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Previousreal-time disk scheduling algorithms assume that each disk request incurs a physical disk
mechanical operation and only consider how to move the disk head under real-time constraints.
However, with the increased capacity of on-disk cache, modern disk drives read-ahead data
aggressively. Thus, the on-disk cache may service many disk requests without incurring physical
disk access. By exploring the design methodology of on-disk cache, in this paper, we propose cache-
aware real-time disk scheduling algorithms that take the on-disk cache into consideration during
scheduling. Therefore, the scheduling algorithm can help the cachereplacement schemeto minimize
thecachemissratio. Besides, theservicetiming estimation ismoreaccuratein schedulability analysis
since the cache effect is considered during scheduling. A simulation-based evaluation shows the
proposed scheduling algorithmsto be highly successful ascompared with the classical real-timedisk
scheduling algorithms. For example, under sequential workload with 10 sequential streams, the
data throughput of our schemeis1.1timesthat of DM-SCAN.
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INTRODUCTION

1.1. Motivation

With the immense popularity of the Web or broadcasting
servers, the world is witnessing an unprecedented demand
for data services. Nevertheless, in some cases, the delivery
of datamay have real-time constraints. For example, aradar
system would need to compare images of objects against
a database of known aircraft type. In the stock trading
system, the stock price would be recorded and retrieved to
broadcast to the subscribed clients. At the same time, the
development of a speech-based information retrieval system
for theblind, in which users can talk into the microphone and
find theintended audio book, newsor music directly, isunder
way. In this system they can hear the streaming audio from
the server. All these applications have the characteristicsthat
the requested data must be retrieved and delivered before a
deadline; otherwise the data will be meaningless and even
damaged. In this paper, we address real-time data retrieval
by taking advantage of the on-disk cache and seek-optimizing
thereal-time disk scheduling scheme. Thetechniquesfor the
delivery of real-time data can be foundin[1, 2].

In acomputer system, after disk scheduling, the scheduled
requestsare sent to and served by thedisk drive[3]. However,
because of the excess delay caused by the disk mechanical
operation, a random access memory, i.e. an on-disk cache,

isprovidedindisk controllersto bridgethe speed gap between
the main memory and disk and acts as a speed-matching
buffer. Nevertheless, in the last couple of years, the drastic
improvement in hardware technol ogy has caused an increase
in the capacity of the on-disk cache. Therefore, when a
disk task is sent to the disk drive, the disk drive retrieves
the requested data item to the on-disk cache. Furthermore,
if read-ahead is enabled, the disk drive does read-ahead
data following the requested data item to the on-disk cache.
Accordingly, the datain the on-disk cache consist of both the
read-ahead data and data read by previous requests.

However, there exists aread-ahead overhead since the disk
head and track switches waste time and cannot be aborted
once initiated. Nevertheless, under sequential workload, a
disk with read-ahead caching still outperformsthe disk with-
out read-ahead caching [3, 4]. Thisisbecause, without read-
ahead, if two back-to-back disk tasks areissued, the disk and
host processing time for initiating the second request would
belarger than theinter-sector gap. Asaresult, the second re-
quest would be delayed by almost afull revolution[3]. Since
cacheswork on the premise that the issued tasks have spatial
and temporal locality, with the hope of repeated or sequential
access patterns, the on-disk cache can service many requests
without incurring physical disk operations. If the majority
of the accesses to disk are serviced by the on-disk cache, the
1/0 delay will be reduced significantly [5, 6, 7].
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FIGURE 1. The system architecture.

The cache design methodology gives cache designers a
competitive edge in the market. Therefore, manufacturers
either patent them or consider their implementation a trade
secret. However, if the parameters of the on-disk cache
were disclosed, the caching effect would be taken into
consideration during the disk scheduling. Consequently,
not just the cache replacement scheme, but the scheduling
agorithm also can help in preserving the principles of spatial
and temporal locality. Besides, the service timing estimation
is more accurate in schedulability analysis since a task’s
service time is accounted as cache transfer time if a cache
hit occurred. Otherwise, a task’'s execution time must
assume, in the worst case, that a mechanical disk accessis
incurred. As a result, during the schedulability testing, we
must make worst-case assumptions of physical disk access
timeif weignorethe on-disk cacheinfluence. Thisresultsin
an overestimation of system resource usage and a decrease
in system performance.

The idea of taking the on-disk cache into account in
disk scheduling is also seen in [8]. The authors mentioned
that requests that can be satisfied by the cache should be
given higher priority to be accessed from the disk cache.
However, they only simulate the caching effect for the
performance evaluations of conventional disk scheduling
algorithms, which have no timing requirements.

1.2. System architecture

Figure 1 showsthesystemarchitecture. InUnix-likesystems,
e.g. Linux, al systemcallsrelated to astandard filesystemare
directed to the virtual file system (VFS). After receiving the
issued system call, VFS invokes the appropriate file system
function, say Ext2, to service this request. However, before
accessing the disk, the system would look up the buffer
cache to determine if the requested data are in the buffer
cache or not. If the data are in the buffer cache, the system

performance can beimproved by reducing disk access. If the
dataare not in the buffer cache, adisk request isissued to the
device driver.

Furthermore, file systems would also read ahead of files.
In addition to the requested data, severa adjacent blocks of
data are also read. Nevertheless, some application programs
would like to have full control of the whole 1/O data transfer
mechanism. Therefore, the operating system also offers
direct 1/O transfer to bypass the buffer cache. Thus, when
a real-time task wishes to retrieve data from disks, it may
access them through the file system or use direct /O transfer
to bypass the buffer cache.

Below thefile system isthe device driver. All disk access
requestsare sent to thedevicedriver and queued in therequest
gueue. Then, an appropriate disk scheduling algorithm
selects one of the requests from the queue and sends it to the
disk. As mentioned above, since modern disks are equipped
with considerable on-disk cache, in this paper, we propose
the on-disk cache-aware real-time disk scheduling algorithm
that reduces the disk access time while guaranteeing tasks
real-time constraints.

Notably, both the file systems and disks have their own
buffers and may issue read-ahead respectively. In this paper,
the proposed algorithms only address the on-disk cache
and the disk’s read-ahead mechanism. In other words, we
assume the real-time disk requests are from the direct 1/O
transfer. A combinational consideration of on-disk cache
and buffer cache will be the subject of future work.

1.3. Contributions

On the basis of an existing real-time disk scheduling
algorithm, DM-SCAN [9], three different cache-aware
algorithms are proposed in this paper. They are the deadline
shift scheme, the collaboration scheme, and the CARDS
(Cache-Aware Real-Time Disk Scheduling) scheme.
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In the deadline shift scheme, if requests are ordered in
Earliest Deadline First (EDF) sequence, the tasks' deadlines
are shifted if they are to be served by the on-disk cache, i.e.
having spatial locality. Then, taskswiththeir shifted deadline
are scheduled by the DM-SCAN scheme. In other words,
disk tasks whose accesses have spatia locality are brought
closer to meet their temporal locality by the deadline shift
operation, thus increasing the cache hit probability.

In contrast, the collaboration scheme directly considers
the on-disk cache effect in the DM-SCAN algorithm. First,
the selection scheme of a reschedulable group (called MSG
in DM-SCAN) is extended to consider the on-disk cache.
Therefore, in addition to the original tasks identified by
DM-SCAN, tasks that have the chance to be cache hits are
also grouped into a reschedulable group. Besides, a cache-
aware rescheduling schemeis proposed to augment the seek-
optimizing SCAN rescheduling schemeto increase the cache
hit ratio. Note that, reordering tasks may cause the schedule
derived by DM-SCAN to become infeasible; therefore,
feasibility checking must be performed for each reordering
operation, and this consumes significant computational
overhead. Inthispaper, techniquesto accel eratethe checking
operation are also proposed.

