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A b s t r a c t - - T h i s  paper presents various fixed-point methods for computing the ground state energy 
and its associated wave function of a semiconductor quantum dot model. The discretization of the 
three-dimensional SchrSdinger equation leads to a large-scale cubic matrix polynomial eigenvalue 
problem for which the desired eigenvalue is embedded in the interior of the spectrum. The cubic 
problem is reformulated in several forms so that the desired eigenpair becomes a fixed point of 
the new formulations. Several algorithms are then proposed for solving the fixed-point problem. 
Numerical results show that the simple fixed-point method with acceleration schemes can be very 
efficient and stable. © 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - C u b i c  eigenvalue problem, Fixed-point method, Linear Jacobi-Davidson method, 
Linear successive iterations, 3D Schr6dinger equation. 

1. I N T R O D U C T I O N  

Semiconductor quantum dots (QDs) are nanoscale structures in which the carriers are confined in 
all three dimensions (3D). The carriers exhibit wavelike properties and discrete energy states in 
QDs. They have recently attracted intensive research on exploring their physical phenomena and 
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practical applications [1]. Methods such as photoluminescence [2] and capacitance-voltage [3] 
spectroscopy have been used to study QDs' electronic and optical properties. For practical 
applications, QDs also play an important role in optoelectronic devices such as QD infrared 
photodetectors [4], QD lasers [5], memory device [6], QD computing systems [7], and light emitting 
diodes [8]. 

While QDs have been studied theoretically and experimentally, numerical methods can provide 
useful simulation results. For example, pseudopotential and first-principal methods [9], adiabatic 
approximation methods [10], and multi-band envelope function [11] are used to study basic QD 
physical characteristics. These numerical methods, however, may suffer from excessive computing 
time-consuming or insufficient accuracy for small size QDs [12]. Besides, little results can be 
acquired by current computational methods for 3D QDs [13, Section 11.6]. On the other hand, 
various physical models that are most effective, e.g. the finite hard-wall potential model, cannot 
be solved analytically. Numerical approximations therefore become an essential tool [12]. 

In this paper, we are interested in calculating the ground state energy level and the associated 
wave function of a single electron confined in a cylindrical semiconductor QD material embedded 
in another cylindrical material. The model assumes the effective one electronic band Hamilto- 
nian, the BenDaniel-Duke boundary conditions [14], and nonparabolic electron effective mass 
depending on energy and position. This model is proposed in [15] and later used and extended in 
various works [16-19], and in references therein. At the boundary of the QD, the finite hard-wall 
3D confinement potential is induced by real discontinuity of the conduction band. 

The three-dimensional SchrSdinger equation of the model is discretized by finite difference ap- 
proximation in cylindrical coordinates. Nonuniform mesh by which more grid points are placed 
around the heterojunction is adopted for capturing rapid changes in the area. One of the major 
concerns for the numerical treatment of the model is caused by the band nonparabolicity which 
results in a cubic type of eigenvalue systems. Effective methods for solving cubic eigenvalue 
problems arising from such a model are rarely available in the literature. We present here several 
algorithms for solving the cubic eigenvalue problem based on the framework of fixed-point meth- 
ods. Numerical results are also given to demonstrate the efficiency and accuracy of the proposed 
methods. 

The main results of this paper are briefly summarized as follows. 

• The cubic eigenvalue problem is first reformulated into various forms so that the desired 
eigenpair of the problem is a fixed point (a zero) of the new formulations. 

• A fixed-point method is then proposed to find the desired eigenpair. The linear Jacobi- 
Davidson (JD) method is used in each fixed-point iteration due to the characteristics of the 
formulation. Two practical acceleration schemes, namely, an initial eigenvector selection 
strategy for the JD method and an adaptive convergence scheme, are given to improve 
the convergence performance of the fixed-point method. 

• A hybrid method that combines the fixed-point (global and linear) iteration with a local 
and quadratic Newton iteration when the iterates are close to the desired solution is 
presented. Again, the JD method is used for the linear eigenvalue problems associated 
with both fixed point and Newton's iterations. 

