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Abstract

Slug test data obtained from tests performed in an unconfined aquifer are commonly analyzed by graphical or
numerical approaches to determine the aquifer parameters. This paper derives three fourth-degree polynomials to rep-
resent the relationship between Bouwer and Rice’s coefficients and the ratio of the screen length to the radius of the
gravel envelope. A numerical approach using the nonlinear least squares and Newton’s method is used to determine
hydraulic conductivity from the best fit of the slug test data. The method of nonlinear least squares minimizes the sum
of the squares of the differences between the predicted and observed water levels inside the well. With the polyno-
mials, the hydraulic conductivity can be obtained by simply solving the nonlinear least squares equation by Newton’s
method. A computer code, SLUGBR, was developed from the derived polynomials using the proposed numerical
approach. The results of analyzing two slug test datasets show that SLUGBR can determine hydraulic conductivity

with very good accuracy.

Introduction

Hydraulic conductivity and storativity are two major
hydrogeologic parameters required for quantitative analysis
of ground water problems. A slug test involves instanta-
neous injection (or removal) of a small volume of water
into (or from) a well; aquifer parameters can be obtained by
analyzing water levels measured during the slug test. The
stug test method is simple, quick, and economical.

Ferris and Knowles (1954) originally introduced the
slug test approach to find the transmissivity of confined
aquifers. Transmissivity was estimated from a straight-line
plot of the residual head response vs. the inverse of time.
Later, Bredehoeft et al. (1966) demonstrated that Ferris and
Knowles’ approximation is valid only at the time when the
ratio of the water level in the well to the initial water level is
very small. Using the modified Thiem equation for uncon-
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fined and steady state conditions, Bouwer and Rice (1976)
presented a procedure for determining hydraulic conductiv-
ity or transmissivity for unconfined aquifers. Using results
from an electric analog model, they obtained two empirical
formulas related to the effective radius for partially and fully
penetrating wells. Bouwer (1989) provided information on
using Bouwer and Rice’s method for testing the validity of
falling level tests, the application of the method to confined
aquifers, the effect of well diameter, and the computer pro-
cessing of field data. Black (1978) employed this method
and used the procedure suggested by Cooper Jr. et al. (1967)
to obtain similar curves for an unconfined aquifer. These
graphical methods require data plotting and subjective judg-
ment during the curve-fitting procedure, making the data
analyses cumbersome and time-consuming. Moreover,
ervors may be introduced in the process.

Dagan (1978) presented a simple numerical method
that can be used to estimate hydraulic conductivity for data
obtained from packer, recovery, and slug tests. The method
involves solving the flow problem for source distributions
along the well axis using the Green function. While his
method is versatile, it has the limitation that the active por-
tion of the well length should be much larger (say, 50
times) than the well radius. Kemblowski and Kliein (1988)
used the least squares approach and sensitivity analysis to
estimate hydraulic conductivity. Their approach requires
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reading a cocltlicient from Figure 3 in Bouwer and Rice’s
paper. Errors could be incurred due to the probable bias in

estimating the coefficient. Chirlin (1989) gave a bricf

review ol various mathematical models that represent the
slug test experiment for estimating hydraulic parameters
such as hydraulic conductivity, storage cocfficient, and
skin factor. He also explored the relation between the effec-
tive radius and the storage coclficient. Hyder et al. (1994)
gave a semianalytical solution to a mathematical model
describing ground water flow in response (o a slug test in a
conlined or unconfined aquifer. Their model incorporates
the cffects of partial penetration, anisotropy, finite-radius
well skin, and upper and lower boundarices of either a con-
stant-hcad or an impermeable layer. Their solution was
cmployed to quantify the error introduced in parameter esti-
males using slug test response data. Hyder and Butler Jr.
(1995) suggested using the semianalytical solution derived
from the model given by Hyder ct al. (1994) for parameter
estimation. noting that conventional approaches such as
Bouwer and Rice’s method gave large cerror. Rupp ct al.
(2001) employed a two-dimensional, radially symmetric
and variable saturated, ground water model to simulate well
recovery given a range of well and aquiler geometries and
unsaturated soil properties. Then, they modiflicd Bouwer
and Rice’s method to explain the recovery rates based on
the well geometry and soil type. Their modification intro-
duced a parameter related to soil capillarity to improve the
estimation accuracy of saturated hydraulic conductivity for
slug test data. Butler Jr. (2002) gave a simple procedure for
correeting hydraulic conductivity estimates obtained from
slug tests performed in small-diameter installations
screened in highly permeable aquifers. Jiao and Leung
(2003) gave a bricf review on the key features, advantages,

and disadvantages of spreadsheets for the analysis of

aquifer test and slug test data.