Different fromthetwo schemesabove, the CARDSscheme
is proposed that reordersthetasksif acache hit isguaranteed
after such a reordering, after the completion of the DM-
SCAN algorithm. Experimental results shows that, under
sequential accesses, our proposed cache-aware algorithms
obtain larger data throughput than DM-SCAN, because of
the increased cache hit ratio. For example, under sequential
workload with 10 sequential streams, the data throughput
of the CARDS scheme is 1.1 times that of DM-SCAN.
Note that, although the proposed cache-aware real-time disk
scheduling schemes arerelated tightly to the caching strategy
and underlying on-disk cache characteristics, the proposed
algorithms do not depend on any specific on-disk cache. That
is, if the parameters of adifferent on-disk cache are disclosed,
the proposed algorithms can be adapted easily to this disk.

In the rest of this paper, we shall first introduce the disk
service moded in areal-time environment, including on-disk
cache design methodol ogy, the timing characteristics of real-
time tasks and the objective of a real-time disk scheduling
algorithm in Section 2. Section 3 reviews the related work.
In Section 4, we introduce the terms used in this paper.
Section 5 presents the proposed three cache-aware real-time
disk scheduling algorithms. The experimental results are
shown in Section 6. Section 7 discusses some related issues
about this paper. Finally, Section 8 summarizes this paper.

2. BACKGROUND
2.1. Design methodology of on-disk cache

Many applications process data sequentialy, i.e. the next
request will be for data following the current request. As
aresult, in addition to the service of requested data blocks,
most disks, based on analyzing the access and usage pattern
of recent requests, also perform the read-ahead. By reading-
ahead, therequested dataof subsequent accesseswill residein

the on-disk cache and shorten the service time. Furthermore,
some disk controllers even read-ahead aggressively to cross
the track and cylinder boundaries. Nevertheless, since the
on-disk cache haslimited size, if very large read requests are
issued, they may bypass the cache.

A single read-ahead cache can only support a single
sequential stream. As a result, if two or more sequential
streams are interleaved, this single read-ahead cache is no
benefit at all. To remedy this pitfall, nowadays, the on-
disk cache is often organized as a number of segments. A
segment is a sequence of data blocks managed as a unit;
i.e. each segment contains data that is disointed from all
other segments. Therefore, several unrelated data items can
be cached at different segments. Some disk drives even
dynamically resize the number (and size) of cache segments
based on the recent access characteristics to ensure greater
cache utilization. More details on the caching algorithm can
befoundin[3, 10, 11].

Compared with the capacity of a disk drive, the on-disk
cache is small. Consequently, a segment replacement
occurs when the cache is full of data and a new data block
is requested. Note that, the replacement algorithm has a
profound impact on the cache performance. A good replace-
ment scheme should evict the segment that has no immediate
access and retain the data more likely to be accessed soon.
For example, random replacement (RR), least recently used
(LRU) and least frequently used (LFU) are some of the
well-known cache replacement algorithms [11, 12, 13, 14].

2.2. Real-timesystem

Assume that the start-time and finish-time denote the actual
times at which atask is started and completed respectively.
To characterize the timing characteristics of areal-time task,
two parameters are associated with it to determine the proper
start-time and finish-time.

e Ready time: the earliest time at which atask can start.
e Deadline: the latest time at which a task must be
compl eted.

To satisfy the real-time regquirements, the start-time of atask
should not be earlier than its ready time. Additionally, its
finish-time should not be later than the related deadline [15].
Depending on the consequence of a missed deadline, real-
timetasksarefurther classified into hard and soft. A real-time
task is said to be hard if missing its timing constraints
will cause serious damage and the system will misbehave.
In contrast, a real-time task is said to be soft if meeting
its timing constraints is desirable for performance, but a
missed deadline does not influence the correctness of system
behavior. A scheduleof real-timetasksissaidto befeasibleif
all tasks can be sequentially served according to the specified
real-time regquirements. In this paper, we address hard real-
time systems.

2.3. Real-timedisk scheduling problem

As stated above, tasks in a real-time system must be
associated with timing characteristicsto describetheir timing
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congtraints. Accordingly, areal-time disk task 7; is denoted
by five parameters (¢, I;, b;, ri, d;), where ¢; is the track
location, I; the sector number, b; the data size, r; the ready
time and d; its deadline. Assume that the schedule sequence
isT; T;. Becausedisk tasksare non-preemptive, thestart-time
s; andfinish-time f; of areal-timetask 7; with schedule 7'; T;
are thus computed by s; = max{r;, f;} and f; = s; +¢;;
respectively, where c;; denotes the service time of task
T; with schedule sequence T;T;. If T; is a cache hit, ¢;;
isthe value of cache accesstime. Otherwise, ¢;; represents
the time spent to access the physical disk.

Given a set of read-timedisk tasks T = {Ty, T», ..., T,},
where n is the number of input disk tasks and the ith disk
task 7; isdenoted by (r;, d;, t;, 1;, b;), the objective of areal-
time disk scheduling algorithm isto find afeasible schedule
Tz = T,0T:@) - Ty With maximal throughput. The
index function Z(i), for i = 1 to n, is a permutation of
{1, 2, ..., n}. Define the schedule finish-time as the finish-
time it takes to serve al input tasks according to their
respective timing constraints. Clearly, thisisthe finish-time
of the latest task f.(,). Therefore, the disk throughput is
calculated as follows:

Throughput = sz(i)/fz(n) o (fom) ™t @)
i=1

The obtained disk throughput is related to the inverse of
the schedule finish-time. If the input schedule is com-
pleted earlier, more data throughput is obtained. The data
throughput improvement of scheduler Z compared with
scheduler X can be computed as

Throughput improvement = (1 — f;)/fxm)) * 100% (2)

Therefore, the problem objective defined to maximize
throughput can be achieved by minimizing the schedule
finish-time. Weformally definethereal-time disk scheduling
problem as follows.

DEFINITION 1. Real-time disk scheduling. Given a set of
n real-time disk tasks T = {T1, T», ..., T,} where the ith
task T; is (ri, d;, t;, l;, b;), find a feasible schedule T, =
TZ(l) TZ(Z) Ce TZ(n) that resolvesmi nvz{fz(n)} under rzi) =
sz and fzq) < dzg) for 1 < z(i) < n.

3. RELATED WORK
3.1. Real-timedisk scheduling algorithms

In this subsection, previous rea-time disk scheduling
algorithms are investigated. EDF is a well-known real-time
scheduling algorithm [16, 17]. By scheduling requests in
the order of their deadlines, EDF has been shown as optimal
if tasks are independent. However, for disk scheduling, the
service time of a disk task depends on its previous task’s
location. The assumption that tasks are independent does not
hold. Actually, taking only deadlines into account without
considering service time, EDF incurs excessive seek-time
costs and results in poor disk throughput [3].

Actualy, rea-time disk scheduling has been shown to
be NP-complete [18]. Consequently, various approaches

have been dedicated to combine the seek-optimizing SCAN
scheme [19] with real-time characteristics of the EDF
method. These real-time disk scheduling algorithms start
from an EDF schedule and then reschedule requests so as
to reduce seek and/or rotational latency overhead under the
real-time constraints[20, 21, 22].

In [23], the authors proposed the Earliest Deadline SCAN
(D-SCAN) that uses the location of the task with the earliest
deadline to determine the scan direction. While moving
the disk head to the track of the task that has the earliest
deadline, the requests whose access data are along the path
are also served. Chen et al. [24] proposed the Shortest
Seek Earliest Deadline by Order (SSEDO) and Shortest Seek
Earliest Deadline by Value (SSEDV). Both algorithms start
from an EDF schedule and then SSEDO uses a weighted
seek distancefor rescheduling, while SSEDV checkswhether
deadlines are feasible prior to service.

