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Abstract—This paper proposes a novel orthogonal simulated
annealing (OSA) algorithm for solving intractable large-scale
engineering problems and its application to designing mixed
H,/H., optimal structure-specified controllers with robust
stability and disturbance attenuation. High performance of OSA
arises mainly from an intelligent generation mechanism (IGM),
which applies orthogonal experimental design to speed up the
search. IGM can efficiently generate a good candidate solution
for next move of OSA by using a systematic reasoning method.
It is difficult for existing H .- and genetic algorithm (GA)-based
methods to economically obtain an accurate solution to the design
problem of multiple-input, multiple-output (MIMQO) optimal
control systems. The high performance and validity of OSA are
demonstrated by parametric optimization functions and a MIMO
super maneuverable F18/HARV fighter aircraft system with a
proportional-integral-derivative (PID)-type controller. It is shown
empirically that OSA performs well for parametric optimization
functions and the performance of the OSA-based method without
prior domain knowledge is superior to those of existing H .- and
GA-based methods for designing MIMO optimal controllers.

Index Terms—Genetic algorithm (GA), H, /H, optimal con-
trol, orthogonal experimental design (OED), simulated annealing
(SA).

1. INTRODUCTION
A. Optimization Techniques

ANY intractable engineering problems, such as mixed

Ho/H., optimal control design [3], [4], [13], [15],
are characterized by: 1) nonlinear multimodal search space;
2) large-scale search space; 3) tight constraints; and 4) expen-
sive objective function evaluations. Therefore, it is desirable to
develop an efficient optimization algorithm, such that accurate
solutions can be economically obtained. The great success for
evolutionary computation techniques, including evolutionary
programming (EP), evolutionary strategies (ES), and genetic
algorithm (GA), came in the 1980s when extremely complex
optimization problems from various disciplines were solved,
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thus facilitating the undeniable breakthrough of evolutionary
computation as a problem-solving methodology [1]. The evo-
lutionary algorithm (EA) is a robust search and optimization
methodology that is able to cope with ill-behaved problem
domains, exhibiting attributes such as multimodality, disconti-
nuity, time-variance, randomness, and noise [8].

The majority of control applications in the literature adopt
the GA approach [8]. Recently, researchers have become in-
creasingly interested in the use of GA as a means to design var-
ious classes of control systems [3], [4], [13], [15], [17]. GAs
utilize a collective learning process of a population of individ-
uals. Descendants are generated using randomized processes in-
tended to model mutation and crossover. Mutation corresponds
to an erroneous self-replication of individuals, while crossover
exchanges information between two or more existing individ-
uals. According to a fitness measure, the selection process fa-
vors better individuals to reproduce more often than those that
are relatively worse [7]. The superiority of GA is achieved by
using several search principles simultaneously such as popula-
tion-based heuristics, and balance between global exploration
and local exploitation.

To solve intractable engineering problems using GA, system
parameters are encoded into individuals where each individual
represents a search point in the space of potential solutions. A
large number of system parameters would result in a very large
search space. The performance of the conventional GA would be
greatly degraded when applied to large parameter optimization
problems that is shown by theoretical analysis in [14]. Further-
more, GAs have been shown to be efficient on global exploration
by finding the most promising regions of the search space, but
they suffer from excessively slow convergence to an accurate
solution for tightly constrained problems with large-scale mul-
timodal search spaces. This may prevent them from being really
of practical interest for intractable large-scale engineering prob-
lems. Generally, GA with a local search heuristics is beneficial
to improve the solution accuracy [22].

Simulated annealing (SA) is an efficient point-based optimiza-
tion technique, which aims at escaping from local optima to find a
globally optimal solution, and has been widely applied in various
engineering problems [11], [19], [21], [29]. A standard SA algo-
rithm consists of a sequence of iterations. Each iteration employs
a randomized perturbation on a current solution, e.g., the muta-
tion of GA, to generate a candidate solution in the neighborhood
of the current solution. The neighborhood is defined by the choice
of the generation mechanism. If the candidate solution is better
than the current solution, it is accepted as the new current solu-
tion. Otherwise, itis accepted according to Metropolis’s criterion
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HO et al.: OSA ALGORITHM AND ITS APPLICATION TO DESIGNING MIXED H, /H ., OPTIMAL CONTROLLERS 589

An initial solution
=
a4

Objective function
evaluation

Solution accepted ?
Yes

Update the
current solution

Change
temperature ?
Yes

Decrease
temperature

Generate a
candidate solution

No

Stop the
algorithm ?

