk cache-aware real-time disk
scheduling algorithms must be devised.

3.4. Applications-aware buffer cache management

To make efficient use of system resources, in [35] the
authors present proactive mechanisms to tailor file system
resources to the needs of I/O-intensive applications. The user
applications would provide ‘hints’ and the file system would
then use these hints to prefetch and cache data aggressively
into the buffer cache. Therefore, the file system resources
would be tailored to the needs of user applications. However,
this requires the modification of user application programs to
disclose their future resource requirement to the operating
system. Besides, if the idea is to be applied to the disk
subsystem, it also requires the knowledge of the detailed
behavior of the on-disk cache. Then, we know how to
manage the on-disk cache on the basis of the disclosed hints.
Furthermore, the disk subsystem must modify its interface
with the host computer to distinguish the actual data requests
from the prefetching and caching hinted data requests. In
contrast, by our proposed scheme, we do not require the
modification of user applications and the disk subsystem
interface.

4. PRELIMINARIES

In this section, we describe the terms used in this paper. Given
a set of n real-time disk tasks, assume that for each disk access
Ti, 1 ≤ i ≤ n, if a cache miss occurs, the cache logic will
bring a data size of x into the on-disk cache and the content
of data blocks brought into the cache is denoted by Ei . Thus,
size(Ei) = x. Note that, the value of x depends on the cache
segment size, and if read-ahead is performed, also on the
read-ahead size. To distinguish a set of tasks whose accesses
exhibit spatial locality, we define the principal task and the
cached task as follows.

Definition 2. Principal task and cached task. Given a
set of real-time disk tasks T1T2 · · · Tn, if Tj ’s requested data
block bj is included in Ei , where 1 ≤ i ≤ j ≤ n, then Ti is
called the principal task of Tj and denoted as P(Tj) = Ti .
In addition, Tj is called the cached task of Ti and denoted as
C(Ti) = Tj .

Definition 3. Immediate principal task and immediate
cached task. Given a set of real-time disk tasks T1T2 · · · Tn,
assume that P(Tj) = Ti (i.e. C(Ti) = Tj), where 1 ≤ i <

j ≤ n. If there exist no principal tasks of Tj (or Ti’s cached
tasks) between Ti and Tj , then task Ti is called the immediate
principal task of Tj and denoted as G(Tj) = Ti . In addition,
task Tj is called the immediate cached task of Ti and denoted
as H(Ti) = Tj .

Therefore, Tj is a cache hit if EG(Tj) is resident in the on-disk
cache when Tj is issued. In other words, a cache hit occurs for
Tj if the cached data of G(Tj) remains in the cache, i.e. has
not yet been replaced when Tj is issued. Consequently, if Tj

and G(Tj) are scheduled close enough such that the cached
data of G(Tj) have not yet been flushed when Tj is issued,

The Computer Journal, Vol. 47, No. 5, 2004

566 H.-P. Chang et al.

di Tk rjdkrk

FIGURE 4. The execution of Tk must be between Ti and Tj .

then Tj can be serviced by the on-disk cache and shorten its
access time.

However, in a real-time system, a derived schedule must
be feasible. Therefore, scheduling Tj and G(Tj) to be closer
must not violate both Tj and G(Tj)’s timing constraints.
In addition, since other tasks may be influenced by this
cache-aware rescheduling, the deadlines of the influenced
tasks should not be missed to guarantee a feasible schedule.
Therefore, when and how to perform such a cache-aware
scheduling scheme under real-time constraints poses a
challenge in the design of our scheduling algorithm.

5. CACHE-AWARE REAL-TIME DISK
SCHEDULING ALGORITHMS

On the basis of DM-SCAN, we introduce in this section
the three proposed cache-aware real-time disk scheduling
algorithms. In Section 5.1, we introduce the deadline shift
scheme. Then, the collaboration scheme and the CARDS
scheme are presented in Section 5.2 and 5.3 respectively.

5.1. Deadline shift algorithm

As described in Section 4, to increase the cache hit ratio, Ti

and G(Ti) must be close enough to prevent EG(T i) from being
replaced when Ti is executed. If the input tasks are ordered
in an EDF sequence, then a task’s deadline determines its
relative positions in a schedule. Accordingly, making Ti and
G(Ti) closer to one another such that Ti can be a cache hit
implies that their deadlines should not be far away. This
motivates the idea of a deadline shift scheme.

5.1.1. Deadline shift algorithm
Given an EDF schedule, the deadline shift scheme first
identifies pairs of the cached tasks and their immediate
principal tasks. Then, for each pair of the cached task
Ti, i ∈ [1, n], and its immediate principal task G(Ti), the
deadline of Ti is shifted to be close to that of G(Ti). As a
result, the number of tasks between Ti and G(Ti) is decreased
and then Ti has an opportunity to be a cache hit. After this
deadline shifting process, tasks with their shifted deadlines
are scheduled by DM-SCAN to minimize seek-time overhead
under real-time constraints.

However, in some cases, it is impossible for a cached task to
be a cache hit because it is too far away from its corresponding
immediate principal task. Therefore, shifting these cached
tasks’ deadlines is unnecessary. To identify these cached
tasks, we define the concept of task dimension.

Definition 4. Task dimension. Given a schedule
T1T2 · · · Tn, the task dimension between Ti and Tj , 1 ≤ i <

j ≤ n, which is denoted as Di,j , is defined as the number of
non-cached tasks that must be executed after Ti and before

Tj . Notably, a non-cached task means a task that has no
corresponding principal task, i.e. P(Tk) = � if Tk is a non-
cached task. Consequently, the access of a non-cached task
always results in a cache miss.

As shown in Figure 4, for task Tk that must be executed
after Ti and before Tj , its ready time has to be after di and its
deadline must be before rj . Let Ai,j denote the set of tasks
that must be executed after Ti and before Tj .Thus, Ai,j is
computed as

Ai,j = {Tk | di < rk < dk < rj and

P(Tk) = �; 1 ≤ i < j < k ≤ n} (4)

From the definition of task dimension, Di,j = |Ai,j | if for
all Tk ∈ Ai,j , Tk is a non-cached task. Suppose that the
number of cache segments is m and LRU is used as the cache
replacement algorithm. The following lemma identifies the
cached tasks that have no way of being cache hits and thus
have no need to shift their deadlines.

Lemma 1. Given an EDF schedule S = T1T2 · · · Tn, for
any cached task Tj and its associated immediate principal
task Ti , 1 ≤ i ≤ j ≤ n, if Di,j ≥ m, then the access of Tj

always results in a cache miss.