• Our numerical results indicate that the acceleration schemes can significantly improve the 
fixed-point method. The hybrid method is slightly more efficient than the fixed-point 
method. Moreover, a comparison of the fixed-point methods with the nonlinear Jacobi- 
Davidson (NJD) methods is also given. The NJD methods solve the cubic eigenvalue 
problem directly and are presented in our earlier paper [20]. We find that the fixed-point 
methods outperform the NJD in small size (49,950 x 49,950) problems and are comparable 
to the NJD for middle (107,055 x 107,055) and large (193, 700 × 193,700) size problems. 

This paper is organized as follows. The model problem and its cubic eigenvalue discrete form 
are given in Section 2. New formulations of the cubic eigenvalue problem are given in Section 3 
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for which the fixed-point method and the JD method are then developed. These two methods are 
first applied to s tudy the convergence behavior with respect to the new formulations from which 

the best one is thus chosen for further numerical experiments with some acceleration schemes. 
The hybrid method is given in Section 4. In Section 5, numerical comparison results are presented 
to illustrate the performance of various combinations of the above methods and schemes. Some 
concluding remarks are made in Section 6. 

2. M O D E L  P R O B L E M  A N D  
C U B I C  E I G E N V A L U E  S Y S T E M S  

Now we introduce a cylinder hetrostructure semiconductor quantum dot (QD) model that  
motivates this study. The QD model assumes that  a single electron is confined in a QD embedded 
in the center of another  cylindrical matr ix material with the same rotat ional  axis. The QD schema 
is shown in Figure 1. The  coordinate of the top of the matr ix  is denoted by Zmtx. The coordinates 
of the bot tom and the top of the QD are denoted by Zbtm and Ztop, respectively. The radii of 
the dot and matr ix are denoted by Rdot and Rmtx, respectively. 

In the cylindrical coordinates, the QD structure can be described by the 3D time-independent 
Schr5dinger equation 

-It  2 [02F l OF 1 0 2 F  OUF] 
2me(),) L0r 2 + ~-~-r + r -~  09 - - - ~  + - ~ z  2 ] + c t F  = AF, (1) 

where h is the Plank constant, ~ is the total  electron energy, and F = F(r, 9, z) is the wave 
function. The  index g depends on r and z and is used to distinguish the region of the quantum 
dot (£ = 1) from that  of the matr ix (e = 2). The notation me denotes a nonparabolic effective 
mass approximation depending on energy and position [12,19]. The nonparabolic effective mass 
is modelled as 

m~(A) = h --~ ~ + ~ - c t  A+gt-ct+St  ' (2) 

where Pt, gt, and 5t stand for the momentum, main energy gap, and spin-orbit splitting in the £th 
region, respectively. The SchrSdinger equation (1) is equipped with Dirichlet boundary conditions 
on the top, bot tom,  and sidewall of the matr ix 

F(r, 9, Zmtx) = F(r, 0, 0) = F(Rmtx, 9, z) = 0, (3) 

Zmtx . . . . .  

Ztop  . . . . . .  

Z b t m  . . . . . .  

7 _ ,  
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I 
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0 Rdot  Rrntx 

Figure 1. The quantum dot structure schema showing that a cylindrical quantum 
dot is embedded in a hetrostructure matrix. 
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and with the BenDaniel-Duke interface conditions [14] 

h 2 OF I 

h 2 OF gift,.- 2m2(x) 

h2 O~Z ZtYop = 
2m~(A) 

h 2 OF I 
m2()O Or R+o,' 

h 2 OF z%., 
2ml(A) Oz , ' 

h 2 OF ] 
2m2(~) Oz Z:op' 

(4) 

where the + and - signs denote that the corresponding outward normal derivatives on the 
interface are defined for the matrix and the dot regions, respectively. 

To discretize the 3D cylindrical model (1), we choose the mesh points with following two special 
considerations. 

• NONUNIFORM MESH. 
We use uniform mesh lengths in the azimuthal direction. However, since the wave functions 
change rapidly around the heterojunction (the interfaces), we nonuniformly partition the 
domain in the radial and axial directions by refining the meshes around the interfaces. 
Without applying this nonuniform mesh generation scheme, much finer uniform partition 
over the whole domain would be needed to achieve a similar accuracy compared with that 
of the nonuniform one. Much more storage and time would then be consumed. 

• HALF-SHIFTED MESH WIDTH IN THE RADIAL DIRECTION. 
We modify the two-dimensional disk discretization scheme described in [21] so that the 
mesh points are shifted with a half mesh width in the radial direction. This setting avoids 
placing mesh points on the natural axis in the sense that the coefficients of the finite 
difference functions at the axial axis are cancelled out. Therefore, no pole conditions need 
to be imposed. 