In 1993, the well-known SCAN-EDF scheme was
proposed that first schedules disk tasks with the earliest
deadlines [21, 22]. If two or more disk tasks have the same
deadline, these tasks are served according to their relative
track locations, i.e. by the SCAN agorithm. Sinceonly tasks
with the same deadline are seek-optimized, the obtained data
throughput improvement is limited.

To increase the probability of applying the SCAN
algorithm to reschedule input tasks, DM-SCAN (Deadline
Modification-SCAN) proposed the concept of a maximum-
scannable-group (MSG) [9]. An MSG isaset of continuous
tasks that can be rescheduled by SCAN without missing
their respective timing constraints. Given an EDF schedule
T =TT T,,anMSG G; starting fromtask 7; isdefined
asthe sequential tasks G; =T; T;41T; 42 - - - T; - Where task
T; satisfies the following criteria:

fi<di and r;<s; forj=itoi+m (©)]

A simple example to demonstrate the identification of MSGs
is shown in Figure 2. Given an EDF schedule T =
TWT>T3T4Ts, tocalculate MSG G2, wehave fo < do, rp < 52
and f3 < do, r3 < 52, but f4 > do although r4 < sp. Thus,
G, = T>T3. Following the same approach, other MSGs
can be obtained as G1 = Ty, G3 = 1374, G4 = T4Ts and
G5 = Ts respectively.

After the identification of MSGs, DM-SCAN reschedules
tasksin each MSG by the seek-optimizing SCAN scheme to
minimize service time. Note that the rescheduled result will
destroy the EDF sequence. Because DM-SCAN requiresthe
input tasks based on an EDF order, a deadline modification
scheme is proposed to modify the tasks' deadlines and
transfers the rescheduled non-EDF sequence into a pseudo
EDF order. Here, ‘pseudo’ means that the tasks are ordered
by the modified deadlines. For example, given the schedule
sequence 7; T;, a pseudo deadline d;;is derived as dy;) =
min{d;, ds(jy}. Figure 3 presents a simple example to
illustrate the deadline modification scheme. The original
input T = T1T>T3T4T5 is hot an EDF schedule because we
haveds > dzandds > ds. Traversing fromthelast task 75 to
thefirst task 71, if any task hasits deadline larger than that of
itsprevioustask, the deadline modification schemeisapplied.
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FIGURE 3. A simple exampleto illustrate the deadline modification scheme.

For example, ds islarger than ds and is modified equal to ds
in order to satisfy the EDF requirement. Following the same
procedure, d, and d; are also modified. Note that, although
d1 < dz intheoriginal input schedule, d1 isaso modified as
the value of d; is larger than that of the modified pseudo
deadline d». By the deadline modification scheme, DM-
SCAN reschedul es tasks iteratively from the derived pseudo
EDF schedule to obtain more data throughput.

3.2. Mixed-workload disk scheduling algorithms

Someresearchersaddressthe simultaneous support of mixed-
media disk scheduling [25, 26, 27]. In [27], Cdlo is a
two-level disk scheduling framework that consists of aclass-
independent scheduler and a set of class-specific schedulers.
Therefore, a number of class-dependent disk schedulers
schedule requests according to the application’s needs. For
example, in Cello, the soft real-time disk requests are
scheduled by SCAN-EDF and theinteractive best-effort disk
requests are scheduled by classic dlack stealing techniques
[28]. Thenthe class-independent schedul er determineswhen
and how many requests are moved from the class-dependent

gueues into the class-independent queue, which employs
a First Come First Serve (FCFS) queuing discipline. For
example, the class-independent scheduler employs ajust-in-
time scheduler (which schedules requests just prior to their
deadlines) that movesthe real -time disk requeststo the class-
independent queue at their latest start time.

However, the Cello disk scheduling framework could
suffer from missing deadlines because of its just-in-
time approach. Thus, in [25], the authors proposed
the AL scheduler that, instead of using the just-in-time
manner, extends Jeffay et al.’s[29] non-preemptive resource
scheduler and usesthe slack time (the minimumtime between
the end of any executed real-time request and its deadline) to
service the best-effort requests. Notably, Jeffay et al.’s [29]
non-preemptive schedule is a deadline-dynamic scheduling
algorithm and AL employs the EDF scheduler to schedule
the real-time requests.

Cello and AL use SCAN-EDF and EDF separately as
their real-time disk scheduling algorithms. Nevertheless,
taking only deadlines into account during disk scheduling
without considering the seek-time latency, EDF incurs
excessive seek-time costs and resultsin poor disk throughput
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[21, 22]. Furthermore, in the performance evaluation of the
A Lscheduler, they found that the disk cache is of limited
use because of its small size: the advantages of disk read-
ahead for one stream are nullified by the transfer of other
streams. Thisis because they read and write blocks of 1 MB
each for a high bandwidth application, e.g. video stream
playback. However, in this paper, we address other real-time
applications, as stated in Section 1, which use small block
sizes. Furthermore, the issues concerning the number of
streamsand on-disk cachewill be addressed in Section 6.2.3.

3.3. Cache-aware CPU scheduling algorithms

Taking the cache effect into consideration during the
scheduling has been done in CPU scheduling. To analyze
the schedulability of a given CPU task set, the estimation of
atask’sexecutionissimplified at the cost of anumber of worst
caseassumptions. Inorder to obtain more accuratetiming for
schedulability analysis, Leeetal. [30, 31] analyzed thecache-
related preemption delays of tasks in the context of fixed-
priority preemptive scheduling. An enhanced technique for
analyzing the cache-related preemption delay is proposed in
[32].

With the knowledge of the number of useful cache blocks,
a scheduling scheme, called limited preemptive scheduling
(LPS), which limits preemptions to occur at time pointswith
the smallest cache-related preemption costs is introduced
in [33]. Therefore, the overall task switching costs are
reduced. However, thisresultsin an increase in block delay
of higher priority tasks; thus L PS makes an optimal trade-off
in decreasing task switching costs and increasing blocking
latency.

The cache miss can be classified asintrinsic and extrinsic.
Extrinsic misses are caused by the interaction of different
tasks on the cache; i.e, is due to preemptions in multi-
processes systems. Intrinsic cache misses are caused by the
contention on cache blocks of different codes in a program.
In[30, 31, 32], only theextrinsic cache behavior isaddressed.
In reality, the cache misses caused by context switches
(extrinsic cache miss) influence the cache miss probability
during the internal execution of a program (intrinsic cache
miss). Therefore, an integrated analysis of the intrinsic and
extrinsic cache misses is proposed in [34]. The authors
proposed a CPU scheduling methodology that integrates
scheduling and timing analyses, and takes the caching effect
into consideration. By offline analyzing the control flow
graph (CFG) of atask, they derived a schedule by using a
simulated annealing algorithm to minimize the cache miss
probability.

From the discussion above, the cache-aware CPU
scheduling either extends the previous classical schedula-
bility analysis of EDF to include the cache effect or ana-
lyzes the CFG to determine the schedule that minimizes the
cache miss probability. However, for disk scheduling, no
optimal scheduling scheme (like EDF for CUP scheduling)
is available. In addition, it is difficult to analyze the CFG
since the interference of file system’s buffer cache. Further-
more, because of the different characteristics of CPU and

disk mechanisms, new on-disk cache-aware real-time disk
scheduling algorithms must be devised.

3.4. Applications-aware buffer cache management

To make efficient use of system resources, in [35] the
authors present proactive mechanisms to tailor file system
resourcesto the needsof I/O-intensive applications. Theuser
applicationswould provide ‘hints' and the file system would
then use these hints to prefetch and cache data aggressively
into the buffer cache. Therefore, the file system resources
would betailored to the needs of user applications. However,
this requires the modification of user application programsto
disclose their future resource requirement to the operating
system. Besides, if the idea is to be applied to the disk
subsystem, it also requires the knowledge of the detailed
behavior of the on-disk cache. Then, we know how to
manage the on-disk cache on the basis of the disclosed hints.
Furthermore, the disk subsystem must modify its interface
with the host computer to distinguish the actual datarequests
from the prefetching and caching hinted data requests. In
contrast, by our proposed scheme, we do not require the
modification of user applications and the disk subsystem
interface.