Yes
Final solution

Fig. 1. Flowchart of a standard SA algorithm. The generation mechanism
of OSA uses IGM, a systematic reasoning method based on orthogonal
experimental design (OED), instead of the conventional generate-and-test
method.

[18]based on Boltzman’s probability. The flowchart of a standard
SA algorithm is shown in Fig. 1. The generation mechanism of
SA plays an important role in developing an efficient SA algo-
rithm. The generation mechanism of the conventional SA using
a generate-and-test method is difficult to explore an extremely
large and nonlinear multimodal search space in a reasonable
amount of computation time and is not acceptable for many in-
tractable engineering applications [24], [26].

This paper proposes a novel orthogonal simulated annealing
(OSA) algorithm for solving intractable large-scale engineering
problems and its application to designing mixed Ho/Ho,
optimal controllers with robust stability and disturbance atten-
uation without prior domain knowledge and differentiability
assumption. OSA with an intelligent generation mechanism
(IGM) can hybridize the advantages of global exploration and
local exploitation by focusing on accuracy and computation
time. IGM utilizes OED [2], [20], [28] to speed up the search
and then can efficiently generate a good candidate solution
for the next move by using a systematic reasoning method
to efficiently exploit the neighborhood of a current solution
instead of the generate-and-test method of the conventional
SA, resulting in economically obtaining an accurate solution
to the intractable engineering problem. It will be shown exper-
imentally that OSA is superior to a number of efficient GAs
[14] and a fast simulated annealing (FSA) algorithm [24] using
parametric optimization functions.

OED with both orthogonal array (OA) and factor analysis is
a representative method of quality control; it is also an efficient
search mechanism. Tanaka proposed an orthogonal design algo-
rithm ODA for a comparison with GA searching mechanisms
[25]. ODA uses GA-encoding and OED, but uses no recombi-
nations or mutations. OED can also be incorporated into the re-
combination operation of GA. Zhang and Leung proposed an or-

thogonal genetic algorithm OGA [30]. OGA divides each parent
string into k parts, sample these parts from n parents based on
the m combinations in an OA L,,(n*) to produce m binary
strings, and then select j of them to be the offspring. Leung and
Wang proposed an improved OGA with quantization (OGA/Q)
using an OA-based initial population for global numerical op-
timization [16]. Both OGA and OGA/Q use OA, but use no
factor analysis. Ho et al. proposed an EA with an OED-based
recombination for efficiently solving large parameter optimiza-
tion problems that the children are derived using both OA and
factor analysis [10], [12]. The original contribution of this paper
is to apply OED to SA rather than GAs and show superiority of
the general-purpose OSA in solving large-scale parameter-op-
timization problems with real-world applications that is com-
pletely new with respect to published researches. The resultant
OSA can be used to successfully design optimal mixed Ho /H o
controllers.

B. Designing Optimal Mixed Hy /H, Controllers

Designing an optimal control system is equivalent to finding
an optimal solution in a high-dimensional space, where each
point represents a vector of design parameters. It is well rec-
ognized that the use of a large number of design parameters
would result in a high-performance controller, provided that the
used optimizer can obtain an accurate or even optimal solution
to the optimal control problem. However, it is a usual way to
alleviate the load of EAs by reducing the number of design pa-
rameters and consequently improve system performance by uti-
lizing prior domain knowledge [3]. A survey of EAs in control
system engineering can be found in [8].

Inrecent years, mixed Hy /Ho, optimal control problems have
received a great deal of attention from the viewpoint of theoret-
ical design [3], [4], [13], [15]. Chen et al. [4] used GA to design
mixed Hy/H,, optimal proportional-integral-derivative (PID)
controllers, but the applied system is a single-input, single-output
(SISO) system with few design parameters. Krohling and Rey
[15] investigated the same problem using GA as [4] with a
different performance index, time weighted square error for a
short settling time. Chen and Cheng [3] used GA to design struc-
ture-specified multiple-input, multiple-output (MIMO) H,
optimal controllers for practical applications, but their procedure
needs prior domain knowledge, i.e., the Routh—Hurwitz criterion
for decreasing the domain size of each design parameter. Further-
more, to alleviate the load of GA, it is a usual way to reduce the
number of design parameters by adopting the PI-type controller
with 18 design parameters rather than the PID-type controller
with 27 parameters [3], [13]. However, the performance of
the GA-based method is worse than that of the conventional
H.-based method [3]. Recently, Kitsios [13] used a GA-based
method blended with multiobjective characteristics to improve
the method of Chen and Cheng [3].