Based on this meshing scheme, we use the standard centered seven-point finite difference to 
discretize equation (1) and use two-point finite differences to discretize the interface conditions 
defined in (4). The boundary conditions in (3) are then applied for the numerical boundary 
values. The discretization results in a large sparse eigenwalue problem with size p~I¢-by-p~]¢, 
where p, ~], and ( denote the mesh point numbers in the radial (r), azimuthal (0), and axial (z) 
direction, respectively. However, by exploiting the periodicity in the azimuth direction and 
applying suitable permutations and the Fourier transformations, the 3D eigenproblem can be 
decoupled into ~ independent p(-by-p( 2D eigenproblems as 

Pl Pl 

where 2~j(A) and bj(A) are p(-by-p( matrices for j = 1,...,~}. Note that all mesh ponints 
corresponding to a certain Fj have the same 0 value. That is, these mesh points are all located 
on a certain vertical 2D half-plane. It is worth pointing out that, from the viewpoint of the 
target quantum dot application, only a 2D eigenproblem associated with j = 1 needs to be 
solved to obtain the smallest positive eigenvalue that is of interest (the ground state energy). 
These observations dramatically reduce the computational cost without losing accuracy. For 
more detailed derivation from the 3D system to the 2D subsystems (5), we refer to [20]. 

Equation (5) leads to ~1 independent p(-by-p( subsystems with the form 

G(%)F = D(%)F. (6) 
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Note that the entries of the matrix G(A) involve the eigenvalues A in the denominator originated 
from the mass equation (2). Multiplying this equation by the common denominator, we obtain 
the following cubic eigenvalue problem 

A(A)F - (A3A3 + A2A2 + AA1 -F- A0) F = 0, (7) 

where A E C is an eigenvalue, F E C n is an eigenvector, and Ai, i -- 0, 1, 2, 3, are A-independent 
sparse matrices in R p ; x p ¢  . Our main concern with this problem is to effectively and accurately 
compute the smallest positive eigenvalue embedded in the interior of the spectrum of (7) together 
with its associated eigenvector. The detail deduction and full description of the matrices in the 
eigenproblem (7) are omitted here (see [20] for more details). 

It is worth mentioning that the cubic eigenvalue problem (7) can be rewritten as a generalized 
eigenvalue problem 

[o, [io :jill 0 0 I AF = A I 
Ao A1 A2 A2F 0 -A3 [A2FJ 

(8) 

This enlarged linear eigenproblem can then be solved by variations of Lanczos methods, variations 
of Arnoldi methods, or linear Jacobi-Davidson method [22,23]. Furthermore, well established 
mathematical theories, numerical methods, and perturbation theories are provided in [24-26]. 
However, disadvantages of such approach exists. First, the order of the larger matrices are triple 
and the condition numbers may increase since the set of admissible perturbations for (8) is larger 
than the set for (7) [27]. Secondly, convergence performance, efficiency, and accuracy may be 
reduced in solving the enlarged eigenproblem (8). Thirdly, since the interested smallest positive 
eigenvalues are located in the interior of the spectrum, the shift-and-invert technique should 
be taken for such a large sparse eigenproblem. But, it costs too much for solving the linear 
system. Therefore, numerical methods that focus on the original cubic eigenproblem (7) and 
avoid the obstacles would be helpful. While few methods, such as the quadratic or polynomial 
Jacobi-Davidson methods [20,28-31], deal with the polynomial eigenproblems, here we propose 
an alternative fixed-point method for the cubic polynomial eigenproblems. 

To provide more characteristic insights about the cubic eigenvalue problem, we show the spar- 
sity patterns of the matrices Ao, Az, A2, and A3 for p = 8 and ~ --- 12 in Figure 2. In Figure 3, 
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Figure 2. Sparsity patterns of the matrices As, A2 and A1, Ao are shown in (a) 
and (b), respectively. The red dots in the figures indicate the components involving 
interfaces. 
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Matrix size (of A3, A 2, A1, Ao) = 169. No. of interested eigenvalues = 1. 
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Figure The spectrum of the eigenvalues for a cubic eigenproblem with A t E ~169 × 169, 
for i = 0, 1, 2, 3. All the computed eigenvalues axe plotted by the mark -4- except the 
smallest positive eigenvalue (the ground state energy level) by E~. 

we present the spectrum of the eigenvalues of a specific cubic eigenproblem with Ai E ~ 1 6 9 x  169. 

