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TRANSFORMATION FORMULAS FOR
GENERALIZED DEDEKIND ETA FUNCTIONS

YIFAN YANG

Abstract

Transformation formulas are obtained for generalized Dedekind eta functions; these are simpler
to apply than Schoeneberg’s formulas. As an application, a list is given of the generators of all
the function fields associated with torsion-free genus zero congruence subgroups of PSL2(R).

1. Transformation formulas for generalized Dedekind eta functions

Let τ be a complex number with Im τ > 0. The ordinary Dedekind eta function is
defined by

η(τ) = eπiτ/12
∞∏

n=1

(1 − e2πinτ ).

This function plays a central role in the study of the theory of modular functions
and its applications to other areas. One of the most important properties of the eta
function is the transformation formula

η

(
aτ + b

cτ + d

)
= eπik/12

√
cτ + dη(τ),

(
a b
c d

)
∈ SL2(Z), (1)

where k is an integer, and where the exact value of k is often crucial in applications.
For this purpose, there are two useful expressions for k in the literature (see, for
example, [10, Chapter 9]).

Let ((x)) denote the periodic function

((x)) =

{
x − �x� − 1/2, if x �∈ Z,

0, if x ∈ Z,

and define the Dedekind sum s(h, k) by

s(h, k) =
k−1∑
r=1

((
r

k

))((
hr

k

))
.

Then one has

log η

(
aτ + b

cτ + d

)
= log η(τ)+




πib

12d
, for c = 0,

1
2

log
(

cτ + d

i

)
+ πis(−d, c) +

πi(a + d)
12c

, for c > 0.

This formula clearly carries more information than we need in (1). In applications,
the following formula is often sufficient, and more convenient. For instance, it
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would be difficult to use the above formula directly to give a useful criterion for a
product

∏
η(aτ)b of eta functions to be invariant under Γ0(N). However, using the

formula below, Newman [9] succeeded in constructing such criteria.

Lemma 1. For

γ =
(

a b
c d

)
∈ SL2(Z),

the transformation formula for η(τ) is given by

η(τ + b) = eπib/12η(τ), for c = 0,

and by

η(γτ) = ε1(a, b, c, d)

√
cτ + d

i
η(τ), for c �= 0,

with

ε1(a, b, c, d) =




(d

c

)
i(1−c)/2eπi(bd(1−c2)+c(a+d))/12, if c is odd,( c

d

)
eπi(ac(1−d2)+d(b−c+3))/12, if d is odd,

(2)

where
(

d
c

)
is the Legendre–Jacobi symbol.

The main object of this paper is to derive the equivalent of Lemma 1 for a
class of generalized Dedekind eta functions studied by, for example, Berndt [1],
Dieter [3], Meyer [6, 7], Miao and Tzeng [8], and Schoeneberg [12]. Following
Schoeneberg’s notation [13, Chapter 8], we let N be a positive integer, and g and
h be real numbers. If we set q = e2πiτ and ζ = e2πi/N , the generalized Dedekind
eta functions ηg,h(τ) of level N are defined by

ηg,h(τ) = α(g, h)qP2(g/N)/2
∏

m � 1
m≡ g mod N

(
1 − ζhqm/N

) ∏
m � 1

m≡−g mod N

(
1 − ζ−hqm/N

)
(3)

with

α(g, h) =

{
(1 − ζ−h)eπiP1(h/N), if g ≡ 0, h �≡ 0 mod N,

1, otherwise,

P1(x) = {x} − 1/2, P2(x) = {x}2 − {x} + 1/6,

where {x} = x− �x� is the fractional part of a real number x, and the notation ζh

represents e2πih/N .
Clearly, the definition of ηg,h generalizes that of the ordinary Dedekind eta

function, since ηg,h reduces to η2 when g, h ≡ 0 mod N . However, we remark
that, unlike the ordinary eta function, which can be used to construct modular
forms of weight greater than zero (see [5] for example), the functions ηg,h alone
yield only modular functions (of weight 0). (See Corollaries 1–3 and Section 2 for
more details.)

In [13, Chapter 8] the transformation formula for ηg,h under

γ =
(

a b
c d

)
∈ SL2(Z)
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is shown to be
log ηg,h(γτ) − log ηg′,h′(τ)

=




πi

{
a

c
P2

( g

N

)
+

d

c
P2

( g′

N

)
− 2 sgn c · sg,h(a, c)

}
, if c �= 0,

πi
b

d
P2

( g

N

)
, if c = 0,

where g′ = ag + ch, h′ = bg + dh, and sg,h(a, c) is the generalized Dedekind sum

sg,h(a, c) =
c−1∑
r=0

((
g + rN

cN

))((
g′ + arN

cN

))
.