In this paper, a design problem of mixed Hy/H,, optimal
structure-specified MIMO controllers subject to two per-
formance constraints: 1) robust stability and 2) disturbance
attenuation is presented. Using OSA, lots of parameters can
be efficiently tuned to obtain an accurate solution to the inves-
tigated problem. The high performance and validity of OSA
are demonstrated by a MIMO super maneuverable F18/HARV
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TABLE 1
THE RESULTS OF A COMPLETE FACTORIAL EXPERIMENT. THE UNDERLINED NUMBERS OF H CORRESPOND TO A WELL-BALANCED
SUBSET WHICH FORMS AN ORTHOGONAL ARRAY Lo(3%)
h 1 2 3 4 35 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

X1 3 3 3 3 3 3 3 3 3 2 2 2

2 2 2 2 2 2 1 11 1 1 1 1 1 1

X3 6 6 6 5 5 5 4 4 4 6 6 6

5 5 5 4 4 4 6 6 6 5 5 5 4 4 4

X3 9 8 7 9 8 7 9 8 7 9 8 7

8 7 9 8 7 9 8 7 9 8 7 9 8 7

ﬁl 231 232 233 241 242 243 251 252 253 131 132 133 141 142 143 151 152 153 31 32 33 41 42 43 51 52 53
Rank 19 20 21 22 23 24 25 26 27 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9
of fy,

fighter aircraft system with a PID controller. Two cases of
simulations are presented: one is a PI controller with 18 design
parameters and the other is a PID controller with 27 design
parameters. It will be shown empirically that the performance
of the OSA-based PI controller is superior to those of existing
H..- and GA-based controllers [3], [13]. Of course, the per-
formance of the OSA-based PID controller is superior to the
OSA-based PI controllers due to the increase in the number of
design parameters and the superiority of OSA.

The remainder of this paper is organized as follows. Section II
presents the OED used for IGM of OSA. Sections III and IV
give the proposed IGM and OSA, respectively. The performance
comparisons of OSA using parametric optimization functions
are presented in Section V. Section VI describes the application
of OSA to designing mixed Hy/H,, optimal controllers and
gives performance comparisons with existing methods. Finally,
Section VII concludes this paper.

II. OED
A. Concepts of OED

An efficient way to study the effect of several factors simul-
taneously is to use OED with both OA and factor analysis. The
factors are the variables (parameters), which affect response
variables, and a setting (or a discriminative value) of a factor is
regarded as a level of the factor. A “complete factorial” exper-
iment would make measurements at each of all possible level
combinations. However, the number of level combinations is
often so large that this is impracticable, and a subset of level
combinations must be judiciously selected to be used, resulting
in a “fractional factorial” experiment [5], [9]. OED utilizes prop-
erties of fractional factorial experiments to efficiently determine
the best combination of factor levels to use in design problems.

An illustrative example of OED using an objective function
is given as follows:

6]

where 21 € {1,2,3}, 22 € {4,5,6}, and x5 € {7,8,9}. This
minimization problem can be regarded as an experimental de-
sign problem of three factors, with three levels each. Let factors
1-3 be parameters x1, x2, and x3, respectively. Let the large,
medial, and small values of each parameter be the levels 1-3
of each factor, respectively. The objective function f is the re-

min f(z1, z9,x3) = 10027 — 1029 — 23

sponsible variable. A complete factorial experiment would eval-
uate 3> = 27 level combinations and then the best combination
(z1,22,23) = (1,6,9) with f = 31 can be obtained. Let f,
denote an objective function value of the level combination h.
The factorial array and results of the complete factorial exper-
iment are shown in Table 1. A fractional factorial experiment
uses a well-balanced subset of level combinations, such as the
Ist, Sth, 9th, 11th, 15th, 16th, 21st, 22nd, and 26th combina-
tions. The best one of the nine combinations is the 21st combi-
nation (z1,x2,x3) = (1,6, 7) with f = 33. Using OED, we can
reason the best combination (1, 6, 9) from analyzing the results
of the nine specific combinations, described in Section II-D.