All the computed eigenvalues are then plotted on the complex plane with the plus marks. The 
smallest positive eigenvalue (the ground state energy level) is emphasized by the mark ~.  It is 
clear tha t  the target  eigenvalue is embedded in the interior of the eigenvalue spectrum. We now 
describe our methods for calculating these interior eigenvalues. In what follows, we only consider 
the first (smallest) eigenpairs. Other  eigenpairs can be obtained by some deflation method such 
as tha t  developed in [32]. 

While the rational equation (6) and the cubic A-matrix polynomial (7) are mathematical ly 
equivalent, we consider tha t  the cubic A-matrix polynomial (7) is a bet ter  formulation from 
computational  viewpoint since by suitably reformulating (7) (see below) the desired eigenvalue can 
be inverted to the extreme (largest) value of the inverted spectrum whereas the same eigenvalue 
for (6) is embedded in the interior of the original spectrum. Although the JD method can be 
used for both  formulations, it usually converges faster to the extreme eigenvalues than  to the 
interior ones and thus can benefit from the setting of (7). 

3. F I X E D - P O I N T  A N D  L I N E A R  3 A C O B I - D A V I D S O N  M E T H O D S  

To solve the cubic eigenvalue problem by fixed-point methods, we rewrite equation (7) as 

Ad(A)F = #Bd(A)F, d : 1, 2, 3, (9) 

where/~ = A -d and the matrices Ad(A) and Bd(A) are chosen as tha t  shown in Table 1. Although 
other forms tha t  are equivalent to (9) exist, they did not lead to bet ter  performance in our 
numerical experiments. Consequently, we shall only consider the forms given in the table. 
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d = l  
d = 2  
d = 3  

Table 1. Possible choices of Ad and Bd. 

Ad(A) nd(~) 

-(A2A3 + AA2 + A1) Ao 
-(AAa + A2) AA1 + Ao 

-A3 A2A2 + AAI + Ao 

1/~ 2 

1/A 3 

We first propose a fixed-point method in Algorithm 1 for solving the cubic eigenvalue prob- 
lem (7). This algorithm consists of a fixed-point (outer) iteration (i.e., in Step ( I I ) ) and  an inner 
i teration within the linear JD method (i.e., in Step (II.1)) which is given Algorithm 2. 

To solve the correction equation approximately in Step (3.5) of Algorithm 2, we compute 

t ,~ - M ; l r  + eM;,lp, (10) 

where MA ~ A(8) and ¢ = u*M;lr/u*M~,lp as suggested in [23]. We further let MA be the 
matr ix associated with the SSOR preconditioning scheme [33]. Let A(8) = D - L - U, where 
D is the main diagonal of A(8), L and U are the strictly lower and upper tr iangular matr ix of 
A(8), respectively. The preconditioner MA = ( D -  wL)D-i(D -wU),  and w E (0, 2). 

ALGORITHM 1. FIXED-POINT METHODS FOR CUBIC EIGENPROBLEMS. 

(i) 
(ii) 

Choose d = 1, 2, or 3. Choose hi. Let i = 0. 

Until (,ki converges to the desired eigenvalue) do 

(II.1) Solve Ad(h i )F  = / Z B d ( h i ) f  for (/~max,Fmax) by 

linear aacobi-Davidson method, where #max is 

the maximum positive eigenvalue and F m a  x is the 

associated eigenvector. 

(I1.2) Update i = i + 1; hi = (]-tmax) -1 /d .  

Output hi and F = Fmax.  (III) 

ALGORITHM 2. JACOBI-DAVIDSON METHOD FOR LINEAR EIGENPROBLEM. 

(1) 
(2) 

(3) 

Choose an n-by-m orthonormal matr ix  V 

For i = 0, 1 

Compute Wi = AiV and Mi = V*Wi 

Endfor 
Iterateu ntilconvergence 

(3.1) Compute the eigenpairs (8, s) of (8M1 + Mo)s = 0 

(3.2) Select the desired (target) eigenpair (8, s) with [[ s 112 = 1. 