Proof. A cache segment is replaced when a cache miss
occurs, i.e. the requested data of an issued task is not in the
cache. Since the task dimension between Ti and Tj is Di,j , at
least Di,j cache replacements will occur between Ti and Tj .
Because Di,j > m and LRU is used as replacement scheme,
the cached data ET (i) must be flushed out from the on-disk
cache when Tj is issued. As a result, the access of Tj results
in a cache miss and, therefore, it is not necessary to shift Tj ’s
deadline.

After eliminating the cached tasks that have no way of
being cache hits, we must determine the proper value of the
shifted deadline. Here, ‘proper’ means that a schedule based
on the shifted deadlines should maximize the hit ratio while
still being feasible. Assume that Tj is a cached task and
G(Tj) = Ti . Denote the value of the shifted deadline of the
cached task Tj as xj . Depending on the relative position of
Ti and Tj , there are three situations wherein the deadline of
Tj could be shifted.

(a) If di ≤ rj , as shown in Figure 5a, then the value of
Tj ’s shifted deadline must be between rj and dj , i.e.
rj ≤ xj ≤ dj . Therefore, the value of the shifted
deadline can be chosen as xj = rj + cj , where cj is a
parameter depending on the characteristics of the input
task set and the properties of the on-disk cache. Note
that, 0 < cj ≤ dj .

(b) If ri ≤ rj ≤ di , as shown in Figure 5b, then the value
of the shifted deadline of Tj must be between di and

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 567

ri rj djds(j)

di

di

(a)

(b)

(c)

djds(j)

di djds(j)ri rj

ri rj

Ready Time Deadline Range of ds(j)

FIGURE 5. The three cases that a shifted deadline xj could fall through.

(a)

(b)

Ti Tl TjTk dk

Ti TkTl Tjdk

FIGURE 6. A simple example to illustrate that tasks could be influenced by a rescheduling of a task for hitting cache. (a) Original schedule.
(b) To be cache hit, Tl is advanced to execute before Tk . However, Tk misses its deadline because of the advance of Tl’s execution, even
though Tl’s access time is equal to the cache access time and is quite short.

dj , i.e. di ≤ xj ≤ dj . Consequently, the value of the
shifted deadline can be chosen as xj = di + cj . Note
that, 0 ≤ cj ≤ dj − di .

(c) Finally, if rj ≤ ri ≤ di , as shown in Figure 5c, then
the value of the shifted deadline of task Tj must also
fall between di and dj , i.e. di ≤ xj ≤ dj , the same
situation as Case (b).

After the deadline shifting process, tasks with their new
shifted deadlines are scheduled by the DM-SCAN algorithm.
Accordingly, the deadline shifting scheme modifies the tasks’
deadlines to force a different execution order under the EDF
schedule since EDF determines the tasks’ execution order
based on their deadlines.

5.1.2. Feasibility checking
Assume that the input schedule is a feasible schedule.
Shifting a task’s deadline will advance its execution and other
tasks may be delayed and miss their deadlines. As shown
in Figure 6, Tk misses its deadline due to Tl’s advanced
execution, even though the new access time of Tl is equal to
the cache transfer time, which is significantly shorter than the
physical disk access. Although DM-SCAN may produce a
feasible rescheduled result even if an infeasible EDF schedule
is given, this is not guaranteed.

Therefore, with the progress of the DM-SCAN algorithm,
we have to check the schedule’s feasibility. Once a task
Ti misses its deadline, the shifted deadlines of the cached
tasks before Ti are restored to their original values and these
tasks must be put into their correct positions in the schedule,
where correct positions means the locations scheduled by
DM-SCAN using their original deadlines. Assume that the

cached task Tj is before Ti and its deadline is shifted. If Tj

has not yet been scheduled by DM-SCAN, we just restore
Tj ’s deadline to its original value. If Tj has been scheduled
by DM-SCAN, then Tj ’s deadline is first restored to its
original value. In addition, DM-SCAN must reschedule the
task set from Tj . This process continues until Ti meets its
deadline.

5.1.3. Discussion
Although the deadline shift scheme considers the caching
effect during disk scheduling to increase the cache hit ratio,
it suffers from some drawbacks as discussed below.

• It is not easy to determine the value of a shifted deadline.
A proper value of the shifted deadline, which depends
on the characteristics of input tasks and the behavior of
on-disk cache, must maximize the cache hit ratio while
guaranteeing the schedule’s feasibility. However, it is
not easy to derive a suitable shifted deadline value for a
cached task to meet the above criteria.

• The deadline shift scheme just tries to increase the cache
hit probability, but does not guarantee it. By means of
shifting Tj ’s deadline to be closer to the deadline of its
immediate principal task Ti , the deadline shift scheme
expects that Tj can then be served before the cached data
of Ti has been replaced. However, it is not guaranteed
that a cache hit occurs for Tj . In addition, the DM-
SCAN algorithm, which runs after the deadline shifting
process, will reschedule tasks without considering the
caching effect. As a result, the shifted cached tasks
may be pulled apart from their corresponding immediate
principal tasks by DM-SCAN.

The Computer Journal, Vol. 47, No. 5, 2004

568 H.-P. Chang et al.

T1
…

(a)

(b)

T2 T3

T2 T3 T1

Tn

T4 T5 T6 Tn

T5T4 T6

MSG; non-MSG

FIGURE 7. A simple example to demonstrate the DM-SCAN algorithm. (a) The input tasks are grouped into consecutive MSGs or non-
MSGs. (b) Tasks in each MSG are rescheduled by the SCAN algorithm.

• The deadline shift scheme requires that the input tasks
must be in EDF sequence. However, the input task
set may not be in EDF order. Although a deadline
modification scheme can be applied transferring a non-
EDF ordered task set into a ‘pseudo’ EDF sequence, the
modified pseudo deadlines have tighter deadlines than
their original one to guarantee feasibility. Consequently,
the modified schedule is stricter than the previous one.
As a result, the schedulability of a given task set is
influenced.

To resolve the above drawbacks of the deadline shift
scheme, we propose two additional cache-aware real-time
disk scheduling algorithms: the collaboration scheme and the
CARDS scheme, which are described in turn in the following
sections.

5.2. Collaboration scheme

To resolve the problems of the deadline shift scheme,
the collaboration scheme is proposed, which considers
the caching effect during the scheduling of DM-SCAN.
However, rescheduling a task to increase the cache hit ratio
may cause other tasks to miss their deadlines and a feasibility
check must be performed for each rescheduling operation.
Therefore, we also present the techniques to reduce the
checking overhead.