4. PRELIMINARIES

Inthissection, wedescribethetermsused inthispaper. Given
aset of n real-timedisk tasks, assumethat for each disk access
T;,1 < i < n, if acache miss occurs, the cache logic will
bring a data size of x into the on-disk cache and the content
of datablocks brought into the cacheisdenoted by E;. Thus,
size(E;) = x. Notethat, thevalue of x depends on the cache
segment size, and if read-ahead is performed, also on the
read-ahead size. To distinguish a set of tasks whose accesses
exhibit spatial locality, we define the principal task and the
cached task asfollows.

DEFINITION 2. Principal task and cached task. Given a
set of real-time disktasks 717> - - - Ty, if T;’s requested data
block b; isincluded in E;, where1 < i < j < n,thenT; is
called the principal task of 7; and denoted as P(T;) = T;.
Inaddition, 7; is called the cached task of 7; and denoted as
cT) =T,.

DEeFINITION 3. Immediate principal task and immediate
cached task. Given a set of real-time disk tasks T17% - - - Tj,,
assumethat P(T;) = T; (i.e. C(T;) = T;), wherel < i <
Jj < n. Ifthereexist no principal tasks of T; (or 7;'s cached
tasks) between T; and T, then task 7; is called theimmediate
principal task of T; and denotedas G(7;) = T;. Inaddition,
task 7; iscalled theimmediate cached task of 7; and denoted
asH(T;) = T;.

Therefore, T; isacachehitif Eg(r;) isresidentintheon-disk
cachewhenT'; isissued. Inother words, acachehit occursfor
T; if the cached data of G(7;) remainsin the cache, i.e. has
not yet been replaced when T; isissued. Consequently, if T;
and G(T;) are scheduled close enough such that the cached
data of G(T;) have not yet been flushed when T is issued,
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FIGURE 4. The execution of T; must be between 7; and T ;.

then T'; can be serviced by the on-disk cache and shorten its
accesstime.

However, in areal-time system, a derived schedule must
befeasible. Therefore, scheduling 7; and G(T;) to be closer
must not violate both 7; and G(T;)’s timing constraints.
In addition, since other tasks may be influenced by this
cache-aware rescheduling, the deadlines of the influenced
tasks should not be missed to guarantee a feasible schedule.
Therefore, when and how to perform such a cache-aware
scheduling scheme under real-time constraints poses a
challenge in the design of our scheduling algorithm.

5. CACHE-AWARE REAL-TIME DISK
SCHEDULING ALGORITHMS

On the basis of DM-SCAN, we introduce in this section
the three proposed cache-aware real-time disk scheduling
algorithms. In Section 5.1, we introduce the deadline shift
scheme. Then, the collaboration scheme and the CARDS
scheme are presented in Section 5.2 and 5.3 respectively.

5.1. Deadline shift algorithm

As described in Section 4, to increase the cache hit ratio, 7;
and G (T;) must be closeenoughto prevent E¢r;) frombeing
replaced when T; is executed. If the input tasks are ordered
in an EDF seguence, then a task’s deadline determines its
relative positionsin aschedule. Accordingly, making 7; and
G (T;) closer to one another such that 7; can be a cache hit
implies that their deadlines should not be far away. This
motivates the idea of a deadline shift scheme.

5.1.1. Deadline shift algorithm

Given an EDF schedule, the deadline shift scheme first
identifies pairs of the cached tasks and their immediate
principal tasks. Then, for each pair of the cached task
T;,i € [1,n], and its immediate principal task G(T;), the
deadline of T; is shifted to be close to that of G(T;). Asa
result, the number of tasksbetween T; and G (T;) isdecreased
and then 7; has an opportunity to be a cache hit. After this
deadline shifting process, tasks with their shifted deadlines
arescheduled by DM-SCAN to minimize seek-timeoverhead
under real-time constraints.

However, insomecases, itisimpossiblefor acached task to
beacachehit becauseitistoofar away fromitscorresponding
immediate principal task. Therefore, shifting these cached
tasks' deadlines is unnecessary. To identify these cached
tasks, we define the concept of task dimension.

DEFINITION 4. Task dimension. Given a schedule
W17 ---T,, thetask dimension between 7; and 7;, 1 < i <
J < n,whichisdenoted as D, ;, is defined as the number of
non-cached tasks that must be executed after 7; and before

T;. Notably, a non-cached task means a task that has no
corresponding principal task, i.e. P(Ty) = ¥ if T, isa non-
cached task. Consequently, the access of a non-cached task
always resultsin a cache miss.

As shown in Figure 4, for task T that must be executed
after T; and before T, itsready time hasto be after d; and its
deadline must be before r;. Let A; ; denote the set of tasks
that must be executed after 7; and before 7;.Thus, A; ; is
computed as

Ajj={Tkld; <ry <dy <r; and
P(Ty)y=V¥;1<i<j<k<n} (4

From the definition of task dimension, D; ; = |A; ;| if for
al Ty € A;j, Ty is anon-cached task. Suppose that the
number of cache segmentsism and LRU isused asthe cache
replacement algorithm. The following lemma identifies the
cached tasks that have no way of being cache hits and thus
have no need to shift their deadlines.

LEMMA 1. Given an EDF schedule S = 717> --- T, for
any cached task 7; and its associated immediate principal
task 7;, 1 < i < j < n,if D; ; > m, then the access of T;
always resultsin a cache miss.

Proof. A cache segment is replaced when a cache miss
occurs, i.e. the requested data of an issued task is not in the
cache. Sincethetask dimension between7; and 7 is D; ;, at
least D; ; cache replacements will occur between 7; and 7.
Because D; ; > m and LRU is used as replacement scheme,
the cached data E7(;) must be flushed out from the on-disk
cachewhen T; isissued. Asaresult, the access of 7 results
in acache missand, therefore, it isnot necessary to shift 7;'s
deadline. O

After eliminating the cached tasks that have no way of
being cache hits, we must determine the proper value of the
shifted deadline. Here, ‘proper’ meansthat a schedule based
on the shifted deadlines should maximize the hit ratio while
still being feasible. Assume that 7; is a cached task and
G(T;) = T;. Denote the value of the shifted deadline of the
cached task T as x;. Depending on the relative position of
T; and T, there are three situations wherein the deadline of
T; could be shifted.

(@ If d; < rj, asshown in Figure 5a, then the value of
T;’s shifted deadline must be between r; and d;, i.e.
rj < xj < dj. Therefore, the value of the shifted
deadline can be chosenasx; = r; + cj, wherec; isa
parameter depending on the characteristics of theinput
task set and the properties of the on-disk cache. Note
that, 0 < ¢j = dj.

(b) If r; <r; <d;, asshownin Figure 5b, then the value
of the shifted deadline of 7; must be between 4; and
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FIGURE 6. A simple exampleto illustrate that tasks could be influenced by arescheduling of atask for hitting cache. (a) Original schedule.
(b) To be cache hit, T; is advanced to execute before T;,. However, T, misses its deadline because of the advance of 7;’s execution, even
though 7;'s accesstime is equal to the cache access time and is quite short.

dj,i.e d; <x; <d;. Consequently, the value of the
shifted deadline can be chosen as x; = d; + c¢;. Note
that, 0 < cj <d; —d;.

(c) Finaly, if r; < r; < d;, as shown in Figure 5c, then
the value of the shifted deadline of task 7; must also
fall between d; and d;, i.e. d; < x; < dj, the same
situation as Case (b).