Again, this result contains more information than we usually need. In light of the
two transformation formulas for the ordinary Dedekind eta function, it should be
possible to obtain a result analogous to Lemma 1 for the generalized eta functions.
In the following theorem we show that this is indeed the case.

Theorem 1. Let N be a positive integer, and let g and h be arbitrary real
numbers not simultaneously congruent to 0 modulo N . For τ with Im τ > 0, we set
q = e2πiτ , and we define the generalized Dedekind eta functions Eg,h(τ) by

Eg,h(τ) = qB(g/N)/2
∞∏

m=1

(
1 − ζhqm−1+g/N

) (
1 − ζ−hqm−g/N

)
,

where ζ = e2πi/N and B(x) = x2 − x + 1/6. Then the functions Eg,h satisfy

Eg+N,h = E−g,−h = −ζ−hEg,h, Eg,h+N = Eg,h. (4)

Moreover, let

γ =
(

a b
c d

)
∈ SL2(Z).

Then we have

Eg,h(τ + b) = eπibB(g/N)Eg,bg+h(τ), for c = 0,

and

Eg,h(γτ) = ε(a, b, c, d)eπiδEg′,h′(τ), for c �= 0,

where

ε(a, b, c, d) =

{
eπi(bd(1−c2)+c(a+d−3))/6, if c is odd,

−ieπi(ac(1−d2)+d(b−c+3))/6, if d is odd,

δ =
g2ab + 2ghbc + h2cd

N2
− gb + h(d − 1)

N
,

and

(g′ h′) = (g h)
(

a b
c d

)
.

From this formula we can deduce sufficient conditions for a product of generalized
eta functions to be modular on Γ (N).
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Corollary 1. Let (g, h) be pairs of integers, and suppose that eg,h are integers
such that ∑

(g,h)

eg,h ≡ 0 mod 12, (5)

and ∑
(g,h)

g2eg,h ≡
∑
(g,h)

gheg,h ≡
∑
(g,h)

h2eg,h ≡ 0 mod 2N. (6)

Then the product f(τ) =
∏

(g,h) Eg,h(τ)eg ,h is a modular function on Γ (N).

We note that a formula equivalent to that in Theorem 1 for the special case when
γ is in the principal congruence group Γ (N) of level N , and g and h are integers,
was obtained in [6]. Meyer’s method utilized the reciprocity law for generalized
Dedekind sums.

We also remark that our definition of generalized Dedekind eta functions is
slightly different from (3). In particular, when g ≡ 0 mod N , the two definitions
differ by an extra factor eπiP1(h/N), in addition to the (−1)�g/N� factor. However,
using (4) one can easily translate our result to a formula for the standard generalized
eta functions.

Our definition of generalized eta functions was largely inspired by the work
of Fine [4], in which he used the Jacobi theta function ϑ1(z|τ) to study the
transformation law for quotients of generalized Dedekind eta functions of the type
E4g,0(Nτ)/E2g,0(Nτ). The functions Eg,0(Nτ) will also be the subject of our next
corollary. For convenience, let us denote, for real numbers g not congruent to 0
modulo N , the function Eg,0(Nτ) by Eg(τ). Assume that

γ =
(

a b
cN d

)
∈ Γ0(N).

(Without the change of variable τ → Nτ , we would consider the group Γ 0(N)
instead.) Using the fact that

Nγτ =
a(Nτ) + bN

c(Nτ) + d
=

(
a bN
c d

)
(Nτ)

and applying Theorem 1, we obtain the following transformation formula for Eg.

Corollary 2. Let N be a positive integer, and let g be an arbitrary real
number not congruent to 0 modulo N . For τ ∈ C with Im τ > 0, we define the
generalized Dedekind eta function Eg(τ) by

Eg(τ) = qNB(g/N)/2
∞∏

m=1

(
1 − q(m−1)N+g

) (
1 − qmN−g

)
,

where q = e2πiτ and B(x) = x2 − x + 1/6. The functions Eg satisfy

Eg+N = E−g = −Eg. (7)

Moreover, let γ =
(

a b
cN d

)
∈ Γ0(N). We have

Eg(τ + b) = eπibNB(g/N)Eg(τ), for c = 0,

and

Eg(γτ) = ε(a, bN, c, d)eπi(g2ab/N−gb)Eag(τ), for c �= 0,

where ε(a, b, c, d) is defined as in Theorem 1.
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From Corollary 2 we see that if we choose a set of integers g and eg suitably, then
the function

∏
E

eg
g is a modular function on a congruence group. We summarize

the conditions in the following corollary. (A proof is given in Section 3.)