5.2.1. Collaboration scheme
As stated in Section 3, DM-SCAN identifies MSGs
that consist of a number of continuous tasks that can
be rescheduled under real-time constraints (identification
process). Continuous tasks that cannot be rescheduled seek-
optimizingly belong to a non-MSG group. As a result, as
shown in Figure 7a, an input task set is divided into a number
of groups, either an MSG or a non-MSG group. After that,
as shown in Figure 7b, tasks in each MSG are rescheduled by
the SCAN algorithm (rescheduling process). Accordingly,
the collaboration scheme considers the caching effect during
both the identification process and the rescheduling process.
Assume that LRU is used as the cache replacement scheme
and a number of m cache segments are in the on-disk cache.
Given a set of real-time disk tasks T = T1T2 · · · Tn, for each

group Gi = TiTi+1 · · · Ti+m, 1 ≤ i ≤ n, the steps to perform
the collaboration scheme are described in the following:

(i) If Gi is a MSG, tasks within Gi are first seek-
optimized by the SCAN scheme.

(ii) Then, for each task Tl within Gi, l ∈ [i, i + m],
calculate its corresponding cached tasks, if they exist,
after Gi . Remove the cached tasks that have no way of
being a cache hit using the concept of task dimension,
which is described in Section 5.1.1.

(iii) For each remaining cached task Tj , j ∈ [i+m+1, n],
assume that its principal task is Tk, k ∈ [i, i + m].
Depending on Tj ’s ready time rj , the following shows
the different steps to be performed.

(a) If rj ≤ rl , then Tj can be scheduled into Gi .
Therefore, Tj is moved to the (k + 1)th location
to be immediately after Tk . As a result, Tj could
hit the cached data of Tk when it is executed.
However, feasibility checking must be performed
to prevent other tasks from missing their deadlines
as described in Section 5.2.2. Note that, Tj is not
selected into Gi by DM-SCAN because fj > dm

in the input task set.
(b) If rl < rj < dm, Tj cannot be directly scheduled

into Gi . To be a cache hit, principal task Tk is
rescheduled, if feasible, such that fk ≤ ri . Then
Tj is rescheduled immediately after Tk .

(c) This process is continued until all the remaining
cached tasks are rescheduled.

The collaboration scheme thus directly adapts DM-SCAN
to be cache-aware. First, the task set in an R-Group Gi

is enlarged with the cached tasks, whose principal tasks
are in Gi , that are guaranteed to be cache hits. Then, the
rescheduling scheme also considers the caching effect. In
addition to the movement of the cached tasks, principal tasks
are also rescheduled to be closer to their cached tasks to
increase the probability of cache hit.

5.2.2. Feasibility checking
As shown in Figure 8, when task Ti is rescheduled from
position α to β, other tasks may be influenced by an increased
or decreased delay of finish-time. Therefore, feasibility

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 569

T T
…
B

A C

αβ

FIGURE 8. The condition when a task T is moved from α to β. Tasks in the region A are not influenced. However, tasks in the region B

may be delayed. Besides, tasks within the region C may be delayed or advanced for execution depending on whether T ’s access results in a
cache hit or miss at location β.

GeTi Ti Ga Gbfa rbfa = ra

(a) (b)

Gbrb Ti GcfaGa

FIGURE 9. Conjunction groups may be merged or split when a rescheduling operation occurs. (a) Ti is rescheduled to the front of Ga . As
a result, conjunction groups Ga and Gb are merged into Gc since rb ≤ fa . (b) Ti is rescheduled out from Gc. As a result, conjunction group
Gc is split into Ga and Gb since fa < rb.

checking must be performed when rescheduling a task and,
if an infeasible schedule is produced, this rescheduling
operation cannot be activated. The feasibility checking
involves computing the start-time and finish-time for each
request and thus a naive computation algorithm has O(n)

complexity. To accelerate the checking process, the concept
of a conjunction group is introduced.

Definition 5. Conjunction group. Given a set of real-time
disk tasks T = T1T2 · · · Tn, a conjunction group Gi is defined
as a number of continuous tasks Gi = TiTi+1 · · · Ti+m where
each task Tk for k = i + 1 to i + m satisfies rk ≤ fk−1.

Therefore, tasks in a conjunction group will be executed
one by one without any free time slice between them. Note
that, as shown in Figure 9, conjunction groups may be merged
or split when a rescheduling operation is taking place. By
the idea of conjunction group, the following lemmas assist in
simplifying the checking process.

Lemma 2. Assume that we are given a conjunction group
Gk = TkTk+1 · · · Tl and task Tmis rescheduled from position
α to β, where position α is inside Gk while position β is
outside Gk . If Ti, i ∈ [k, l − 1], is influenced by a delayed
execution of ε, then for all tasks Tj , j ∈ [i + 1, l], their
executions are also delayed by ε.

Proof. For a real-time task Ti+1, si+1 = max{ri+1, fi} and
fi+1 = si+1 + ei+1, where ei+1 denotes Ti+1’s execution
time. Since Ti+1 ∈ Gk , from the definition of conjunction
groups,

si+1 = fi and fi+1 = si+1 + ei+1 = fi + ei+1. (5)

Because Ti is delayed by ε, i.e. fi is increased by ε, from
Equation (5), si+1 and fi+1 are also delayed by ε. Following
the same arguments, task Tj , j ∈ [i +2, l], is also influenced
by a delayed execution of ε.

Lemma 3. Assume that we are given a conjunction group
Gk = TkTk+1 · · · Tl and a task Tm is rescheduled from

position α to β. If Ti, i ∈ [k, l − 1], i.e. Ti is within Gk , is
thus influenced by an advanced execution of ε, then for all
tasks Tj , j ∈ [i + 1, l], their executions are also advanced
by ε, if Gk is not split.

Proof. The proof can be derived in the same way as the proof
of Lemma 2.

Given the set of tasks in a schedule, we define the slack li
of task Ti as follows:

li = di − fi. (6)

That is, the slack li represents the duration for which Ti can
be delayed without violating its deadline. As Lemmas 2
and 3 show, the increase/decrease in finish-time is the same
for all tasks in a collaboration group. Accordingly, we only
maintain the smallest value of slack for each collaboration
group rather than maintaining it for individual requests. As
a result, when a rescheduling operation is done, we only
have to check the task with the smallest value of slack to
see whether its deadline is missed, if a delayed execution
occurs. Besides, the checking process is stopped when a
free time slice is encountered. Note that, conjunction groups
may be merged or split by a delayed or advanced execution,
and thus the slack value should be updated correspondingly.
From above, the overhead of feasibility checking is reduced
significantly by the introduction of slack and conjunction
groups. Therefore, the collaboration scheme can verify
quickly whether a rescheduling is feasible or not.

5.2.3. Discussion
From Section 5.2.1, the collaboration scheme thus resolves
the drawbacks of the deadline shift scheme. First, without the
need to shift the tasks’ deadlines, it is not necessary to decide
the values of the shifted deadlines. Second, the collaboration
scheme works for any input sequence and thus requires no
deadline modification scheme. Third, the rescheduling of a
cached task is only performed when a cache hit is guaranteed.