OA is a fractional factorial array, which assures a balanced
comparison of levels of any factor. OA is an array of numbers
arranged in rows and columns, where each row represents the
levels of factors in each combination, and each column represents
a specific factor that can be changed from each combination. The
term “main effect” designates the effect on response variables
that one can trace to a design parameter [2]. The array is called
orthogonal because all columns can be evaluated independently
of one another, and the main effect of one factor does not bother
the estimation of the main effect of another factor [5], [9].

Factor analysis using the OA’s tabulation of experimental re-
sults can allow the main effects to be rapidly estimated, without
the fear of distortion of results by the effects of other factors.
Factor analysis can evaluate the effects of individual factors on
the evaluation function, rank the most effective factors, and de-
termine the best level for each factor such that the evaluation
function is optimized.

OED can provide near-optimal quality characteristics for a
specific objective. Furthermore, there is a large saving in the ex-
perimental effort. OED uses well-planned and controlled exper-
iments in which certain factors are systematically set and mod-
ified, and the main effect of factors on the response can be ob-
served. OED specifies the procedure of drawing a representative
sample of experiments with the intention of reaching a sound
decision [2]. Therefore, OED using OA and factor analysis is
regarded as a systematic reasoning method.

B. OA

IGM uses one of two classes of OAs depending on appli-
cations. One is the class of two-level OAs used for optimiza-
tion problems with a number of 0/1 decision variables [11].
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TABLE II
ORTHOGONAL ARRAY Lg(3%)

Factors
h 1 2 3 4 fa
1 1 1 1 1 fi
2 1 2 2 2 f
3 1 3 3 3 f
4 2 1 2 3 fa
5 2 2 3 1 fs
6 2 3 1 2 fo
7 3 1 3 2 f
8 3 2 1 3 s
9 3 3 2 1 fo

The other is the class of three-level OAs used for optimiza-
tion problems with continuous/discrete parameters. All the op-
timization parameters are generally partitioned into /N nonover-
lapping groups. One group is regarded as a factor. In this study,
the used three-level OA of IGM is described below.

Let there be N factors, with three levels each. The total
number of level combinations is 3V for a complete factorial ex-
periment. To use an OA of N factors, we obtain an integer M =
3Mogs (2N+1DT where the bracket represents an upper ceiling op-
eration, build an OA Ly (3(*~1/2) with M rows and (M —1)/
2 columns, use the first N columns, and ignore the other
(M —1)/2 — N columns. For example, if N € {5,6,...,13},
then M = 27 and Lo7(3'3) is used. The numbers 1, 2, and 3
in each column indicate the levels of the factors. Each column
has an equal number of 1s, 2s, and 3s. The array is orthogonal
when the nine pairs, (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1),
(3,2), and (3,3), appear the same number of times in any two
columns. Table II illustrates an example of Lg(3%).

OA can reduce the number of level combinations for factor
analysis. The number of OA combinations required to analyze
all individual factors is only M = O(N), where 2N +1 < M <
6N —3. Algorithms of constructing OA’s with various levels can
be found in [16]. We give the algorithms for constructing the
two- and three-level OAs used by OSA in the Appendix. After
proper tabulation of experimental results, the summarized data
are analyzed using factor analysis to determine the relative level
effects of factors.

C. Factor Analysis

Define the main effect of factor 7 with level k& as .S;; where
i=1,...,Nand k =1,2,3

M
Sit =) fu-Fu &)

h=1
where F;, = 1 if the level of factor 7 of combination h is k;
otherwise, Fj, = 0. Consider the case that the objective func-
tion is to be maximized. The level k of factor + makes the best
contribution to the objective function than the other two levels
of factor i do when S;; = max{S;1, Si2, Si3}. On the con-
trary, if the objective function is to be minimized, the level &
is the best one when S;; = min{S;1, S;2, S;3}. The main ef-
fect reveals the individual effect of a factor. The most effective
factor has the largest one of main effect differences MED,; =

IIIE)JX{SH7 Sig, SL3} — Hlin{Sil, Sig, Sig}, 1= 17 - ,N.