(3.3) Compute u = Ys, p = A'(8)u,  r = A(8)u. 

(3.4) If ( l l r lb  < e), h = 8, = = u, Stop 

( A(8)( I -  u,,*)t = - r .  (3.5) Solve (approximately) a t _L u from I - u.p 

(3.6) Orthogonalize t against V, v = t/llt[[2. 
(3.7) For i=O,  1 

Compute wi = Aiv 
M, V*wi] 

Mi = v*Wi v*wi J ' w i  = [wi, wd 

Endfor 
(3.8) Expand V = [17, v] 
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Figure 4. The eigenvalue curves y =/tmax(A) (solid lines) and the curves of y = A -d 
(dash lines) for d = 1, 2, 3 are plotted in Part (a), (b), (c), respectively. For 
A = 0.0789, the slope ratio of the tangent lines in absolute value are 0.37, 0.94, and 
17, respectively. 

To obtain some insights in what convergence behavior we may expect  from the fixed-point 
method of Algorithm 1 for different formulations (i.e., different ds) of (9), we first compute the 
eigenvalue curves y = ttmax(A) of equation (9) for A E [0.05, 0.1] with a characteristic selection 
of the matrices Ad and Sd  with the matr ix size being 1,190. The computed eigencurves (solid 
lines) are shown in Figure 4 together with the graphics of y = A -d (dash lines) for d = 1, 2, 3. 
These two lines intersect at a certain point with A = 0.079 which is also a fixed point of (9). 
Let sl and s2 be the slopes of the tangent lines of y = A -d and y = #max(A) at the intersection 
point, respectively. Then the fixed-point i teration converges provided I s2 / s l ]  < 1. As shown in 
Figure 4, the ratio ]s2 / s l l  equals to 0.37, 0.94, and 17 for d = 1, 2, 3 respectively. In other words, 
the fixed-point i teration is expected to converge for d = 1 and to converge very slowly for d = 2 
since the ratio is close to 1. Consequently, the formulation (d -- 1) 

- (~2A3 -t- )~A2 q- A1)F = AAoF (11) 

is the most effective formulation of the model problem (1) when solved by Algorithm 1, and 
hence, will be used for further numerical experiments hereafter. 

Following remark further suggests a theoretically convergence theory regarding the fixed-point 
scheme. Generally, the scheme iterates the equation 

A(A)F(A) = ~ ) B ( A ) F ( A )  (12) 

by giving a A, computing the eigenpair (#max, F(A)), and then updating A = ~ l / d  = (1/ i . tmax) l /d  

> 0. We first take the derivative with respect to A of equation (12) to obtain 

-A' AB'(A)x(A) 1B(A)x'(A) (13) + = + + 
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Since there exist a left eigenvector y(A) satisfying 

yT(A)B(A)x(A) = 1 and yT(A)A(A) = ~yT(A)B(A) 

with [[x(A)[12 = 1, we multiply yT on the both sides of (13) to obtain 

yT(A)/k'(A)x(A) + yT(A)A(A)x/(A) 

o r  

A'(A) = --A2(A)yT (A)A'(A)x(A) + A(A)y T (A)B'(A)z(A). 

Let the fixed-point mapping be written as 

= 

1 T t 1 7- + ~--~y (A)B (A)x(A) + ~ - ~ y  (A)B(A)x'(A), 

(14) 

(15) 

the fixed-point scheme converges locally provided 

I1 (~ (A*)) 1-1/d (A' ()~*)) I < 1, (16) 

where A* is the fixed point and A~ is defined in equation (15). In short, for the case d = 1 
particularly, we have A(A) = A2A3 + AA2 + A1 and B(A) = -A0. The scheme thus converges if 

I (A*)d-I [A*~yT (A*)(2A*A3+ A2)x(A*)]I < I , 

f o r  = 

We make some remarks on the choice of the linear JD method [22] for solving (11). Vari- 
ous Lanczos, Arnoldi, and JD methods are well developed for calculating extreme values of a 
spectrum. However, the JD method is suitable not only for calculating extreme eigenvalues but 
also for calculating interior ones. The hybrid method presented in the next section requires both 
types of calculations. Another reason is that the preconditioner in the JD method can be robustly 
chosen so that the inversion involved in the method is relatively inexpensive. It is also worth 
mentioning that methods that use QR and QZ algorithms for solving the whole spectrum are not 
recommended for equation i l l ) ,  since we are only interested in a single interior eigenvalue. Such 
methods may result in high computational cost and loss of accuracy especially for large problems. 