The Computer Journal, Vol. 47, No. 5, 2004

570 H.-P. Chang et al.

Number of

Task is a cache missTask is a cache hit

FIGURE 10. The identification of a flush point.

Finally, the schedulability of a given task set is not influenced
since no task’s deadline is shifted.

However, the collaboration scheme also suffers from some
disadvantages. First, as presented in Section 5.2.1, when a
cached task Tj has its ready time after the finish-time of its
principal task Tk , i.e. rj > fk , the collaboration scheme does
not perform cache-aware rescheduling for Tj or Tk . This is
because the collaboration scheme works with the progress
of the DM-SCAN scheme and thus the scheduling sequence
between Tk and Tj is not yet determined when the group
containing Tk is encountered. As a result, the collaboration
scheme cannot perform cache-aware rescheduling for Tj

or Tk . In addition, when Tj is rescheduled to hit the
cached data of its principal task Tk , the collaboration scheme
reschedules Tj to be immediately after Tk , which results in
a maximum number of tasks being influenced (from Tk+1 to
Tn). However, since the cached data of Tk will remain in
the on-disk cache until they are evicted, it is not necessary to
reschedule Tj immediately after Tk , except in the case when
only one cache segment exists in the on-disk cache. Besides,
if Tj is also a principal task of Tl , this could result in a larger
distance between Tj and Tl and increase the difficulty for Tl to
be a cache hit. In the following section, the CARDS scheme
is, therefore, introduced to rectify the above drawbacks.

5.3. CARDS scheme

As stated in Section 5.1, the deadline shift scheme first
performs cache-aware scheduling to a given task set.
Then, DM-SCAN is applied for seek-optimizing input
tasks. Section 5.2 introduces the collaboration scheme that
considers the caching effect during the scheduling of DM-
SCAN. In this section, a new cache-aware real-time disk
scheduling algorithm, the CARDS scheme, is proposed that
considers the caching effect after the DM-SCAN scheme.

Before describing the CARDS scheme, for task Tk , we first
introduce the miss function g(k) as:

g(k) =
{

1 if Tk introduces a cache miss

0 if Tk introduces a cache hit
(7)

By the miss function, the concept of flush point of Ti , P(i),
is introduced such that

P(i)∑
l=i

g(l) = m + 1 or P(i) = n if n is reached (8)

As shown in Figure 10, P(i) represents the position that the
cached data of Ti will be flushed to the disk. As a result, Tj

should be executed before TP(i), if possible, to be a cache hit.
In contrast to the collaboration scheme, which schedules

a cached task Tj immediately after its principal task Ti , the
CARDS scheme schedules Tj just immediately before the
flush point of Ti , P(i). Thus, a cache hit is also guaranteed for
Tj while minimizing the number of tasks being influenced.

Suppose that the number of cache segments is m and
LRU is used as the cache replacement algorithm. Assume
that after the running of DM-SCAN, the derived schedule
S = T1T2 · · · Tn. Then, the CARDS scheme identifies pairs
of cached tasks and their immediate principal tasks. For each
pair of cached task Tj , j ∈ [1, n], and its immediate principal
task Ti(= G(Tj)), the CARDS scheme must decide whether
Tj should be scheduled to be closer to Ti and, if so, which
position is suitable for Tj to be scheduled. The steps that are
performed by the CARDS scheme for each pair of the cached
task Tj and its immediate principal task Ti are shown in the
following:

(i) Calculate the value of P(i) by Equations (7) and (8).
(ii) If Tj is in front of TP(i), as shown in Figure 11a, Tj can

be serviced by the on-disk cache with the cached data
of Ti . Therefore, no rescheduling is needed for Tj .

(iii) However, if Tj is after or equal to TP(i), i.e. P(i) ≤ j ,
then a cache miss will occur when Tj is issued.
Consequently, the CARDS scheme tries to schedule
Tj to execute before TP(i). Depending on the values
of rj , the ready time of Tj , and sP (i), the start-time of
TP(i), two different cases may exist:

(a) If sP (i) ≤ rj , as shown in Figure 11b, Tj cannot
be advanced to execute before TP(i) since its
ready time falls behind the start-time of TP(i).
Consequently, no reordering is performed for Tj .

(b) If sP (i) > rj , as shown in Figure 11c, Tj can
be advanced to execute before TP(i). Although
the time at which Tj could be started is between
max(di, rj) and sP (i), the CARDS scheme
reschedules Tj into the (P (i) − 1)th position,
i.e. immediately before TP(i). Accordingly, the
number of influenced tasks (from TP(i) to Tn)

is minimal. Note that the rescheduling of Tj

may result in an infeasible schedule. Therefore,
a feasibility checking must be performed for
each rescheduling operation by the techniques
described in Section 5.2.2.

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 571

FIGURE 11. Three cases for the CARDS scheme. (a) Tj is guaranteed to be cache hit and thus no movement is needed as it is scheduled
before the TP(i). (b) No movement is needed for Tj because its ready time is after the start time of TP(i). (c) By moving Tj in front of TP(i),
Tj thus can be cache hit.

TABLE 1. Quantum Atlas 10K: MAG 3091
disk parameters.

Year 1999
Capacity 9.1 GB
Number of cylinders 10,042
Number of surface 6
Number of sectors per track 334
Sector size 512 bytes
Revolution speed 10,000 rpm

From the above, the increase in cache hit probability is
realized with the CARDS scheme by rescheduling tasks that
have the opportunity to be a cache hit after the DM-SCAN
scheme.

6. EXPERIMENTAL RESULTS

In this section, the performances of the three cache-
aware real-time disk scheduling algorithms are evaluated.
Section 6.1 shows the platform used for our experiments and
the characteristics of the input workload. In Section 6.2,
the experimental results of the three cache-aware real-time
disk scheduling algorithms are presented to compare their
performance.

6.1. Experiment platform

As stated above, the characteristics of the on-disk cache must
be explored so that a cache-aware scheduling scheme can
be applied. Because disk manufacturers consider their on-
disk cache implementation scheme a technical secret, we use
the disk drive parameters derived from [36], which uses the
techniques of on-line extraction [37, 38, 39]. Table 1 shows
some important parameters of the Quantum Altas 10K MAG
3091, which is used as the target disk in our experiments [36,
40]. The seek-time cost is calculated by the extracted data
from [36]. Rotational latency is assumed to be half of the
time of a full track revolution. The on-disk cache parameters
of Quantum Altas 10K MAG 3091, which are based on the
extracted data of [36], are shown in Table 2.

There are two kinds of workloads in our experiments, one
is random and the other is sequential. The workload of

TABLE 2. Quantum Atlas 10K: MAG 3091
disk cache parameters.