After the deadline shifting process, tasks with their new
shifted deadlines are scheduled by the DM-SCAN algorithm.
Accordingly, the deadline shifting scheme modifiesthetasks
deadlinesto force a different execution order under the EDF
schedule since EDF determines the tasks execution order
based on their deadlines.

5.1.2. Feasihility checking

Assume that the input schedule is a feasible schedule.
Shifting atask’sdeadlinewill advanceits execution and other
tasks may be delayed and miss their deadlines. As shown
in Figure 6, T misses its deadline due to 7;'s advanced
execution, even though the new accesstime of 7; is equal to
the cachetransfer time, which issignificantly shorter than the
physical disk access. Although DM-SCAN may produce a
feasiblerescheduled result evenif aninfeasible EDF schedule
isgiven, thisis not guaranteed.

Therefore, with the progress of the DM-SCAN al gorithm,
we have to check the schedule's feasibility. Once a task
T; misses its deadline, the shifted deadlines of the cached
tasks before T; are restored to their origina values and these
tasks must be put into their correct positionsin the schedule,
where correct positions means the locations scheduled by
DM-SCAN using their origina deadlines. Assume that the

cached task 7; is before 7; and its deadline is shifted. If T
has not yet been scheduled by DM-SCAN, we just restore
T;’s deadline to its original value. If T; has been scheduled
by DM-SCAN, then T;’s deadline is first restored to its
original value. In addition, DM-SCAN must reschedule the
task set from T;. This process continues until 7; mests its
deadline.

5.1.3. Discussion

Although the deadline shift scheme considers the caching
effect during disk scheduling to increase the cache hit ratio,
it suffers from some drawbacks as discussed below.

e Itisnot easy to determinethevalue of ashifted deadline.
A proper value of the shifted deadline, which depends
on the characteristics of input tasks and the behavior of
on-disk cache, must maximize the cache hit ratio while
guaranteeing the schedule’s feasibility. However, it is
not easy to derive a suitable shifted deadline value for a
cached task to meet the above criteria.

e Thedeadlineshift schemejust triesto increasethe cache
hit probability, but does not guarantee it. By means of
shifting 7;’s deadline to be closer to the deadline of its
immediate principa task T;, the deadline shift scheme
expectsthat 7; canthen be served beforethe cached data
of T; has been replaced. However, it is not guaranteed
that a cache hit occurs for 7;. In addition, the DM-
SCAN algorithm, which runs after the deadline shifting
process, will reschedule tasks without considering the
caching effect. As a result, the shifted cached tasks
may be pulled apart from their corresponding immediate
principal tasks by DM-SCAN.
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FIGURE 7. A simple example to demonstrate the DM-SCAN algorithm. (&) The input tasks are grouped into consecutive M SGs or non-

MSGs. (b) Tasksin each MSG are rescheduled by the SCAN algorithm.

e The deadline shift scheme requires that the input tasks
must be in EDF sequence. However, the input task
set may not be in EDF order. Although a deadline
modification scheme can be applied transferring a non-
EDF ordered task setinto a‘ pseudo’ EDF sequence, the
modified pseudo deadlines have tighter deadlines than
their original oneto guaranteefeasibility. Consequently,
the modified schedule is stricter than the previous one.
As a result, the schedulability of a given task set is
influenced.

To resolve the above drawbacks of the deadline shift
scheme, we propose two additional cache-aware rea-time
disk scheduling algorithms: the collaboration schemeandthe
CARDS scheme, which aredescribed inturnin thefollowing
sections.

5.2. Collaboration scheme

To resolve the problems of the deadline shift scheme,
the collaboration scheme is proposed, which considers
the caching effect during the scheduling of DM-SCAN.
However, rescheduling a task to increase the cache hit ratio
may cause other tasksto misstheir deadlinesand afeasibility
check must be performed for each rescheduling operation.
Therefore, we also present the techniques to reduce the
checking overhead.

5.2.1. Collaboration scheme

As stated in Section 3, DM-SCAN identifies MSGs
that consist of a number of continuous tasks that can
be rescheduled under real-time constraints (identification
process). Continuous tasks that cannot be rescheduled seek-
optimizingly belong to a non-MSG group. As aresult, as
shown in Figure 7a, aninput task set is divided into anumber
of groups, either an MSG or a non-M SG group. After that,
asshownin Figure 7b, tasksin each M SG are rescheduled by
the SCAN agorithm (rescheduling process). Accordingly,
the collaboration scheme considers the caching effect during
both the identification process and the rescheduling process.
Assume that LRU is used as the cache replacement scheme
and a number of m cache segments are in the on-disk cache.
Given aset of rea-timedisk tasks T = 717 - - - T,,, for each

goupG; = T;Ti+1- - Tiym, L < i < n,thestepsto perform
the collaboration scheme are described in the following:

() If G; is a MSG, tasks within G; are first seek-
optimized by the SCAN scheme.

(ii) Then, for each task 7; within G;,1 € [i,i + m],
calculateits corresponding cached tasks, if they exist,
after G;. Removethe cached tasksthat have no way of
being a cache hit using the concept of task dimension,
which isdescribed in Section 5.1.1.

For eachremaining cachedtask T;, j € [i +m+1, n],
assume that its principa task is Ty, k € [i,i + m].
Depending on T;’sready timer ;, thefollowing shows
the different steps to be performed.

(@ If r; < r;, then T; can be scheduled into G;.
Therefore, T; is moved to the (k 4+ 1)th location
to be immediately after T,. Asaresult, T; could
hit the cached data of T, when it is executed.
However, feasibility checking must be performed
to prevent other tasksfrom missing their deadlines
as described in Section 5.2.2. Note that, 7'; isnot
selected into G; by DM-SCAN because f; > dp,
in the input task set.

(b) Ifr; <r; < dy, T; cannot be directly scheduled
into G;. To be a cache hit, principal task 7 is
rescheduled, if feasible, such that f; < r;. Then
T; isrescheduled immediately after 7.

(c) This process is continued until al the remaining
cached tasks are reschedul ed.

(iii)

The collaboration scheme thus directly adapts DM-SCAN
to be cache-aware. First, the task set in an R-Group G;
is enlarged with the cached tasks, whose principal tasks
are in G;, that are guaranteed to be cache hits. Then, the
rescheduling scheme also considers the caching effect. In
addition to the movement of the cached tasks, principal tasks
are aso rescheduled to be closer to their cached tasks to
increase the probability of cache hit.

5.2.2. Feashility checking

As shown in Figure 8, when task T7; is rescheduled from
position « to B, other tasks may beinfluenced by anincreased
or decreased delay of finish-time. Therefore, feasibility
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FIGURE 8. The condition when atask T is moved from « to 8. Tasksin theregion A are not influenced. However, tasksin the region B
may be delayed. Besides, tasks within the region C may be delayed or advanced for execution depending on whether 7' s accessresultsin a
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FIGURE 9. Conjunction groups may be merged or split when a rescheduling operation occurs. (8) 7; isrescheduled to the front of G,. As
aresult, conjunction groups G, and G, aremerged into G sincerp, < f,. (b) T; isrescheduled out from G.. Asaresult, conjunction group

G.issplitinto G, and Gy, since f; < rp.

checking must be performed when rescheduling a task and,
if an infeasible schedule is produced, this rescheduling
operation cannot be activated. The feasibility checking
involves computing the start-time and finish-time for each
request and thus a naive computation algorithm has O (n)
complexity. To accelerate the checking process, the concept
of aconjunction group is introduced.

DEFINITION 5. Conjunction group. Givenaset of real-time
disktasksT = T1T» - - - T,,, aconjunction group G; isdefined
asanumber of continuoustasksG; = T; T; 1 - - - T;4,, Where
eachtask Ty for k =i + 1toi + m satisfiesry < fr_1.

Therefore, tasks in a conjunction group will be executed
one by one without any free time slice between them. Note
that, asshownin Figure9, conjunction groupsmay be merged
or split when a rescheduling operation is taking place. By
theideaof conjunction group, thefollowing lemmasassistin
simplifying the checking process.