We can further improve the above algorithms by using the following two practical strategies: 

* Strategy 1. Since the approximate eigenvector is iteratively more accurate as outer it- 
erations increase, it is natural to use the previous computed eigenvector as an initial 
eigenvector for the orthonormal matrix in the JD method. 

. Strategy 2. Moreover, we can adaptively relax the convergence criteria for the solution 
procedure in the inner iteration. In the beginning stage, there is no need to apply strict 
stopping criteria. As the iterates approaching the solution, higher accuracy requirement 
becomes necessary. Similar methods that adaptively adjust stopping criteria are analyzed 
and adopted in solving eigenproblems and linear systems in [34] and [35], respectively. 

4.  N E W T O N  F I X E D - P O I N T  M E T H O D S  

For nonlinear eigenvalue problems, it is customary to accelerate the iterations by switching 
the linear solver to a quadratic one when the approximate solution is sufficiently close the exact 
solution. We now describe our hybrid method that combines both linear and quadratic solvers. 
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Let A* be the solution eigenvalue of A(,k) and # = -(A* - A). Since 

A ( A * ) F  = 0, 

we have 

or approximately 

where 

A (A + (A* - A)) F = 0, 
[ dA(A) ] 
A(A) + --~(A* - A) + O((A* - A) 2) F = 0, 

dA(A) 
A(A)F ~ #--~---J~, (17) 

dA(A) = 3,~2A3 H- 2AA2 + A1. 
dA 

By using equation (17), we obtain a so-cMled linear successive iterative method that is locally 
quadratic and involves the correction equation 

A(AdF =/~ ~ ~=~, 

for an approximate eigenvalue A~. As shown in Algorithm 3, the linearized problem equation (17) 
is added in Step (II.2.1) and is again solved by the JD method. 

ALGORITHM 3.  A HYBRID M E T H O D  FOR THE CUBIC EIGENVALUE PROBLEMS.  

(1) 
(II) 

(III) 

Choose d=l ,  2, or 3. Choose Ai. Let i = 0. 

Until (,ki converges to the desired eigenvalue) do 

(II.1) If (,ki is not close to the desired eigenvalue) then 

(II.1.1) Solve A d ( ) ~ i ) F  --  #Bd(Ai)F for 

(/~max, Fmax) by linear Jacobi-Davidson method, 

where #max is the m a x i m u m  positive eigenvalue 

and Fm~x is the associated eigenvector. 

Update i = i ÷ 1, Ai = (#ma~) -d, and Fi = Fmax (II.I.2) 
(II.2) else 

(II.2.1) Solve A(.~i)F = # ~, d~, b , : ) , J  F for (#min,Fmin) 

by the linear Jacobi-Davidson method, where Pmin 

is the smal les t  eigenvMue in absolute value and 

Fmin  is the associated eigenvector. 

(II.2.2) Update Ai+ 1 = •i -- /2rain, i ~--- i H- 1, and then F~ = F m i  n. 

(II.3) endif 

Output the eigenpair Ai and Fi. 

Comparing Algorithms 1 and 3, we notice the following trade-offs between these two algo- 
rithms. 

(1) Although the quadratic solver in Step (II.2) will converge faster than the linear solver in 
Step (II.1), it requires more matrix-vector multiplications in the JD method. 

(2) The quadratic solver computes the smallest positive eigenvalue that is embedded in the 
interior of the spectrum whereas the linear solver computes the largest eigenvalue which is 
an extreme value of the corresponding spectrum. Most methods including the JD method 
tend to converge more rapidly when extreme eigenvalues are sought. 
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5. N U M E R I C A L  R E S U L T S  

The above methods and schemes can be combined in various ways. We now present numerical 
results to illustrate computational features of the proposed algorithms. As a typical example, we 
consider the model with the diameter and the height of the cylindrical QD dot (matrix) being 10 
and 5 nm (80 and 30 nm), respectively. The model problem is discretized to the cubic eigenvalue 
problems (11) with the matrix size of 11,865 x 11,865 for Ai, i = 0, 1, 2, 3. The semiconductor 
band structure parameters used in the numerical computations are cl - 0.000, gl - 0.235, 
51 = 0.81, P1 = 0.2875, cl = 0.350, g2 = 1.590, 52 = 0.80, and P2 -- 0.1993. All the numerical 
tests are performed on a Compaq AlphaServer DS20E workstation equipped with 667 MHz CPU, 
one gigabytes main memory, and Compaq Tru64 UNIX Version 5.0. 