Size 2 MB
Number of buffer segments 10
Segment size 374 sectors
Transfer time 0.184 ms

random tasks is uniformly distributed over the disk surface.
The sequential workload comprises a number of sequential
streams and random requests. Each sequential stream in
our simulations emulates the sequential access pattern. The
accessed block of the first request is also randomly distributed
over the disk surface. Then, the following requests access
the block immediately after their previous tasks. In addition,
the number of random requests in a sequential workload is
selected as one-third of the total requests. The accessed
blocks of these random tasks are also uniformly distributed
over the disk surface. The size of data accessed by each
request, either sequential or random, is normally distributed
with a mean of 36 KB. For a random workload, if there
are n random tasks, the ready times of tasks are randomly
generated from 0 to 6 ∗ n ms. After a random time interval,
0–5 ∗ n ms, the related deadlines are uniformly distributed
within 0–10 ∗ n ms. For a sequential workload, if there
are m sequential streams, the total number of input tasks
n = 1.5 ∗ (5 ∗ m). Since there are five sequential tasks in
a stream, the ready time of each sequential task in a stream
is randomly generated between 0 and 2 ∗ n/5 ms after its
previous task and its deadline is uniformly distributed within
0–20 ∗ n/5 ms after a random time interval, 0–10 ∗ n/5 ms.
For the random tasks in the sequential workload, their ready
times are randomly generated between 0 and 2 ∗ n ms.
After a random time interval, 0–10 ∗ n ms, their related
deadlines are uniformly distributed within 0–20 ∗ n ms. The
cache replacement scheme is assumed to be LRU. If a cache
miss occurs, the cache logic will read ahead a data size
of 354 sectors (177 KB), including the requested one, into
a least-recently used cache segment. In all the following
experiments, 50 experiments are conducted with different
seeds for random number generation and the average value
is measured.

The Computer Journal, Vol. 47, No. 5, 2004

572 H.-P. Chang et al.

Shifting Factor

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
)

24 random tasks

25 random tasks

26 random tasks

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

FIGURE 12. Throughput improvement for different values of shifting factors in random workload. The throughput improvement is compared
with EDF.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Shifting Factor

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
)

4 streams

5 streams

6 streams

0

2

4

6

8

10

12

14

16

FIGURE 13. Throughput improvement for different values of shifting factors in sequential workload. The throughput improvement is
compared with EDF.

6.2. Experimental results

6.2.1. Different values of the shifted deadlines
In this section, we first measure the data throughput under the
different shifted values of the deadlines in the deadline shift
scheme. Assume that Tj is a cached task and G(Tj) = Ti .
Depending on the relative position of Ti and Tj in the
input task set, Tj ’s deadline would be shifted such that
rj ≤ xj ≤ dj or di ≤ xj ≤ dj . Thus, xj would be
selected as xj = rj + cj or xj = di + cj , where cj is a
parameter that depends on the characteristics of the input task
set and the properties of the on-disk cache. We thus define
a shifting factor wj for Tj such that cj = (dj − rj) ∗ wj or
cj = (dj − di) ∗ wj , wj ∈ [0, 1]. Note that, xj is increased
with wj , i.e. a larger value of the shifting factor results in a
smaller value of the shifted deadline, which in turn incurs a
smaller difference between the original deadline, dj , and the
shifted deadline, xj .

Given a number of random tasks, Figure 12 plots the data
throughput improvement compared with EDF for different
values of shifting factors. It is observed that the value
of the shifting factor, and thus the shifted deadline, has

little impact on the obtained data throughput. This is
because the input workload is random. Hence, the caching
effect is insignificant since there is little possibility that
the cached data of a task will be reused by another task. In
contrast, Figure 13 demonstrates the same experiment under
different sequential workloads. For example, the line of four
sequential streams represents the workload that consists of
four sequential streams and 10 random requests. Observe
that, when the shifting factor is 0.9, the data throughput is
best under four and five sequential streams. Thus, in the
following experiments, wi = 0.9 is used as the shifting
factor in calculating the shifted deadlines for the deadline
shift scheme.

6.2.2. Data throughput improvement
If the same number of real-time tasks is given, a well-behaved
scheduling algorithm must maximize data throughput under
guaranteed real-time constraints. Given random access
workload, the data throughput improvements of DM-SCAN
and three other disk scheduling schemes for different
numbers of input tasks are shown in Figure 14. The

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 573

20 21 22 23 24 25 26 27 28 29 30

Number of Random Tasks

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
)

DM-SCAN
deadline modification scheme
collaboration scheme
CARDS scheme

10

11

12

13

14

15

16

FIGURE 14. Throughput improvement of different schemes under different numbers of random tasks. The throughput improvement is
compared with EDF.

Number of Sequential Streams

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
)

DM-SCAN
deadline modification scheme
collaboration scheme
CARDS scheme

6

8

10

12

14

16

18

20

22

24

2 3 4 5 6 7 8 9 10

FIGURE 15. Throughput improvement of different schemes for sequential workload with different number of sequential streams. The
throughput improvement is compared with EDF.

TABLE 3. Given 26 random tasks, the minimum, maximum,
average schedule fulfill-time and throughput improvement com-
pared with EDF for different schemes.

Schedule fulfill-time (ms)

Algorithms Minimum Maximum Average Improvement
(%)

EDF 262.10 355.86 309.74 0.0
DM-SCAN 230.48 314.60 267.05 15.66
Deadline shift
scheme

230.48 314.60 267.05 15.66

Collaboration
scheme

230.48 314.60 267.05 15.68

CARDS
scheme

230.48 314.60 266.88 15.69

derived throughput improvement is compared with EDF.
Figure 15 presents the same experiment for different
sequential workloads. The minimum, maximum and
average schedule fulfill times of various approaches with a
sequence of 25 random tasks are also presented in Table 3.
Table 4 presents the same performance metrics but under
a sequential workload with 10 streams. Note that the

TABLE 4. Under sequential workload with 10 sequential streams,
the minimum, maximum, average schedule fulfill-time and
throughput improvement compared with EDF for different schemes.

Schedule fulfill-time (ms)

Algorithms Minimum Maximum Average Improvement
(%)

EDF 453.31 543.15 498.51 0.0
DM-SCAN 376.99 473.61 413.24 17.11
Deadline shift
scheme

359.16 453.51 411.72 17.41

Collaboration
scheme

373.39 461.79 407.81 18.19

CARDS
scheme

327.04 442.02 376.32 24.51

performance improvement is obtained because of the cache-
aware rescheduling scheme, which leads to an increase in
the cache hit ratio. It does not include the advantage when
compared with systems that make worst-case assumptions
about disk access time. As stated in Section 1.1, this would
only influence the schedulability analysis.