After the best one of three levels of each factor is deter-
mined, an intelligent combination consisting of all factors with

TABLE III
A CONCISE EXAMPLE OF IGM USING Lg(34)

Parameters Rank of
h X1 X2 X3 Ji Jh
1 3 6 9 231 19
2 3 5 8 242 23
3 3 4 7 253 27
4 2 6 8 132 11
5 2 5 7 143 15
6 2 4 9 151 16
7 1 6 7 33 3
8 1 5 9 41 4
9 1 4 8 52 8
Sis 726 396 423
S; 426 426 426
Sis 126 456 429
Best level 3 1 1
MED; 600 60 6
Solution x; 1 6 9 31 1

the best levels can be easily derived. OED is effective for devel-
opment design of efficient search for the intelligent combination
of factor levels, which can yield a high-quality objective func-
tion value compared with all values of generated combinations,
and has a large probability that the reasoned value is superior to
those of M representative combinations.

Note that the main effect holds only when no or weak in-
teraction exists, and that makes the experiment meaningful. An
actual experiment result is estimated based only on the factors
with the major effect. The difference between the estimated and
experimental result is the degree of interactions among factors.
In order to achieve an effective design, experiments should be
prepared so as to avoid or reduce interactions.

D. lllustrative Example of OED

An illustrative example of OED for solving the optimization
problem with (1) is described as follows (see Table III). First,
use an L9(34), set levels for all factors as above mentioned, and
evaluate the response variable f;, of the combination h, where
h =1,...,9. Second, compute the main effect S;z, where i =
1,2,3 and k = 1,2, 3. For example, So1 = f1 + fa + f7 =
396. Third, determine the best level of each factor based on the
main effect. For example, the best level of factor 1 is level 3
since S13 < Si2 < Sii. Therefore, select ;1 = 1. Finally,
the best solution (1,22, z3) = (1,6,9) with f = 31 can be
obtained. The most effective factor is x; with M ED; = 600
which is the largest one. It can be verified from (1) that 1 has
the largest coefficient 100. Note that if only OA combinations
without factor analysis are used, the obtained best solution is
(z1,22,23) = (1,6,7) with f = 33, rather than the reasoned
solution (z1,x2,z3) = (1,6,9).

1. IGM

Consider a parametric optimization function with p param-
eters and a current solution X = [z1,...,7,]7. IGM gener-

. T

ates two temporary solutions X1 = [21,... ,a:ll,] and X, =
T .

[#3,...,22]" by perturbing X, where z} and z7 are generated

from x; as follows:

1_ .. ..
Ty =T;+T;; X
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The values of x; are generated by the Cauchy—Lorentz prob-
ability distribution [24]. If =} (z?) is out of the domain range
of z;, randomly assign a feasible value to 2} (z2). IGM aims at
efficiently combining good values of parameters from solutions
X, Xy, and X> to generate a good candidate solution () for the
next move.

Divide all the p parameters into /N nonoverlapping groups
with sizes /; using the same division scheme for X, X, and

, ..., N, such that

N
> li=p. )
i=1

The proper value of N is problem-dependent. The larger the
value of N, the more efficient the IGM is if the interactions
among groups are weak. If the existing interactions among pa-
rameters are strong, the smaller the value of N, the more ac-
curate the estimated main effect is. Considering the tradeoff, an
efficient division criterion is to minimize the interactions among
groups while maximizing the value of N. To efficiently use all
columns of OA excluding the study of intractable interactions,
the used OA is Lan41(3Y) and the largest value of N is equal
to (3l1°82(2»+1)] _ 1) /2, where the bracket represents a lower
ceiling operation. For example, if the interactions among p = 41
parameters are weak, the suggested value of N = 40 and the
used OA is Lg; (3%°). Note that the nest larger OA is Loy3(3'?1)
with N = 121 which would waste at least 80 = 121 — 41
columns of OA and results in a larger number M = 243 of func-
tion evaluations. The N — 1 cut points are randomly specified
from the p — 1 candidate cut points which separate individual
parameters. Note that the parameter [NV at each call of the fol-
lowing IGM operation can be a constant or variable value. For
example, a coarse-to-fine strategy using a variable value of IV
is sometimes more efficient [12]. In the examples of this study,
OSA uses a constant value of N.