The following four schemes are tested to show the numerical performance of the algorithms. 
Schemes 1, 2, and 3 are compared to illustrate the effectiveness of Strategy 1, choosing the initial 
eigenvector (CIE), and Strategy 2, using adaptive stopping criteria (ASC), as mentioned before. 
These strategies are also incorporated in Algorithm 3 to get Scheme 4. 

SCHEME 1. (FPM).  Algorithm i is implemented naively. Our JD method is a modification of the 
JDQZ package (a Jacobi-Davidson eigenvalue problem solver) [36]. Diagonal preconditioners are 
used. The package randomly assigns initial vector for each of the eigenproblem in the loop of the 
algorithm. The procedure is considered to be convergent whenever the residual of equation (11) 
is less than 1.0 x 10 -s. 

SCHEME 2. (FPM_CIE). Starting from the second iteration in Step (II) of Algorithm 1, the 
approximate eigenvector obtained from the previous iteration is used as the initial vector of the 
eigenvalue problem solver (JDQZ). The stopping criteria are the same as those of Scheme 1. 

SCHEME 3. (FPM_CIE_ASC). In Schemes 1 and 2, a fixed residual tolerance (1 × 10 -s) is used 
in Step (II.1) of Algorithms 1. This scheme instead relaxes this stopping criteria and changes it 
adaptively according to the following heuristics 

1.0 × 10 -1 if outer_ire = 1, 
ljd_tol = 

rain (5.0 x 10 -2, residual x 0.5) , if outer_ire _> 2, 

where ljd_tol is the stopping criterion of the linear Jacobi-Davidson solver, residual is the 
residual of the eigenvalue problem solved in the previous iteration, and outer_ite is the iteration 

number of the loop in Step (II) of Algorithm I. Similar to Scheme 2, this scheme uses the previous 
approximate eigenvector as the initial guess for the current linear eigenvalue problem. 

SCHEME 4. (FP_LS_CIE_ASC). This scheme switches to the quadratic solver whenever the 
residual of equation (11) is less than 1.0 × 10 -4. The previous outer iteration approximate 
eigenvector is again used as the initial guess for both linear and quadratic inner iterations. The 
ASC strategy is applied to the linear solver while the fixed stopping criterion (i × i0 -s) is used 
in the quadratic solver. 

In all tests, all the schemes successfully converge to the first eigenpair within the error tolerance. 
Numerical results are summarized in Figure 5 in which Part (a) shows the numbers of inner and 
outer iterations with respect to each one of the above four schemes, Part (b) illustrates their 
convergence behavior in term of error residuals and outer iteration numbers, and Part (c) gives 
the timing results. By observing this figure, we make the following remarks on the proposed 
algorithms. 

The first part of the numerical results indicates the performance of the fixed-point method 
(Algorithm I, d = 1). 

• As shown in Part (a), Scheme 1 takes about 42-70 inner iterations to converge. By using 
the approximated eigenvectors as the initial vectors, Scheme 2 converges much faster with 
the same stopping criteria. From the fifth outer iteration on, the iteration number is 
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less than 20. By further applying the adaptive stopping criteria in Scheme 3, the inner 
iteration number dramatically drops below 10 for all cases of outer iterations. 

• In terms of error residuals, Schemes 1, 2, and 3 have similar convergence behavior as 
shown in Part  (b). 

• In terms of timing, Scheme 3 greatly outperforms the other two schemes. It took about 
19 seconds in comparison with 212 and 90 seconds for Schemes 1 and 2, respectively. The 
saving is about 90% when compared with Scheme 1. 

The second part is a comparison between Schemes 3 and 4. 

• For Scheme 4, the inner iteration numbers are all less than  10, except for the sixth outer 
iteration. This is because the tolerance in the sixth (and thereafter) outer iteration is 
1 x 10 -s ,  about 4 order smaller than the tolerance of the fifth outer iteration. Note that  
if we use the adaptive stopping criteria (ASC) in the quadratic solver, then these two 
schemes will behave in a similar way. 