LEMMA 2. Assume that we are given a conjunction group
Gy = T;Tys1 - - - T; and task T, is rescheduled from position
« to B, where position « is inside G while position 8 is
outside G;. If T;, i € [k,[ — 1], isinfluenced by a delayed
execution of ¢, then for all tasks T;, j € [i + 1,1], their
executions are also delayed by .

Proof. For areal-timetask T;y1, s;+1 = max{r;11, f;} and
fiv1 = sit+1 + ej+1, where ¢; 1 denotes T;1's execution
time. Since T;;1 € Gy, from the definition of conjunction
groups,

sivi=fi and firi=sit1+e1=fi +eit1. (5

Because T; is delayed by ¢, i.e. f; isincreased by ¢, from
Equation (5), s;+1 and f; 11 arealso delayed by ¢. Following
the same arguments, task 7, j € [i +2, 1], isalsoinfluenced
by a delayed execution of «. O

LEMMA 3. Assume that we are given a conjunction group
Gy = TiTxy1--+-T; and a task Ty, is rescheduled from

positiona to 8. If T;, i € [k, I — 1],i.e T; iswithin Gy, is
thus influenced by an advanced execution of ¢, then for all
tasks T;, j € [i + 1,1], their executions are also advanced
by ¢, if G isnot split.

Proof. The proof can be derived inthe same way asthe proof
of Lemma 2. 0

Given the set of tasks in a schedule, we define the slack /;
of task 7; asfollows:

li =d;i — fi. (6)

That is, the dlack [; represents the duration for which 7; can
be delayed without violating its deadline. As Lemmas 2
and 3 show, the increase/decrease in finish-time is the same
for all tasks in a collaboration group. Accordingly, we only
maintain the smallest value of slack for each collaboration
group rather than maintaining it for individual requests. As
a result, when a rescheduling operation is done, we only
have to check the task with the smallest value of slack to
see whether its deadline is missed, if a delayed execution
occurs. Besides, the checking process is stopped when a
freetime dliceis encountered. Note that, conjunction groups
may be merged or split by adelayed or advanced execution,
and thus the slack value should be updated correspondingly.
From above, the overhead of feasibility checking is reduced
significantly by the introduction of slack and conjunction
groups. Therefore, the collaboration scheme can verify
quickly whether arescheduling is feasible or not.

5.2.3. Discussion

From Section 5.2.1, the collaboration scheme thus resolves
thedrawbacks of the deadline shift scheme. First, without the
need to shift thetasks' deadlines, it isnot necessary to decide
the values of the shifted deadlines. Second, the collaboration
scheme works for any input sequence and thus requires no
deadline modification scheme. Third, the rescheduling of a
cached task isonly performed when acache hit isguaranteed.
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Finally, the schedulability of agiventask setisnot influenced
since no task’s deadline is shifted.

However, the collaboration scheme al so suffersfrom some
disadvantages. First, as presented in Section 5.2.1, when a
cached task T; hasits ready time after the finish-time of its
principal task T, i.e.r7; > fj, the collaboration scheme does
not perform cache-aware rescheduling for T; or 7. Thisis
because the collaboration scheme works with the progress
of the DM-SCAN scheme and thus the scheduling sequence
between T and 7; is not yet determined when the group
containing Ty is encountered. As aresult, the collaboration
scheme cannot perform cache-aware rescheduling for T
or Tx. In addition, when T; is rescheduled to hit the
cached data of itsprincipal task Ty, the collaboration scheme
reschedules T; to be immediately after T;, which resultsin
amaximum number of tasks being influenced (from Ty to
T,,). However, since the cached data of 7 will remain in
the on-disk cache until they are evicted, it is not necessary to
reschedule T7; immediately after Ty, except in the case when
only one cache segment existsin the on-disk cache. Besides,
if T; isalso aprincipal task of 7;, this could result in alarger
distancebetween T; and 7; andincreasethedifficulty for 7; to
be a cache hit. In the following section, the CARDS scheme
is, therefore, introduced to rectify the above drawbacks.

5.3. CARDS scheme

As stated in Section 5.1, the deadline shift scheme first
performs cache-aware scheduling to a given task set.
Then, DM-SCAN is applied for seek-optimizing input
tasks. Section 5.2 introduces the collaboration scheme that
considers the caching effect during the scheduling of DM-
SCAN. In this section, a new cache-aware real-time disk
scheduling algorithm, the CARDS scheme, is proposed that
considers the caching effect after the DM-SCAN scheme.

Before describing the CARDS scheme, for task 7y, wefirst
introduce the miss function g (k) as:

1 if T} introduces acache miss
glk) = o . (7)
0 if T, introduces a cache hit

By the miss function, the concept of flush point of 7;, P (i),
isintroduced such that

P(i)
Y ghy=m+1 or P(@)=n ifnisreached (8)

I=i

Asshown in Figure 10, P (i) represents the position that the
cached data of 7; will be flushed to the disk. Asaresult, T;
should be executed before Tp;y, if possible, to beacache hit.

In contrast to the collaboration scheme, which schedules
acached task T; immediately after its principal task T;, the
CARDS scheme schedules T; just immediately before the
flushpointof 7;, P (i). Thus, acachehitisalsoguaranteedfor
T; while minimizing the number of tasks being influenced.

Suppose that the number of cache segments is m and
LRU is used as the cache replacement algorithm. Assume
that after the running of DM-SCAN, the derived schedule
S =T1T>---T,. Then, the CARDS scheme identifies pairs
of cached tasks and their immediate principal tasks. For each
pair of cachedtask T';, j € [1, n], anditsimmediate principal
task 7; (= G(T})), the CARDS scheme must decide whether
T; should be scheduled to be closer to 7; and, if so, which
position issuitable for 7'; to be scheduled. The stepsthat are
performed by the CARDS scheme for each pair of the cached
task 7; and itsimmediate principal task 7; are shown in the
following:

(i) Caculatethevaueof P (i) by Equations (7) and (8).
(i) If T; isinfrontof Tp(;, asshowninFigurella, T, can
be serviced by the on-disk cache with the cached data
of T;. Therefore, no rescheduling is needed for 7.
(iif) However, if T; isafter or equal to Tp(;),i.e. P(i) < j,
then a cache miss will occur when T; is issued.
Consequently, the CARDS scheme tries to schedule
T; to execute before Tp(;). Depending on the values
of r;, theready time of 7}, and sp;), the start-time of
Tp(;y, two different cases may exist:

(@ If spiy < rj, asshownin Figure 11b, T; cannot
be advanced to execute before Tpy since its
ready time falls behind the start-time of Tp(;).
Consequently, no reordering is performed for T;.

(o) If spiy > rj, as shown in Figure 11c, T; can
be advanced to execute before Tp(;y. Although
the time at which T; could be started is between
max(d;,r;) and spgy, the CARDS scheme
reschedules T; into the (P (i) — Dth position,
i.e. immediately before Tp(;y. Accordingly, the
number of influenced tasks (from Tp(;) to T,)
is minimal. Note that the rescheduling of T
may result in an infeasible schedule. Therefore,
a feasibility checking must be performed for
each rescheduling operation by the techniques
described in Section 5.2.2.
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T; thus can be cache hit.

TABLE 1. Quantum Atlas 10K: MAG 3091

disk parameters.
Year 1999
Capacity 9.1GB
Number of cylinders 10,042
Number of surface 6
Number of sectorsper track 334
Sector size 512 bytes
Revolution speed 10,000 rpm

From the above, the increase in cache hit probability is
realized with the CARDS scheme by rescheduling tasks that
have the opportunity to be a cache hit after the DM-SCAN
scheme.