Corollary 3. Let N be a positive integer, and consider the function f(τ) =∏
g Eg(τ)eg , where g and eg are integers, and Eg are defined as in Corollary 2.

Suppose that one has∑
g

eg ≡ 0 mod 12 and
∑

g

geg ≡ 0 mod 2. (8)

Then f is invariant under the action of

Γ (N) =
{

γ ∈ SL2(Z) : γ ≡ ±
(

1 0
0 1

)
mod N

}
.

Moreover, if, in addition to (8), one also has∑
g

g2eg ≡ 0 mod 2N, (9)

then f is a modular function on

Γ1(N) =
{

γ ∈ SL2(Z) : γ ≡ ±
(

1 ∗
0 1

)
mod N

}
.

Furthermore, for the cases where N is a positive odd integer, the conditions (8)
and (9) can be reduced to ∑

g

eg ≡ 0 mod 12

and ∑
g

g2eg ≡ 0 mod N,

respectively.

We note that we have used only functions of the same level in the above corollary.
In general, we can combine functions of different levels to obtain modular functions
on Γ (N) and Γ1(N). However, for the application in Section 2, functions of the same
level are sufficient. Thus, in order to keep the notation simple, we do not state the
result in the most general setting. For a more general result, one can consult [11],
in which Robins gives a criterion for a product of functions of different levels to
be invariant under Γ1(N). In the same paper, Robins also provides a formula for
essentially the functions Eg in the special cases when(

a b
c d

)
∈ Γ1(N)

with (a, 6) = 1.

Examples.

(i) For N = 5, the functions E2/E1 and (E2/E1)5 are invariant under the action
of Γ (5) and Γ1(5), respectively.

(ii) For N = 7, the functions E2
2E3/E3

1 and E3
3/(E2

1E2) are modular on Γ1(7).
(iii) For N = 10, the function E3E4/(E1E2) is modular on Γ1(10).
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The rest of the paper is organized as follows. In Section 2 we apply our main
results, to obtain generators of function fields associated with a class of subgroups
of PSL2(R); the proofs of the main results will be given in Section 3.

2. Generators of functions fields associated with congruence groups

Let Γ be a subgroup of PSL2(R) commensurable with PSL2(Z), and denote by
K(H∗/Γ ) the field of modular functions invariant under the action of Γ , where H is
the upper half-plane Im τ > 0, and H∗ denotes H∪Q∪{∞}. It is well known that if
the genus of the Riemann surface H∗/Γ is zero, then the function field K(H∗/Γ ) can
be generated by a single function. When the genus zero group Γ contains Γ0(N) for
some N , one can usually find generators that are explicitly expressed as products
of the Dedekind eta functions (see [2, Table 3]). For example, η(τ)4/η(7τ)4 is a
generator of K(H∗/Γ0(7)).

However, to construct generators for function fields associated with groups not
containing Γ0(N), the plain Dedekind eta functions are not sufficient, and we will
need additional tools. In this section we will demonstrate that the generalized
Dedekind eta functions studied in the previous section will be the ‘building blocks’
in the case of general genus zero congruence groups. In particular, we will find
generators of all K(H∗/Γ ) associated with torsion-free genus zero congruence
subgroups of PSL2(R).

In [14], Sebbar showed that there are fifteen PSL2(R)-conjugacy classes
of torsion-free genus zero congruence subgroups of PSL2(R), and that the
representatives of those classes are:

Γ (5),
Γ1(8) ∩ Γ (2),
Γ0(N) with N = 4, 6, 8, 9, 12, 16, 18,
Γ1(N) with N = 5, 7, 8, 9, 10, 12.

Among them, generators of K(H∗/Γ ) with Γ of the form Γ0(N) are well known
(see, for example, [2, Table 3]). Thus, we need only to consider the cases where Γ
is Γ (5), Γ1(8) ∩ Γ (2) or Γ1(N).