The Computer Journal, Vol. 47, No. 5, 2004

574 H.-P. Chang et al.

0

10

20

30

40

50

60

2 3 4 5

Number of Real-Time Streams

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
)

CARDS scheme Optimal

FIGURE 16. Throughput improvement of CARDS and optimal schemes for sequential workload with different numbers of sequential
streams. The throughput improvement is compared with EDF.

On-disk caches work on the premise that the input
workload follows the principles of temporal and spatial
locality. Thus, given random tasks, the throughput
improvements presented in Figure 14 show little difference
between the proposed cache-aware scheduling schemes and
DM-SCAN. There is little possibility that a random task will
hit the data cached in the on-disk cache. Therefore, cache-
aware scheduling has no means of increasing the cache hit
probability.

In contrast, as shown in Figure 15, if input is sequential
workload, both the collaboration scheme and the CARDS
scheme obtain larger data throughput than DM-SCAN.
However, in some ways, the data throughput of the deadline
shift scheme is worse than that of DM-SCAN. This is because
the deadline shift scheme suffers the drawbacks described in
Section 5.1.3.

Thus, the performance of the deadline shift scheme is
undetermined. Observe that the performance of the CARDS
scheme is better than DM-SCAN with an increase in the
number of sequential streams. Since the number of cache
segments is 10, when the number of cache segments is
considerably larger than that of the sequential streams, the
on-disk cache capacity is large enough to sustain a great deal
of blocks accessed by each sequential task. Thus, the derived
throughput difference between DM-SCAN and the CARDS
scheme is not significant. However, when the number of
sequential streams is increased, the CARDS scheme can
increase the on-disk cache utilization and obtain larger data
throughput than DM-SCAN.

Furthermore, in Figure 16, we show the throughput
improvement of CARDS compared with that of the optimal
scheme. Because of the exponential time complexity of
calculating the optimal solution, we only show the throughput
performance under five sequential streams. From Figure 16,
we see that the optimal solution outperforms the proposed
CARDS scheme and obtains nearly two times the throughput
of the CARDS approach.

To prove that taking into consideration the on-disk cache
during disk scheduling indeed increases the cache hit ratio,

TABLE 5. Under sequential workload, the minimum,
maximum, and average cache hit ratio.

No. of
streams Algorithm Min. (%) Max. (%) Average (%)

6 DM-SCAN 15 22 19.0
CARDS 16 24 19.5

7 DM-SCAN 16 26 20.0
CARDS 17 28 22.0

8 DM-SCAN 16 27 21.9
CARDS 20 29 23.8

9 DM-CAN 15 32 23.1
CARDS 19 33 26.9

10 DM-CAN 18 32 22.9
CARDS 23 34 29.2

Table 5 shows the minimum, maximum and average cache
hit ratio under a sequential workload. As shown in Table 5,
the CARDS scheme has a better cache hit ratio than the DM-
SCAN. Because of the increased cache hit ratio in CARDS,
the schedule fulfill-time of CARDS is shorter than that of
DM-SCAN. Therefore, as shown in Figure 15, the CARDS
scheme obtains larger data throughput than DM-SCAN.

6.2.3. Throughput improvement versus number of
cache segments

In modern on-disk cache design technology, the number of
cache segments is configurable. Thus, we conducted an
experiment in which the performance of the three proposed
cache-aware real-time disk scheduling schemes is measured
for different numbers of cache segments. Given 25 random
tasks, Figure 17 plots the throughput improvement compared
with EDF for different numbers of cached segments. The
figure shows that these three schemes yield almost the same
throughput improvement. In addition, for each scheme, the
throughput improvement is fixed in any number of cache
segments. This is because the input tasks are randomly
accessed. Therefore, the caching effect is negligible and, no

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 575

1 2 3 4 5 6 7 8 9 10

Number of Segments

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
)

deadline modification scheme

collaboration scheme

CARDS scheme

10

11

12

13

14

15

16

17

18

19

20

FIGURE 17. Given 25 random tasks, the throughput improvement of three schemes under different cache segment number. The throughput
improvement is compared with EDF.

1 2 3 4 5 6 7 8 9 10

Number of Segments

Sc
he

du
le

 F
ul

fi
ll-

T
im

e
(m

s)

deadline modification scheme

collaboration scheme

CARDS scheme

200

210

220

230

240

250

260

270

280

290

300

FIGURE 18. Given 25 random tasks, the schedule fulfill time of three schemes under different cache segment number.

matter how many cache segments are provided, most accesses
result in physical disk mechanism operations. The schedule
fulfill-times of the three schemes for different numbers of
cache segments are also presented in Figure 18. The figure
shows the same phenomenon as Figure 17.

Figure 19 presents the throughput improvement compared
with EDF for different numbers of cache segments under
sequential workload with five sequential streams. Observe
that, the lines representing the three schemes’ throughput
improvement are flat when the number of cache segments is
larger than seven. This is because there are five sequential
streams in the input workload and the requested data size
of each task (smaller than 36 KB) is smaller than that of
a cache segment (larger than 167 KB). Thus, when the
number of cache segments is larger than that of the sequential
streams, cache replacement rarely occurs, even though a
few random tasks are involved in the workload. Therefore,
cache hits often occur for each sequential task, even without
consideration of cache-aware scheduling. Figure 20, which
plots the schedule fulfill-times for the workload in Figure 19,

demonstrates that the schedule fulfill-times of the three
schemes decrease with an increase in the number of cache
segments. However, when the number of cache segments
is larger than seven, the schedule fulfill-times of the three
schemes are stable and almost the same.

Thus, when the number of cache segments matches
that of the sequential streams, the on-disk cache behavior
is aligned to the application’s characteristics and obtains
the largest data throughput. However, in a true system,
the number of sequential streams is dynamic. Thus, it is
difficult to determine a suitable number of cache segments.
The proposed cache-aware scheduling schemes address this
limitation by performing cache-aware scheduling to increase
the cache hit probability.

7. DISCUSSIONS

Note that, in this paper, we assume that the on-disk cache
replacement scheme is LRU. However, the three algorithms
proposed in this paper can also be applied to other cache

The Computer Journal, Vol. 47, No. 5, 2004

576 H.-P. Chang et al.

0

3

6

9

12

15

18

21

24

27

30

Number of Segments

T
hr

ou
gh

pu
t

Im
pr

ov
em

en
t

(%
)

deadline modification scheme

collaboration scheme

CARDS scheme

1 2 3 4 5 6 7 8 9 10

FIGURE 19. Under sequential workload with five sequential streams, the throughput improvement of three schemes under different cache
segment number.