6. EXPERIMENTAL RESULTS

In this section, the performances of the three cache-
aware real-time disk scheduling agorithms are evaluated.
Section 6.1 shows the platform used for our experiments and
the characteristics of the input workload. In Section 6.2,
the experimental results of the three cache-aware real-time
disk scheduling algorithms are presented to compare their
performance.

6.1. Experiment platform

Asstated above, the characteristics of the on-disk cache must
be explored so that a cache-aware scheduling scheme can
be applied. Because disk manufacturers consider their on-
disk cache implementation scheme atechnical secret, we use
the disk drive parameters derived from [36], which uses the
techniques of on-line extraction [37, 38, 39]. Table 1 shows
some important parameters of the Quantum Altas 10K MAG
3091, whichisused asthetarget disk in our experiments[36,
40]. The seek-time cost is calculated by the extracted data
from [36]. Rotational latency is assumed to be half of the
time of afull track revolution. The on-disk cache parameters
of Quantum Altas 10K MAG 3091, which are based on the
extracted data of [36], are shown in Table 2.

There are two kinds of workloadsin our experiments, one
is random and the other is sequential. The workload of

TABLE 2. Quantum Atlas10K: MAG 3091
disk cache parameters.

Size 2MB
Number of buffer segments 10
Segment size 374 sectors
Transfer time 0.184 ms

random tasks is uniformly distributed over the disk surface.
The sequential workload comprises a number of sequential
streams and random requests. Each sequential stream in
our simulations emulates the sequential access pattern. The
accessed block of thefirst request isalsorandomly distributed
over the disk surface. Then, the following requests access
the block immediately after their previoustasks. In addition,
the number of random requests in a sequential workload is
selected as one-third of the total requests. The accessed
blocks of these random tasks are also uniformly distributed
over the disk surface. The size of data accessed by each
request, either sequential or random, is normally distributed
with a mean of 36 KB. For a random workload, if there
are n random tasks, the ready times of tasks are randomly
generated from 0 to 6« n ms. After arandom time interval,
0-5 *x n ms, the related deadlines are uniformly distributed
within 0-10 x n ms. For a sequential workload, if there
are m sequential streams, the total number of input tasks
n = 15x (5% m). Since there are five sequentia tasksin
a stream, the ready time of each sequential task in a stream
is randomly generated between 0 and 2 x n/5 ms after its
previoustask and its deadlineis uniformly distributed within
0-20 * n/5ms after a random time interval, 0-10 * n/5ms.
For the random tasksin the sequential workload, their ready
times are randomly generated between 0 and 2 x n ms.
After a random time interval, 0-10 % n ms, their related
deadlines are uniformly distributed within 0-20 x n ms. The
cache replacement schemeis assumed to be LRU. If acache
miss occurs, the cache logic will read ahead a data size
of 354 sectors (177 KB), including the requested one, into
a least-recently used cache segment. In all the following
experiments, 50 experiments are conducted with different
seeds for random number generation and the average value
is measured.
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FIGURE 13. Throughput improvement for different values of shifting factors in sequential workload. The throughput improvement is

compared with EDF.

6.2. Experimental results

6.2.1. Different values of the shifted deadlines

In this section, wefirst measure the datathroughput under the
different shifted values of the deadlines in the deadline shift
scheme. Assume that 7;is a cached task and G(7T;) = T;.
Depending on the relative position of 7; and 7; in the
input task set, T;’s deadline would be shifted such that
rj < xj <djord; < x; <d;. Thus, x; would be
selected asx; = r; +¢; or x; = d; + cj, wherec; isa
parameter that depends on the characteristics of theinput task
set and the properties of the on-disk cache. We thus define
ashifting factor w; for T; suchthat ¢c; = (d; — r;) % w; or
cj=(dj—d)*wj,w; €[0,1]. Notethat, x; isincreased
with w;, i.e. alarger value of the shifting factor resultsin a
smaller value of the shifted deadline, which in turn incurs a
smaller difference between the original deadline, d;, and the
shifted deadline, x;.

Given anumber of random tasks, Figure 12 plots the data
throughput improvement compared with EDF for different
values of shifting factors. It is observed that the value
of the shifting factor, and thus the shifted deadline, has

little impact on the obtained data throughput. This is
because the input workload is random. Hence, the caching
effect is insignificant since there is little possibility that
the cached data of atask will be reused by ancther task. In
contrast, Figure 13 demonstrates the same experiment under
different sequential workloads. For example, the line of four
sequential streams represents the workload that consists of
four sequential streams and 10 random requests. Observe
that, when the shifting factor is 0.9, the data throughput is
best under four and five sequentia streams. Thus, in the
following experiments, w; = 0.9 is used as the shifting
factor in calculating the shifted deadlines for the deadline
shift scheme.

6.2.2. Data throughput improvement

If the same number of real-timetasksisgiven, awell-behaved
scheduling algorithm must maximize data throughput under
guaranteed real-time constraints.  Given random access
workload, the data throughput improvements of DM-SCAN
and three other disk scheduling schemes for different
numbers of input tasks are shown in Figure 14. The
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throughput improvement is compared with EDF.

TABLE 3. Given 26 random tasks, the minimum, maximum,
average schedule fulfill-time and throughput improvement com-
pared with EDF for different schemes.

TABLE 4. Under sequential workload with 10 sequential streams,
the minimum, maximum, average schedule fulfill-time and
throughput improvement compared with EDF for different schemes.

Schedule fulfill-time (ms)

Schedule fulfill-time (ms)

Algorithms Minimum Maximum Average |mprovement Algorithms Minimum Maximum Average |mprovement
(%) (%)

EDF 262.10 355.86  309.74 0.0 EDF 453.31 543.15 49851 0.0

DM-SCAN 230.48 31460 267.05 15.66 DM-SCAN 376.99 47361 41324 17.11

Deadline shift ~ 230.48 314.60 267.05 15.66 Deadline shift ~ 359.16 45351 411.72 17.41

scheme scheme

Collaboration  230.48 314.60 267.05 15.68 Collaboration  373.39 461.79  407.81 18.19

scheme scheme

CARDS 230.48 314.60 266.88 15.69 CARDS 327.04 44202  376.32 24.51

scheme scheme

derived throughput improvement is compared with EDF.
Figure 15 presents the same experiment for different
sequential workloads.  The minimum, maximum and
average schedule fulfill times of various approaches with a
sequence of 25 random tasks are also presented in Table 3.
Table 4 presents the same performance metrics but under
a sequential workload with 10 streams. Note that the

performance improvement is obtained because of the cache-
aware rescheduling scheme, which leads to an increase in
the cache hit ratio. It does not include the advantage when
compared with systems that make worst-case assumptions
about disk access time. As stated in Section 1.1, this would
only influence the schedulability analysis.
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On-disk caches work on the premise that the input
workload follows the principles of temporal and spatia
locality.  Thus, given random tasks, the throughput
improvements presented in Figure 14 show little difference
between the proposed cache-aware scheduling schemes and
DM-SCAN. Thereislittle possibility that arandom task will
hit the data cached in the on-disk cache. Therefore, cache-
aware scheduling has no means of increasing the cache hit
probability.

In contrast, as shown in Figure 15, if input is sequential
workload, both the collaboration scheme and the CARDS
scheme obtain larger data throughput than DM-SCAN.
However, in some ways, the data throughput of the deadline
shift schemeisworsethan that of DM-SCAN. Thisisbecause
the deadline shift scheme suffersthe drawbacks described in
Section 5.1.3.

Thus, the performance of the deadline shift scheme is
undetermined. Observe that the performance of the CARDS
scheme is better than DM-SCAN with an increase in the
number of sequential streams. Since the number of cache
segments is 10, when the number of cache segments is
considerably larger than that of the sequential streams, the
on-disk cache capacity islarge enough to sustain agreat deal
of blocks accessed by each sequential task. Thus, thederived
throughput difference between DM-SCAN and the CARDS
scheme is not significant. However, when the number of
sequential streams is increased, the CARDS scheme can
increase the on-disk cache utilization and obtain larger data
throughput than DM-SCAN.