We first need the following two lemmas, which give sufficient conditions for a
product of generalized Dedekind eta functions to be a generator of a function field.
Here in the lemmas, the function P2(x) denotes the second Bernoulli polynomial

P2(x) = {x}2 − {x} + 1/6,

where {x} = x − �x� represents the fractional part of a real number x.

Lemma 2. Let N be a positive integer, and let Eg be defined as in Corollary 2.
Then, given a matrix

γ =
(

a b
c d

)
∈ SL2(Z),

the Fourier expansion of Eg(γτ) starts from εqδ + (higher powers), where |ε| = 1
and

δ =
(c,N)2

2N
P2

(
ag

(c,N)

)
.
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Proof. Let Eg,h(τ) be defined as in Theorem 1. Using the elementary identity

1 − xN =
N−1∏
h=0

(
1 − ζhx

)
,

where ζ = e2πi/N , we see that

Eg(τ) =
N−1∏
h=0

Eg,h(τ).

Thus, by Theorem 1, we have

Eg(γτ) = ε′
N−1∏
h=0

Eag+ch,bg+dh(τ)

for some ε′ with |ε′| = 1. It follows from (4) that Eg(γτ) = εqδ + . . . , where

δ =
1
2

N−1∑
h=0

P2

(
ag + ch

N

)

and |ε| = 1. We now show that the δ in the last expression is the same as that given
in the statement of the lemma.

We note that P2(x) is a periodic function, and its Fourier expansion is easily
verified to be

P2(x) =
1
π2

∞∑
n=1

cos(2πnx)
n2

. (10)

We therefore have

δ =
1

2π2

N−1∑
h=0

∞∑
n=1

1
n2

cos
(

2πn(ag + ch)
N

)
.

Since the double sum converges absolutely, we can change the order of summation.
Moreover, using the fact that

N−1∑
h=0

cos
(

2πn(ag + ch)
N

)
=

{
N cos(2πnag/N), if N/(c,N)

∣∣n,

0, otherwise,

we reduce δ to

δ =
N

2π2

∞∑
m=1

1
(mN/(c,N))2

cos
(

2πmag

(c,N)

)
=

(c,N)2

2Nπ2

∞∑
m=1

1
m2

cos
(

2πmag

(c,N)

)
,

which, in view of (10), is exactly the expression given in the assertion. This proves
the lemma.

Lemma 3. Let Γ be a congruence subgroup of level N , and suppose that the
width of the cusp ∞ is m. Let f(τ) =

∏
g E

eg
g be a modular function in K(H∗/Γ ).

Suppose that
(i) f has a Fourier expansion q−1/m + a0 + a1q

1/m + . . .;
(ii) for all a/c ∈ Q inequivalent to ∞ in Γ , where (a, c) = 1, one has∑

g

egP2

(
ag

(c,N)

)
� 0.

Then the genus of Γ is zero, and f is a generator of K(H∗/Γ ).
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Proof. Let
σ =

(
m 0
0 1

)
.

Then f generates K(H∗/Γ ) if and only if f |σ = q−1 + . . . generates K(H∗/σ−1Γσ).
Thus, we may assume that m = 1. Now, condition (i) implies that f has a pole
of order 1 at ∞, and, by Lemma 2, condition (ii) implies that f has no poles at
cusps inequivalent to ∞. Furthermore, when Im τ > 0, the infinite product defining
f converges absolutely. In particular, f has no poles in H. Therefore, f has only
one pole of order 1 at ∞ in H∗/Γ , and f is a homeomorphism from H∗/Γ to the
Riemann sphere. It follows that the genus of Γ is zero, and f is a generator of
K(H∗/Γ ).

With the above lemmas we can now find the generators as follows. Let Γ1(N) be
one of the groups mentioned above. Since there are essentially ν = �N/2� distinct
Eg for each N , in light of Corollary 3 and Lemma 3, we need only to find solutions
of the following equations and inequalities:

ν∑
g=1

eg = 0,

ν∑
g=1

g2eg ≡ 0 mod

{
2N, if N is even,

N, if N is odd,

N

2

ν∑
g=1

egP2(g/N) = −1,

and ν∑
g=1

egP2

(
ag

(c,N)

)
� 0

for all c|N and 1 � a � c − 1 satisfying (a, c) = 1 and (a c) �≡ (±1 0) mod N . This
gives a method of finding generators of K(H∗/Γ1(N)). A similar method also yields
a generator of K(H∗/Γ (5)).