1 2 3 4 5 6 7 8 9 10

Number of Segments

Sc
he

du
le

 F
ul

fi
ll-

T
im

e
(m

s) deadline modification scheme

collaboration scheme

CARDS scheme

160

180

200

220

240

260

280

300

FIGURE 20. Under sequential workload with five sequential streams, the schedule fulfill-time of three schemes for different cache segment
number.

replacement algorithms. As stated in Section 4, all our
algorithms are based on the identification of the cached
tasks and their immediate principal tasks. After that, each
algorithm tries to reschedule pairs of the cached tasks
and their immediate principal tasks close enough. As
a result, once the cached tasks are issued, they will be
cache hits since their requested data have been read ahead
by their immediate principal tasks and have not yet been
replaced.

Therefore, if another cache replacement scheme is adopted
by disk drives, we only have to change the identification
scheme of cached tasks and their immediate principal tasks.
Besides, the identification scheme can be derived easily if
we know the cache replacement scheme. For example, if
the replacement scheme is changed from LRU to RR, we

can easily trace the input disk tasks and identify each pair of
the cached task and immediate principal tasks under the RR
cache replacement scheme.

Furthermore, the performance of our proposed algorithms
depends on how well the cache replacement scheme
performs. If data cached in the on-disk cache are almost
what the following disk tasks access, then our algorithms
can obtain a higher performance improvement. In contrast,
if the data item cached in the on-disk cache is not what
the following disk tasks expect, since an ill-behaved cache
replacement scheme evicts useful blocks from the on-disk
cache, then our proposed algorithms will have no way
of increasing the number of cache hits by cache-aware
rescheduling. Fortunately, with an increase in on-disk cache
size and an improvement in caching strategies, on-disk cache

The Computer Journal, Vol. 47, No. 5, 2004

Cache-Aware Real-Time Disk Scheduling 577

and also our proposed scheme, benefit from such technology
improvement.

8. CONCLUSIONS AND FUTURE WORK

8.1. Conclusions

To maintain their competitive edge in the market, disk
manufacturers consider their disk implementation to be a
technical secret. However, if the information of on-disk cache
is explored, the disk scheduling can exploit this information
to derive a schedule minimizing the cache miss probability.
In this paper, we therefore propose cache-aware real-time
disk scheduling algorithms that consider the caching effect
during scheduling. As a result, the disk scheduling scheme
can also be actively involved in reducing the cache miss ratio.
In addition, the timing analysis is more accurate since the
on-disk cache is considered during scheduling and thus, if a
cache hit occurs, the cache transfer time is used as the task’s
execution time for schedulability analysis without assuming
the worst case that each disk task incurs a physical disk
mechanical operation. The experiments demonstrate that the
proposed schemes indeed obtain larger data throughput than
DM-SCAN. For example, under a sequential workload with
10 sequential streams, the data throughput of the CARDS
scheme is 1.1 times that of DM-SCAN.

In addition, we investigate the influence of the number of
cache segments on the performance of our proposed schemes.
Experimental results show that the CARDS scheme can
resolve the performance limitation of on-disk cache when
the number of sequential streams is larger than that of cache
segments.

8.2. Future work

The cache-aware real-time disk scheduling algorithms
proposed in the paper are based on the static manner of an
on-disk cache; i.e. the scheduling scheme is aligned to the on-
disk cache’s behavior. However, in the recent design of on-
disk cache, the number (and hence the size) of the cache
segment can be configured. In addition, the read-ahead can
be enabled or disabled dynamically. As a result, with a
knowledge of the application’s access patterns, our future
work will propose a more aggressive cache-aware real-time
disk scheduling scheme that will also change the behavior of
on-disk cache dynamically during scheduling. For example,
if only a few concurrent processes exist in a system at a time,
the segment number can be decreased and thus more data can
be cached for each process. As a result, the on-disk cache
can be aligned to the application requirements and be utilized
more efficiently by such an aggressive scheduling scheme.
Furthermore, the interaction between the on-disk cache and
buffer cache is also a possible future work. For example, if the
information of an on-disk cache is exported to the file system,
we can manage both the buffer cache and on-disk cache more
efficiently. In addition, by differentiating between requests
whether they are read-ahead or real requests, the cache-aware
real-time disk scheduling algorithm can manage the disk
bandwidth more efficiently under the feasibility constraints.

REFERENCES

[1] Jain, P. and Lam, S. S. (1991) Specification of real-time
broadcast networks. IEEE Trans. Comput., 40(4), 404–422.

[2] Xuan, P. et al. (1997) Broadcast on demand: efficient
and timely dissemination of data in mobile environment. In
Proc. IEEE Real-Time Technology and Applications Symp.,
Montreal, Que., Canada, June 9–11, pp. 38–48. IEEE
Computer Society Press, Los Alamitos, USA.

[3] Ruemmler, C. and Wilkes, J. C. (1994) An introduction to disk
drive modeling. IEEE Comput., 27(3), 17–28.

[4] Chang, H. P., Chang, R. I., Shih, W. K. and Chang, R. C.
(2001) Scheduling I/O requests in a multimedia-on-demand
application. J. Appl. Syst. Studies, 2(3), 151–166.

[5] Hospodor, A. (1992) Hit ratio of caching disk buffers. In Proc.
IEEE Computer Society International Conf., San Francisco,
CA, USA, February 24–28, pp. 427–432. IEEE Computer
Society Press, Los Alamitos, USA.

[6] IBM Corporation (1998) Larger Disk Cache Improves
Performance of Data-Intensive Applications. White Paper,
October, 1998.

[7] Shriver, E., Merchant, A. and Wilkes, J. (1998) An analytic
behavior model for disk drives with readahead caches and
request reordering. In Proc. ACM SIGMETRICS, Madison,
WI, USA, June 22–26, pp. 182–191. ACM Press, USA.

[8] Worthington, B. L., Ganger, G. R. and Patt, Y. N. (1994)
Scheduling algorithms for modern disk drives. In Proc. ACM
SIGMETRICS, Nashville, TN, USA, May 16–20, pp. 241–251.
ACM Press, USA.

[9] Chang, R. I., Shih, W. K. and Chang, R. C. (1998) Deadline-
Modification-SCAN with maximum-scannable-groups for
multimedia real-time disk scheduling. In Proc. 19th IEEE
Real-Time Systems Symp., Madrid, Spain, December 2–4,
pp. 40–49. IEEE Computer Society Press, Los Alamitos, USA.

[10] Ganger, G. R. et al. (1999) The DiskSim Simulation Environ-
ment Version 2.0 Reference Manual. http://www.pdl.cmu.edu/
DiskSim/disksim2.0.html.

[11] Karedla, R., Love, J. S. and Wherry, B. G. (1994) Caching
strategies to improve disk system performance. IEEE Comput.,
27(3), 38–46.

[12] Jalics, P. J. and Mcintype, D. R. (1989) Caching and other disk
access avoidance techniques on personal computers. Commun.
ACM, 32(2), 246–255.