Furthermore, in Figure 16, we show the throughput
improvement of CARDS compared with that of the optimal
scheme. Because of the exponential time complexity of
cal culating the optimal solution, weonly show thethroughput
performance under five sequentia streams. From Figure 16,
we see that the optimal solution outperforms the proposed
CARDS scheme and obtains nearly two timesthe throughput
of the CARDS approach.

To prove that taking into consideration the on-disk cache
during disk scheduling indeed increases the cache hit ratio,

TABLE 5. Under sequential workload, the minimum,
maximum, and average cache hit ratio.

No. of
streams Algorithm  Min. (%) Max. (%) Average (%)
6 DM-SCAN 15 22 19.0
CARDS 16 24 19.5
7 DM-SCAN 16 26 20.0
CARDS 17 28 22.0
8 DM-SCAN 16 27 21.9
CARDS 20 29 238
9 DM-CAN 15 32 231
CARDS 19 33 26.9
10 DM-CAN 18 32 229
CARDS 23 34 29.2

Table 5 shows the minimum, maximum and average cache
hit ratio under a sequential workload. As shown in Table 5,
the CARDS scheme has a better cache hit ratio than the DM-
SCAN. Because of the increased cache hit ratio in CARDS,
the schedule fulfill-time of CARDS is shorter than that of
DM-SCAN. Therefore, as shown in Figure 15, the CARDS
scheme obtains larger data throughput than DM-SCAN.

6.2.3. Throughput improvement versus number of
cache segments

In modern on-disk cache design technology, the number of
cache segments is configurable. Thus, we conducted an
experiment in which the performance of the three proposed
cache-aware real-time disk scheduling schemes is measured
for different numbers of cache segments. Given 25 random
tasks, Figure 17 plotsthe throughput improvement compared
with EDF for different numbers of cached segments. The
figure shows that these three schemes yield almost the same
throughput improvement. In addition, for each scheme, the
throughput improvement is fixed in any number of cache
segments. This is because the input tasks are randomly
accessed. Therefore, the caching effect is negligible and, no
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FIGURE 18. Given 25 random tasks, the schedule fulfill time of three schemes under different cache segment number.

matter how many cache segmentsare provided, most accesses
result in physical disk mechanism operations. The schedule
fulfill-times of the three schemes for different numbers of
cache segments are also presented in Figure 18. The figure
shows the same phenomenon as Figure 17.

Figure 19 presents the throughput improvement compared
with EDF for different numbers of cache segments under
sequential workload with five sequential streams. Observe
that, the lines representing the three schemes' throughput
improvement are flat when the number of cache segmentsis
larger than seven. This is because there are five sequential
streams in the input workload and the requested data size
of each task (smaller than 36 KB) is smaller than that of
a cache segment (larger than 167 KB). Thus, when the
number of cache segmentsislarger than that of the sequential
streams, cache replacement rarely occurs, even though a
few random tasks are involved in the workload. Therefore,
cache hits often occur for each sequential task, even without
consideration of cache-aware scheduling. Figure 20, which
plotsthe schedule fulfill-timesfor theworkload in Figure 19,

demonstrates that the schedule fulfill-times of the three
schemes decrease with an increase in the number of cache
segments. However, when the number of cache segments
is larger than seven, the schedule fulfill-times of the three
schemes are stable and almost the same.

Thus, when the number of cache segments matches
that of the sequential streams, the on-disk cache behavior
is aligned to the application’s characteristics and obtains
the largest data throughput. However, in a true system,
the number of sequential streams is dynamic. Thus, it is
difficult to determine a suitable number of cache segments.
The proposed cache-aware scheduling schemes address this
limitation by performing cache-aware scheduling to increase
the cache hit probability.

7. DISCUSSIONS

Note that, in this paper, we assume that the on-disk cache
replacement scheme is LRU. However, the three algorithms
proposed in this paper can also be applied to other cache
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replacement algorithms. As stated in Section 4, al our
algorithms are based on the identification of the cached
tasks and their immediate principal tasks. After that, each
algorithm tries to reschedule pairs of the cached tasks
and their immediate principal tasks close enough. As
a result, once the cached tasks are issued, they will be
cache hits since their requested data have been read ahead
by their immediate principal tasks and have not yet been
replaced.

Therefore, if another cache replacement schemeisadopted
by disk drives, we only have to change the identification
scheme of cached tasks and their immediate principal tasks.
Besides, the identification scheme can be derived easily if
we know the cache replacement scheme. For example, if
the replacement scheme is changed from LRU to RR, we

can easily trace the input disk tasks and identify each pair of
the cached task and immediate principal tasks under the RR
cache replacement scheme.

Furthermore, the performance of our proposed algorithms
depends on how well the cache replacement scheme
performs. If data cached in the on-disk cache are almost
what the following disk tasks access, then our agorithms
can obtain a higher performance improvement. In contrast,
if the data item cached in the on-disk cache is not what
the following disk tasks expect, since an ill-behaved cache
replacement scheme evicts useful blocks from the on-disk
cache, then our proposed agorithms will have no way
of increasing the number of cache hits by cache-aware
rescheduling. Fortunately, with an increase in on-disk cache
size and an improvement in caching strategies, on-disk cache
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and also our proposed scheme, benefit from such technology
improvement.

8. CONCLUSIONSAND FUTURE WORK
8.1. Conclusions

To maintain their competitive edge in the market, disk
manufacturers consider their disk implementation to be a
technical secret. However, if theinformation of on-disk cache
is explored, the disk scheduling can exploit this information
to derive a schedule minimizing the cache miss probability.
In this paper, we therefore propose cache-aware rea-time
disk scheduling algorithms that consider the caching effect
during scheduling. As aresult, the disk scheduling scheme
can a so beactively involved in reducing the cache missratio.
In addition, the timing analysis is more accurate since the
on-disk cacheis considered during scheduling and thus, if a
cache hit occurs, the cache transfer timeis used asthetask’s
execution time for schedulability analysis without assuming
the worst case that each disk task incurs a physical disk
mechanical operation. The experiments demonstrate that the
proposed schemes indeed obtain larger data throughput than
DM-SCAN. For example, under a sequential workload with
10 sequentia streams, the data throughput of the CARDS
schemeis 1.1 times that of DM-SCAN.

In addition, we investigate the influence of the number of
cache segments on the performance of our proposed schemes.
Experimental results show that the CARDS scheme can
resolve the performance limitation of on-disk cache when
the number of sequential streamsis larger than that of cache
segments.

8.2. Futurework

The cache-aware real-time disk scheduling algorithms
proposed in the paper are based on the static manner of an
on-disk cache; i.e. the scheduling schemeisaligned tothe on-
disk cache's behavior. However, in the recent design of on-
disk cache, the number (and hence the size) of the cache
segment can be configured. In addition, the read-ahead can
be enabled or disabled dynamically. As a result, with a
knowledge of the application’s access patterns, our future
work will propose a more aggressive cache-aware real-time
disk scheduling scheme that will also change the behavior of
on-disk cache dynamically during scheduling. For example,
if only afew concurrent processes existin asystem at atime,
the segment number can be decreased and thus more data can
be cached for each process. As aresult, the on-disk cache
can bealigned to the application requirements and be utilized
more efficiently by such an aggressive scheduling scheme.
Furthermore, the interaction between the on-disk cache and
buffer cacheisalsoapossiblefuturework. For example, if the
information of an on-disk cacheisexported to thefile system,
we can manage both the buffer cache and on-disk cache more
efficiently. In addition, by differentiating between requests
whether they areread-ahead or real requests, the cache-aware
real-time disk scheduling algorithm can manage the disk
bandwidth more efficiently under the feasibility constraints.
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