For the group Γ1(8)∩Γ (2), we can easily check that we need only to replace the
above conditions by 4∑

g=1

eg = 0,

4∑
g=1

g2eg ≡ 0 mod 8,

4
4∑

g=1

egP2(g/8) = −1/2,

and
4∑

g=1

egP2

(
ag

(c, 8)

)
� 0

for all c|8 and 1 � a � c − 1 satisfying (a, c) = 1 and (a c) �≡ (±1 0) mod 8. We
list our findings in Table 1. Here the generators of K(H∗/Γ0(N)) are taken from
[2, Table 3], and the notation

∏
ar is an abbreviation for

∏
η(aτ)r.
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3. Proofs of Theorem 1 and Corollaries 1 and 3

To prove our main results, we require the following transformation formula for
the Jacobi theta function ϑ1(z|τ). (For a proof of the lemma, see [10, Chapter 10].)

Lemma 4. For z, τ ∈ C with Im τ > 0, let the Jacobi theta function ϑ1(z|τ) be
given by

ϑ1(z|τ) = −iq1/8
∞∑

n=−∞
(−1)nqn(n+1)/2eπi(2n+1)z,

where q denotes e2πiτ . The function ϑ1 has the infinite product representation

ϑ1(z|τ) = −iq1/8eπiz
∞∏

m=1

(1 − qm)
(
1 − qme2πiz

) (
1 − qm−1e−2πiz

)
. (11)

Moreover, for γ =
(

a b
c d

)
∈ SL2(Z), the Jacobi function ϑ1 satisfies

ϑ1(z|τ + b) = eπib/4ϑ1(z|τ), for c = 0;

and

ϑ1

(
z

cτ + d

∣∣∣∣γτ

)
= ε2(a, b, c, d)

√
cτ + d

i
eπicz2/(cτ+d)ϑ1(z|τ), for c �= 0,

with

ε2(a, b, c, d) = −iε1(a, b, c, d)3, (12)

where ε1(a, b, c, d) is given by (2).

We are now ready to prove our results.

Table 1. Generators of the function fields associated with
torsion-free genus zero congruence subgroups of PSL2(R).

Group Generator

Γ0(4) 18/48

Γ0(6) 23 · 39/13 · 69

Γ0(8) 14 · 42/22 · 84

Γ0(9) 13/93

Γ0(12) 44 · 62/22 · 124

Γ0(16) 12 · 8/2 · 162

Γ0(18) 6 · 93/3 · 182

Γ1(5) (E2/E1)5, N = 5

Γ1(7) E2
2E3/E3

1 , N = 7

Γ1(8) (E3/E1)2, N = 8

Γ1(9) E2E4/E2
1 , N = 9

Γ1(10) E3E4/(E1E2), N = 10

Γ1(12) E5/E1, N = 12

Γ (5) E2/E1, N = 5

Γ1(8) ∩ Γ (2) E3/E1, N = 8
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Proof of Theorem 1. The proof of (4) is straightforward, and we proceed to
prove the second claim. Let

γ =
(

a b
c d

)
∈ SL2(Z).

We first consider the easier case, c = 0. From the definition of Eg,h we have

Eg,h(τ + b) = eπibB(g/N)qB(g/N)/2
∞∏

m=1

(
1 − ζbg+hqm−1+g/N

)(
1 − ζ−bg−hqm−g/N

)
= eπibB(g/N)Eg,bg+h(τ).

This proves the assertion for the case c = 0.
Now we consider the case c �= 0. Setting z = −(gτ +h)/N in the infinite product

representation (11) for ϑ1, we obtain

ϑ1

(
−gτ + h

N

∣∣∣∣τ
)

= −iq1/8ζ−h/2q−g/(2N)

×
∞∏

m=1

(1 − qm)
(
1 − ζ−hqm−g/N

) (
1 − ζhqm−1+g/N

)
= −iζ−h/2q−g2/(2N2)Eg,h(τ)η(τ). (13)

We now apply the modular transformation τ → γτ on the identity above. On the
one hand, we have

ϑ1

(
−gγτ + h

N

∣∣∣∣γτ

)
= ϑ1

(
− g′τ + h′

N(cτ + d)

∣∣∣∣γτ

)

with g′ = ag + ch and h′ = bg + dh. It follows from Lemma 4 that

ϑ1

(
−gγτ + h

N

∣∣∣∣γτ

)
= ε2

√
cτ + d

i
eπicv2/(cτ+d)ϑ1(v|τ),

where ε2 = ε2(a, b, c, d) is the multiplier (12) given in Lemma 4, and

v = −g′τ + h′

N
= − (ag + ch)τ + (bg + dh)

N
.