How to perform an IGM operation with N groups using a
current solution X with p parameters for an objective function
f is described as follows:

Step 1) Generate two temporary solutions X7 and X5 using
X.

Divide each of X, X, and X5 into N groups of
parameters where each group is treated as a factor.
Use the first N columns of an OA Ly (3(M—1)/2),
where M = 3M108s CN+1)],

Let levels 1-3 of factor ¢ represent the th groups of
X, X4, and X, respectively.

Compute f, of the generated combination h, where
,..., M. Note that f; is the value of f(X).
Compute the main effect S;; wherei = 1,..., N
and k = 1,2, 3.

Determine the best one of three levels of each factor
based on the main effect.

The candidate solution () is formed using the com-
bination of the best groups.

Verify that @ is superior to the M — 1 sampling
solutions derived from OA combinations and @) #
X . If itis not true, select the best one of these M — 1
sampling solutions as the solution Q.

Step 2)
Step 3)
Step 4)
Step 5)
Step 6)
Step 7)
Step 8)

Step 9)

The number of objective function evaluations is M per IGM
operation, which includes M —1 evaluations in Step 5 and one in
Step 9. If interactions among groups are weak, () is a potentially
good approximation to the best one of all the 3" combinations.

IV. OSA ALGORITHM

There are four choices must be made in implementing a SA
algorithm for solving an optimization problem: 1) solution rep-
resentation; 2) objective function definition; 3) design of the
generation mechanism; and 4) design of a cooling schedule. The
choices 1 and 2 are problem dependent. Designing an efficient
generation mechanism plays an important role in developing SA
algorithms. Generally, there are four parameters to be specified
in designing the cooling schedule: 1) an initial temperature Tp;
2) a temperature update rule; 3) the number I of iterations to be
performed at each temperature step; and 4) a stopping criterion
of the SA algorithm.

The main power of OSA arises mainly from using IGM to
efficiently search for a good candidate solution. OSA uses a
simple geometric cooling rule by updating the temperature at the
(¢ + 1)th temperature step using the formula:, 7,1 = CR - T},
i = 0,1,... where CR is the cooling rate which is a constant
smaller than 1 but close to 1. The higher the temperature, the
larger it is the possibility of accepting the candidate solution
worse than the current solution. OSA employs a variable value
of I with an initial value 1. The proper values of Tg, Iy, CR, and
the stopping criterion are problem-dependent, generally speci-
fied by experienced engineers. Without loss of generality, con-
sider the case that the objective function f is to be minimized.
The proposed OSA is described as follows:

Step 1) (Initialization) Initialize T = Ty, I = Iy, and
CR. Randomly generate an initial solution X and
compute f(X). Let a counting variable Count = 0.
(Perturbation) Perform an IGM operation using X
to generate a candidate solution Q).

(Acceptance criterion) Accept @) to be the new X
with probability P(Q)

1, if £(Q) < £(X)
PLRY= exp (1901 it (@) > fx) @

Step 4) (Iteration) Increase the value of C'ount by one. If
Count < [I], go to Step 2.

(Decreasing temperature) Let the new values of T’
and I be CR - T and CR - I, respectively. Reset
Count = 0.

(Termination test) If a prespecified stopping crite-
rion is met, stop the algorithm. Otherwise, go to
Step 2.

OED has been proven optimal for additive and quadratic
models, and the selected combinations are good representations
for all of the possible combinations [28]. OA specifies a small
number of representative combinations that are uniformly
distributed over the neighborhood of the current solution.
Furthermore, the factor analysis makes IGM more efficient in
obtaining a good candidate solution which is a potentially good
approximation to the best solution in the neighborhood.