This study proposes a numerical approach combined
with three fourth-degree polynomials to determine auto-
matically Bouwer and Rice’s coefficients and hydraulic
conductivity. The numerical approach including the nonlin-
car least squares and Newton’s method is used to solve for
the best-fit value of aquifer parameters to the slug data.
This approach has been used successfully for identifying
the paramcters ol a confined aquifer (Yeh 1987). A com-
puter code written in Fortran, called SLUGBR, was devel-
oped from the derived polynomials. Ilustrations for input
data format and variable definitions arc given at the begin-
ning of the code. The code is available from the authors
upon request. ‘The main advantage of using SLUGBR to
estimate hydraulic conductivity is that crrors caused by data
plotting and estimating values from the plots can be
avoided and the time-consuming labor in graphical works
can be saved. Commercially available software packages
such as AquiferWin32 and AQTESOLV also provide a
way 1o use Bouwer and Rice’s method without the hand
plotting of data and subjective reading of coefficients

Bouwer and Rice's Method

Bouwer and Rice (1976) used a modified Thiem equa-
tion to estimate the hydraulic conductivity as
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where K is the hydraulic conductivity of the aquifer, L is the
height of the well through which water enters, H(t) is the
vertical distance between the water level inside the well and
the equilibrium water table in the aquifer, H, is the initial
water level inside the well, R is the effective radius over
which H(1) is dissipated, r_ is the radius of well casing, and
r, is the radial distance from the well center to the undis-
turbed aquifer. A plot of InH(t) vs. t shows a straight line
since K, r, 1, R, and L in Equation | are constants.
Bouwer and Rice suggested using a graphical curve-fitting
approach to determine the value of K from the slug test data.

Bouwer and Rice (1976) used an electric analog model
for different values of re» L, L, and D to determine the
value of R . Two empirical equations relating In(R /r, ) in
Equation 1 to the geometry of aquifer system are

|
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for a partially penetrating well, and
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for a fully penetrating well. The dimensionless parameters
A and B in Equation 2 and C in Equation 3 are functions of
log(L/r,) (Bouwer and Rice 1976).

Proposed Numerical Approach
Nonlinear Least Squares

The value of H(t) according to Equation I may be writ-
ten as

2LK!1 ,
H(t)=H,exp [~ 7(2 m(;’{(}/i‘”‘) } =Hyexp(—C'Kr)
(4)
where
- 2L
= : (9

r2In(R,/r,)

To get the best value of hydraulic conductivity, the
partial derivative of the sum of squares of the differences
between the predicted and observed water levels inside the
well with respect to K is set to be zero. Thus,

g & 4 [

== ¥ g= 3 DO B~ B | bE ) | =06

K “~ =1
where e, is the prediction error, H.(t,) represents the
observed water level at time t, H(t) represents the pre-
dicted water level in the well, and n is the total number of
observations. The nonlinear least squares equation, Equa-
tion 6, can be used to determine the best value of hydraulic
conductivity.
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Newton's Method
Newton’s method, which can be used to find solutions
of nonlinear equations, may be expressed as (Gerald and
Wheatley 1989)
F &)
T FK)

K. =K (7

where F(Kj) is the nonlinear equation, Equation 6, F’ (Kj) is
the derivative of the function in the denominator with
respect to K, and j represents the number of iterations. Note
that F’(Ki) must be nonzero. The derivative term may be
approximated by a finite-difference formula or obtained by
taking the derivative directly. The result of differentiation is

oF (K L
Py =28 S canelne - m)
() I< i=1
®)
The tolerance used to stop the iteration is
'K,-,H =5 K,-‘ < KTOL 9)
and/or
‘F(I(l-ﬂ){ < FTOL (10)

where the values of KTOL and FTOL depend on the
desired accuracy of the result.

Several error criteria may be used to assess the good-
ness-of-fit during curve fitting or the performance of para-
meter identification by different methods (Yeh 1987). The
mean error (ME) is defined as the sum of the errors divided
by the number of data points. The mean absolute error
(MAE) is defined as the sum of the absolute errors divided
by the number of data points. The standard error of estimate
(SEE) is defined as the square root of the sum of squared
errors divided by n — m — | where m is the degree of the
polynomial and n is the number of data points.

Curves Relating Bouwer and

Rice's Coefficients A, B, and C

The curves relating coefficients A, B, and C to log(L/r,)
given in Bouwer and Rice (1976) are read by a digitizer and
expressed in the polynomial equations. The best-fit equations
for those three curves can be found using the least squares
approach. Functions more complex than fourth-degree poly-
nomials are rarely needed (Gerald and Wheatley 1989). Thus,
the best-fit equations for these three curves are expressed in
terms of fourth-degree polynomials as

A(x) = 1.353 + 2.157x — 4.027x2 + 2.777x3 — 0.460x*
(11)

B(x) = -0.401 + 2.619x — 3.267x% + 1.548x3 — 0.210x*
(12)

and

C(x) = —-1.605 + 9.496x — 12.317x2 + 6.528x> — 0.986x*
13)

where x is the value of log(L/r,) in Equations 11, 12, and
13. For any given x, the values of coefficients A, B, and C
can be calculated from these three equations. The predic-
tion errors of ME, MAE, and SEE for Equations 11, 12, and
13 arc listed in Table 1. The values of Bouwer and Rice’s
coefficients A, B, and C range from zero to 13. Generally
speaking, the estimation error for each coefficient is < 10%.
By using these three polynomials, the parameter for an
unconfined aquifer can be easily estimated.