Using (13), we thus obtain

ϑ1

(
−gγτ + h

N

∣∣∣∣γτ

)
= −iε2

√
cτ + d

i
eπicv2/(cτ+d)ζ−h′/2q−(g′)2/(2N2)Eg′,h′(τ)η(τ).

On the other hand, from (13) we also have

ϑ1

(
−gγτ + h

N

∣∣∣∣γτ

)
= −iζ−h/2e−πig2γτ/N2

Eg,h(γτ)η(γτ)

= −iε1ζ
−h/2e−πig2γτ/N2

√
cτ + d

i
Eg,h(γτ)η(τ),

where we have used Lemma 1 and ε1 = ε1(a, b, c, d) as defined by (2). Combining
the two expressions above, we therefore see that

Eg,h(γτ) =
ε2

ε1
ζ(h−h′)/2eπif/N2

Eg′,h′(τ),
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where

f =
cv2N2

cτ + d
− (g′)2τ + g2γτ =

c(g′τ + h′)2

cτ + d
− (g′)2τ + g2 aτ + b

cτ + d

=
1

cτ + d

{ (
g2(a − a2d + 2abc) + 2ghbc2 + h2c2d

)
τ

+
(
g2(b + bc2) + 2ghbcd + h2cd2

) }
.

With the condition ad − bc = 1, we can simplify f to

f =
1

cτ + d

{ (
g2abc + 2ghbc2 + h2c2d

)
τ +

(
g2abd + 2ghbcd + h2cd2

) }
= g2ab + 2ghbc + h2cd.

Moreover, the explicit expressions (2) and (12) for ε1 and ε2 show that

ε2

ε1
= −iε2

1 =

{
eπi(bd(1−c2)+c(a+d−3))/6, if c is odd,

−ieπi(ac(1−d2)+d(b−c+3))/6, if d is odd,

while we have ζ(h−h′)/2 = eπi(−gb+h−hd)/N . Therefore, we conclude that

Eg,h(γτ) = ε(a, b, c, d)eπiδEg′,h′(τ)

with ε, δ, g′ and h′ given as in the statement of the result.
This completes the proof.

Proof of Corollary 1. Let

γ =
(

1 + aN bN
cN 1 + dN

)
∈ Γ (N).

By the assumption that
∑

(g,h) eg,h ≡ 0 mod 12 and Theorem 1, we have

f(γτ) = exp

{
πi

(
(1 + aN)b

N

∑
(g,h)

g2eg,h +
(1 + cN)d

N

∑
(g,h)

h2eg,h

−
∑
(g,h)

(bg + dh)eg,h

)} ∏
(g,h)

Eg+(ag+ch)N,h+(bg+dh)N (τ).

It follows from (4) and condition (6) that

f(γτ) =
∏
(g,h)

(−ζ−h)(ag+ch)eg ,h Eg,h(τ)eg ,h =
∏
(g,h)

Eg,h(τ)eg ,h = f(τ).

This shows that the function f(τ) is a modular function on Γ (N).

Proof of Corollary 3. Let

γ =
(

1 + aN b
cN d

)
∈ Γ1(N).

The condition
∑

eg ≡ 0 mod 12 implies that

f(γτ) = exp
{

πi
(
(1 + aN)b

∑
g2eg/N − b

∑
geg

)}∏
Eg(1+aN)(τ)eg .

Thus, if the integers b, g and eg satisfy∑
geg ≡ 0 mod 2 and b

∑
g2eg ≡ 0 mod 2N,
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then, by (7), we have

f(γτ) =
∏

Eg+agN (τ)eg =
∏

(−1)ageg Eg(τ)eg = f(τ).

This gives the conditions (8) and (9) for the function f to be invariant under the
action of Γ (N) and Γ1(N), respectively.

When N is a positive odd integer, we can use the property (7) to express f as a
product of Eg where all indices g are even integers. To be more precise, we have

f(τ) =
∏

g even

Eeg
g

∏
g odd

E
eg

N−g.

This shows that the condition
∑

geg ≡ 0 mod 2 can always be fulfilled for any such
functions f . This completes the proof of the corollary.
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