• Scheme 4 requires much less outer iterations in terms of error residuals as shown in 
Part  (b). Moreover, it indeed exhibits a quadratic convergence after the sixth iteration 
when it switches to the quadratic solver. 

• Scheme 4 is slightly better than Scheme 3 in terms of timing as shown in Part (c). 

In summary, Strategies 1 and 2 significantly improve the efficiency of the fixed-point method 
without downgrading the overall stability and accuracy. Although Scheme 3 is slightly slower 
than Scheme 4, it is easier to implement since no additional (quadratic) solver is involved. 

A final remark compares the performance of the fixed-point methods (FPM_CIE_ASC and 
FP_LS_CIE_ASC) with the implementation based on the nonlinear Jacobi-Davidson method pro- 
posed in [20, Algorithm 4]. The numerical results are shown in Figure 6. The size of the three 
tested problems are 49,950 (Parts (a) and (b)), 107,055 (Parts (c) and (d)), and 193,700 (Parts 
(e) and (f)) for Ai, i = 0, 1,2,3. The parameters w in the SSOR preconditioner are equal to 0.1, 
0.2 . . . .  , 1.9. The results associated with ground state energy (j = 1 in equation (5)) and an 
excited state energy (j = 2 in equation (5)) are shown in the left column (Parts (a), (c), (e)) and 
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Figure 6. Numerical comparisons of the fixed-point methods (FPM_CIE.ASC and 
FP_LS_CIE_ASC) and the nonlinear Jacobi-Davidson method. Parts (a) and (b), (c) 
and (d), and (e) and (f) are associated with a small (Ai E R49'osox49'95°), a middle 
(Ai E ]R l°7'°55x 107,0s5), and a large (Ai E ~193,700×193,700) problem, respectively. 
The results associated with ground state energy (J = 1 in equation (5)) and an 
excited state energy (j = 2 in equation (5)) are shown in the left column (Paxts Ca), 
(c), (e)) and right column (Parts (b), (d), (f)), respectively. 

right column (Parts  (b), (d), (f)), respectively. The figure omits the cases tha t  are not converged 
in a reasonable time. The numerical comparisons suggest tha t  the FP_LS_CIE_ASC method can 
outperform the nonlinear Jacobi-Davidson method in small problem and can be competitive in 
the middle and large problems. The nonlinear Jacobi-Davidson method,  however, is more stable 
in the sense tha t  it successfully converge in all o: cases. 

6. C O N C L U S I O N  

This paper is concerned with efficient and accurate methods for calculating the ground state 
energy and its associated wave function of a semiconductor quantum dot model. Our main 
concern for this model is the numerical t reatment  of the difficulty incurred by the nonparabolic 
band structure which results in a cubic type of nonlinear eigenvalue problems from a finite 
difference discretization. These problems are then reformulated in several forms so that  the 
desired eigenpair becomes a fixed point of the new formulations from which the most effective 
formulation is then chosen for our numerical experiments on the model. To compute the desired 
eigenpair, a fixed-point method incorporated with the linear Jacobi-Davidson method is proposed 
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for solving this  new form of the  cubic eigenvalue problem. Two pract ical  s t rategies  are presented  

to improve the  f ixed-point  a lgor i thm in a very signif icant  way. Moreover,  a hybr id  a lgor i thm t h a t  

combines  b o t h  l inear  (f ixed-point  i te ra t ion)  and  quadra t i c  (Newton ' s  i t e ra t ion)  solvers are also 

developed to fur ther  improve the  convergence behavior  of the  methods .  Numer ica l  exper iments  

demons t r a t e  the  effectiveness of the  f ixed-point  me thods  a nd  the  efficiency of the  accelerat ion 

schemes. C o m p u t a t i o n a l  resul ts  suggest  t h a t  the  hybr id  m e t h o d  is most  efficient in  t e rms  of 

t im ing  and  convergence bu t  wi th  a price of more compl ica ted  imp lemen ta t i on .  Fur the rmore ,  the  

f ixed-point  me thods  ou tper fo rm the  NJD methods  in smal l  p roblems and  are comparab le  to the  

NJD me thods  for larger size problems.  
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