[13] Smith, A. J. (1985) Disk cache-miss ratio analysis and design
considerations. ACM Trans. Comput. Syst., 3(3), 161–203.

[14] Thiebaut, D., Stone. S. H. and Wolf, J. L. (1992) Improving
disk cache hit-ratios through cache partitioning. IEEE Trans.
Comput., 41(6), 665–676.

[15] Stankovic, J. A. and Buttazzo, G. C. (1995) Implications
of classical scheduling results for real-time systems. IEEE
Comput., 28(6), 16–25.

[16] Lin, T. H. and Tarng, W. (1991) Scheduling periodic and
aperiodic tasks in hard real-time computing systems. In Proc.
ACM SIGMETRICS, San Diego, CA, USA, May 21–24,
pp. 31–38. ACM Press, USA.

[17] Liu, C. L. and Layland, J. W. (1973) Scheduling algorithms for
multiprogramming in a hard real-time environment. J. ACM,
20(1), 46–61.

[18] Wong, C. K. (1980) Minimizing expected head movement
in one dimension and two dimensions mass storage system.
Comput. Surv., 12(2), 167–178.

[19] Denning, P. L. (1967) Effects of scheduling on file memory
operations. In Proc. of AFIPS SJCC, pp. 9–21.

The Computer Journal, Vol. 47, No. 5, 2004

http://www.pdl.cmu.edu/

578 H.-P. Chang et al.

[20] Chang, H. P., Chang, R. I., Shih, W. K. and Chang, R. C. (2001)
Real-time disk scheduling for multimedia applications by
Enlarged-Maximum-Scannable-Groups. J. Appl. Syst. Studies,
2(3), 151–166.

[21] Reddy, A. L. N. and Wyllie, J. C. (1993) Disk scheduling
in a multimedia I/O system. In Proc. ACM Int. Conf. on
Multimedia, Anaheim, CA, USA, August 2–6, pp. 225–233.
ACM Press, USA.

[22] Reddy, A. L. N. and Wyllie, J. C. (1994) I/O issues in a
multimedia system. IEEE Comput., 27(3), 69–76.

[23] Abbott, R. K. and Garcia-Molina, H. (1990) Scheduling I/O
requests with deadlines: a performance evaluation. In Proc.
11th IEEE Real-Time Systems Symp. (RTSS), Lake Buena
Vista, FL, December 5–7, pp. 113–124. IEEE Computer
Society Press, Los Alamitos, USA.

[24] Chen, S., Stankovic, J. A., Kurose, J. F. and Towsley, D. (1991)
Performance evaluation of two new disk scheduling algorithms
for real-time systems. J. Real-Time Syst., 3(3), 307–336.

[25] Bosch, P. and Mullender, S. J. (2000) Real-time disk
scheduling in a mixed-media file system. In Proc. Sixth IEEE
Real-Time Technology and Applications Symp., Washington,
DC, 31 May–2 June, pp. 23–32. IEEE Computer Society Press,
Los Alamitos, USA.

[26] Chang, H. P., Chang, R. I., Shih, W. K. and Chang, R. C.
(2001) Reschedulable-Group-SCAN scheme for mixed real-
time/non-real-time disk scheduling in a multimedia system.
J. Syst. Softw., 59(2), 143–152.

[27] Shenoy, P. and Vin, H. M. (1998) Cello: a disk scheduling
framework for next generation operating systems. In Proc.
ACM SIGMETRICS, Madison, WI, USA, June 22–26,
pp. 44–55. ACM Press, USA.

[28] Lehoczky, J. P., Sha, L. and Stronsnider, J. K. (1987) Enhanced
aperiodic responsiveness in hard real-time environments. In
Proc. 8th IEEE Real-Time System Symp., San Jose, CA, USA,
December 1–3, pp. 261–270. IEEE Computer Society Press,
Los Alamitos, USA.

[29] Jeffay, K., Stanat, D. F. and Martel, C. U. (1991) On non-
preemptive scheduling on periodic and sporadic tasks. In
Proc. Real-Time System Symp., San Antonio, TX, USA,
December 4–6, pp. 129–139. IEEE Computer Society Press,
Los Alamitos, USA.

[30] Lee, C. G. et al. (1996) Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling. In Proc. 17th
Real-Time Systems Symp., Los Alamitos, CA, USA, 4–6
December, pp. 264–274. IEEE Computer Society Press, Los
Alamitos, USA.

[31] Lee, C. G. et al. (1998) Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling. IEEE Trans.
Comput., 47(6), 700–713.

[32] Lee, C. G. et al. (1997) Enhanced analysis of cache-related
preemption delay in fixed-priority preemptive scheduling. In
Proc. 18th IEEE Real-Time Systems Symp., San Francisco, CA,
USA, December 2–5, pp. 187–198. IEEE Computer Society
Press, Los Alamitos, USA.

[33] Lee, S., Min, S. L., Kim, C. S., Lee, C. G. and Lee, M. (1999)
Cache-conscious limited preemptive scheduling. Real-Time
Syst., 17(2–3), 257–282.

[34] Luculli, G. and Netale, M. D. (1997) A cache-aware
scheduling algorithm for embedded systems. In Proc. 18th
IEEE Real-Time Systems Symp., San Francisco, CA, USA,
December 2–5, pp. 199–209. IEEE Computer Society Press,
Los Alamitos, USA.

[35] Patterson, R., Hugo, G., Garth A., Ginting, E., Stodolsky, D.
and Zelenka, J. (1995) Informed prefetching and caching.
In Proc. Fifteenth ACM Symp. on Operating System
Principles, Copper Mountain Resort, CO, USA, December
3–6, pp. 79–95. ACM Press, USA.

[36] Ganger, G. R. and Schindler, J. (1998) Database for
Validated Disk Parameters for DiskSim. http://www.
pdl.cmu.edu/DiskSim/diskspecs.html.

[37] Ganger, G. R. (1995) System-Oriented Evaluation of Storage
Subsystem Performance. PhD Dissertation, CSE-TR243-95,
University of Michigan, Ann Arbor, MI, USA.

[38] Schindler, J. and Ganger, G. R. (1999) Automated Disk Drive
Characterization. Technical Report CMU-CS-99-176, School
of Computer Science, University of Carnegie Mellon.

[39] Worthington, B. L., Ganger, G. R., Patt, Y. N. and Wilkes, J.
(1995) On-line extraction of SCSI disk drive parameters. In
Proc. ACM SIGMETRICS, Ottawa, Ont., Canada, May 15–19,
pp. 136–145. ACM Press, USA.

[40] QuantumCorporation,QuantumAtlas10K(1999)http://www.
quantum.com/products/hdd/atlas_10k/atlas_10k_specs.htm.

The Computer Journal, Vol. 47, No. 5, 2004

http://www
http://www