As reported by Butler Jr. (1998), Van Rooy (1988) also
used a regression method to develop a set of polynomial
functions in terms of L/r, for Bouwer and Rice’s coeffi-
cients A, B, and C. Figure 1 shows the curves plotted using
Equations 11, 12, and 13, and Van Rooy’s polynomial
functions. For the coefficient B, Van Rooy’s curve starts to
deviate from Bouwer and Rice’s curve when L/, is over
600. In addition, Van Rooy’s curve for coefficient A has a
dip near L/r,, = 1000 and his curves for coefficients A and
C give very large extrapolation errors when L/r, is beyond
1500. Note that our polynomials and Van Rooy’s polyno-
mials are expressed in terms of log(L/r,) and L/r, respec-
tively. Bouwer and Rice (1976) presented the value of L/r,,
from 4 to 1500 as indicated in Figure 1. However, the range
of log(L/r,) is from 0.60 to 3.18. Such a smaller range of
log(L/r,) may make the regression curves smoother and
result in fewer errors when extrapolation is required for
L/, > 1500.

Data Analyses

In this study, the value of KTOL (Equation 9) is set to
three orders of magnitude less than that of the initial guess
of the unknown parameter. The value of FTOL (Equation
10) is set to one order of magnitude less than KTOL. The
maximum number of iterations is set to 20.

A digitizer was used to read two sets of slug test data
from figures given in Kemblowski and Klein (1988). The
first dataset comprises computer-gencrated data from a
fully penetrating well with internal radius r, = 0.05 m and
external radius r, = 0.1 m. The initial penetrated thickness
of the aquifer is L, = 15 m, the screen height is L. = 10 m,
and the hydraulic conductivity is assumed to be 0.288 m/d.
The initial drawdown is H, = 1 m. The coefficient C is
estimated to be 1.5 and that calculated by Equation 13 is
4.57. In fact, the correct value of C should be ~4.6 for L/r,,
= 100 as estimated from the curve provided by Bouwer and
Rice (1976). The hydraulic conductivity estimated by the

Table 1
Prediction Errors of Polynomial Equations
Representing Bouwer and Rice’s
Coefficients A, B, and C

Prediction Errors

Coefficient ME MAE SEE
A -0.00 0.09 0.11
B -0.02 0.05 0.07
C 0.01 0.18 0.22
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Figure 1. Curves relating coefficients A, B, and C to L/r,.

proposed approach with C = .5 is 0.287 m/d, which is very
close to the assumed value of Kemblowski and Klein
(1988). However, the hydraulic conductivity estimated by
the proposed approach with C = 4.57 is 0.254 m/d. The sec-
ond datasct was taken at a site in Kalkaska, Michigan. The
ficld test was performed in a sandy aquifer using a partially
penetrating well with internal radius r, = 0.032 m and exter-
nal radius r, = 0.086 m. The well penetration depth L, and
the screen height L are equal to 0.949 m. The saturated
thickness is 30.48 m and the initial drawdown is H,, = 0.207
m. The coefficients, A and B, estimated from Kemblowski
and Klein (1988) are 1.80 and (.25, respectively. Coeffi-
cients estimated by Equations 11 and 12 are .83 and 0.28,
respectively. The two methods give the same value of
hydraulic conductivity, which is 16.09 m/d. The prediction
errors of ME, MAE, and SEE are 0.002, 0.007, and 0.01,
respectively. The results of data analyses indicate that our
proposed approach can obtain Bouwer and Rice’s coeffi-
cients A, B, and C in a very efficient way and determine
hydraulic conductivity with good accuracy.

Summary and Conclusions

This study employs the lincar least squares approach to
approximate three curves representing the relation between
coefficients A, B, and C, and L/r, using fourth-degree
polynomials. A numerical approach including the nonlincar
least squares and Newton’s method is used to determine
hydraulic conductivity from two slug test datasets, one
from a fully penctrating well and another from a partially
penetrating well. The nonlinear least squares method is
cmployed to minimize the sum of squares of the differences
between the predicted and obscrved water levels inside the
well. Newton’s method is used to solve the nonlinear least
squares equation when combined with three fourth-degree
polynomials to estimate the Bouwer and Rice coefficients.
A computer code, SLUGBR, was developed from the
derived polynomials using the proposed numerical
approach. The code can automatically identify the
hydraulic  conductivity without involving data plotting,
graphs, and curve reading. The results of the slug test data
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analyses from two case studies demonstrate that the code
can automaltically find the best-fit value of hydraulic con-
ductivity. In addition, the code has the merits of giving
accurate results and is casy to usc.
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