Step 2)

Step 3)

Step 5)

Step 6)
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TABLE IV
PERFORMANCE COMPARISONS OF VARIOUS ALGORITHMS FOR A PARAMETRIC FUNCTION WITH A GLOBAL OPTIMUM 121.598
SGA Stochastic  Sensitivity GA- SAGA AGA FSA OSA
GA GA Local
Chromosome 1000 500 300 300 500 500 Real code Real code
length (Bit) (Bit) (Bit) (Bit) (Bit) (Bit)
Population Size 51 31 51 51 51 51 1 1
Generation 750 200 NA 400 750 750 12,150 150
# of function 38,250 12,000 11,259 37,493 75,051 75,651 12,151 12,151
evaluations
Function value 69 115 114 105 110.4 110.3 99.474 120.665
The overhead of IGM in preparing OA experiments and factor TABLE V
analysis is relatively small, compared with the cost of function BENCHMARK FUNCTIONS
evaluations. Note that the used OAs are generated in advance. - - -
K | X Test functions X; domain Optimum
Let G be the total number of iterations, which equals the number ’
of IGM operations. The complexity of OSA is GM + 1 func- g == |:sin(x,)+ sin(%ﬂ [3, 13] 1~(2r:123)8p
tion evaluations where M is the number of function evaluations = )
per IGM operation. The complexity of the conventional SA, g, = 6p+2Lx,J [-5.12,5.12] O (min)
such as FSA [24], is G + 1 function evaluations that an iter- ) =
. . . 2 .
ation takes one function evaluation. In other words, OSA and g3 =le|_x.» +0.5] [-100, 100] O (min)
SA use GM + 1 evaluations for G and GM iterations, respec- v
tively. When OSA is compared with SA using the same number = Z:. [x? ~10cos(22,) +10] [-5.12,5.12] 0 (min)
of function evaluations, the actual computation time of OSA is = 2xx ~2
g5 == | sitlx, +x,,, ) +sit] —LL (3, 13] P
generally much smaller than that of SA because OSA uses a T4 i 3 ’ (max)
smaller number of iterations. '
co + -600, 600 0 (mi
g = 4000’ > H f [-600, 600] 0 (min)
. PERFORMANCE MPARISONS OF A &
v ORMANCE €O SONS OF 05 [loo(x,+l —2f (-] [5.12.512] 0 (min)
In this section, let the parameters of OSA for optimizing func- .
tions of p parameters be 7y = 50, Iy = 5, and CR = 0.95. o 2 feotom) [-30, 30] 0 (min)

The used OA is Ly 1 1(3") where N = (3llogs(2p+1)] _ 1) /2,
For comparisons, OSA and FSA [24] use the same prespecified
number of function evaluations (Neya1) as the stopping criterion.

Since FSA takes more iterations than OSA using the same
value of Ngya1, FSA uses a greater value of CR than OSA.
Therefore, FSA uses To = 50, CR = 0.99, and a constant value
of =5

A. Large Parameter Optimization Problem

KrishnaKumar et al. [14] proposed three approaches, sto-
chastic GA, sensitivity GA, and GA-local search, and provided
reasonable success on large parameter optimization problems
using the test function f(X) with p = 100 as follows:

T . 2z
X) = ; [sm(:nz) + sin ( 3 )} (6)
where X = [z1,...,7,]" and variable z; € [3,13]. The per-
formances of the three methods and a simple genetic algorithm
(SGA) are cited from [14]. To demonstrate the high perfor-
mance of OSA, OSA additionally compares with the following
popular GAs: SAGA [6] and GA with adaptive probabilities of
crossover and mutation (AGA) [23]. The average performances
of all compared algorithms using 10 independent runs are shown
in Table IV. This result reveals that OSA can efficiently obtain
the best solution 120.665 using 0.3675 s. Note that FSA uses
0.7530 s which is much longer than that of OSA and the ob-
tained solution is only 99.474. The second best solution is ob-
tained by the stochastic GA.

max f(

=20+e—20e P P

B. Parametric Optimization Functions

To demonstrate the efficiency of OSA for solving optimiza-
tion functions with various dimensions, eight benchmark func-
tions gleaned from the literature, including unimodal and multi-
modal functions as well as continuous and discontinuous func-
tions, are tested in the experimental study. The test function,
variable domain, and global optimum for each function with p
parameters are listed in Table V.

In order to show that the proposed IGM is effective, the
simple OSA without heuristics is compared with FSA [24] and
SGA with an elitist strategy using one-point crossover (ESGA)
[7]. The parameters of ESGA are as follows: population size
= 50, crossover rate = 0.8, mutation rate = 0.005. The simple
ranking selection with the selection rate = 0.2 is adopted,
i.e., the worst two individuals are replaced with the best two
individuals in a population. Each parameter is encoded using 10
bits for all test functions except that each parameter of g¢ uses
24 bits. The stopping criterion uses 10 000 function evaluations
for all algorithms.

To illustrate the performance comparisons on various num-
bers of parameters, we use a distance function Dist(p) for de-
scribing the mean distance between the optimal solution gopt (p)
and the obtained best solution gpest(p) for one parameter as fol-
lows:

9op1(2) = ghest (1)

p

Dist(p) = )
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Fig. 2. Comparisons of various algorithms using Dist(p) curves for functions g1, g2,

...,and gs in (a), (b),..., and (h), respectively.

TABLE VI
FITNESS VALUES AND RANKS FOR FUNCTIONS WITH P = 10 AND 100
Test p=10 p =100
functions ESGA FSA OSA ESGA FSA OSA
&1 10.74546(2) 9.9078(3) 12.1598(1) 81.4246(3) 86.3480(2) 119.001(1)
2 1.5800(3) 0.8670(2) 0.0000(1) 103.4400(3) 24.9(2) 0.0000(1)
2 5.4333(3) 0.733(2) 0.0000(1) 14310.0(3) 1250.0(2) 17.36667(1)
2 16.5748(2) 21.443(3) 4.3778(1) 440.81(2) 823.91(3) 132.6545(1)
gs 14.9670(2) 14.5390(3) 16.750(1) 128.0232(3) 129.33(2) 162.0802(1)
2 0.9996(2) 1.5970(3) 0.9995(1) 225.6208(3) 28.49(2) 1.1116(1)
o, 72.81526(3) 9.03(2) 6.7751(1) 14989.0(3) 777.63(2) 495.6461(1)
25 19.9504(3) 19.615(2) 9.701x10(1) 19.9504(2) 20.42(3) 19.7998(1)
Rank average 2.50 2.50 1.00 2.75 2.25 1.00
Final rank 2 2 1 3 2 1
The results of average Dist(p) for all test functions withp = d
10,20, ..., 100 using 30 independent runs are shown in Fig. 2 o 3 Y
and Table VI. Fig. 2 reveals that the mean distance value Dist(p) r Q) P(s)(I +AP(s)) >
of OSA slightly increases while p increases from 10 to 100, com- )

pared with other algorithms. From Fig. 2 and Table VI, it can
be found that OSA outperforms ESGA and FSA for eight func-
tions with various dimensions. This scenario reveals that OSA
performs well in efficiently solving small and large parameter
optimization problems in a limited amount of computation time.

VI. DESIGNING MIXED Hs /Hoo OPTIMAL CONTROLLERS

A. Problem Description

The illustrative application of OSA is to effectively provide
an accurate solution to the design problems of mixed Hy/H

Fig. 3. Control system with plant perturbation and external disturbance.

optimal structure-specified controllers for systems with uncer-
tainty and disturbance. The problem description is given as fol-
lows. Consider a MIMO control system with n; inputs and 7,
outputs as shown in Fig. 3, where P(s) is the nominal plant,
AP(s) is the plant perturbation, C(s) is the controller, 7(t) is
the reference input, () is the control input, e(t) is the tracking
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error, d(t) is the external disturbance, and y(t) is the output of
the system [3]. Without loss of generality, the plant perturbation
AP(s) is assumed to be bounded by a known stable function
matrix Wi (s)

7 (AP(jw)) <T(Wi(jw))

where (A) denotes the maximum singular value of a matrix A.

If a controller C(s) is designed so that: 1) the nominal closed
loop system ( AP(s) = 0 and d(t) = 0 ) is asymptotically
stable and 2) the robust stability performance satisfies the fol-
lowing inequality:

Jo = [[Wi(s)T(8)]loo < 1 ©

Vwe[0,00) (8

and 3) the disturbance attenuation performance satisfies the fol-
lowing inequality:

Jp = [[Wa(s)S(s)lle <1
then the closed loop system is also asymptotically stable with
AP(s) and d(t). Where W5(s) is a stable weighting function
matrix specified by designers. S(s) and T'(s) = I — S(s) are
the sensitivity and complementary sensitivity functions of the
system, respectively

(10)

-1

S(s) = (I + P(s)C(s)) (11)
T(s) = P(s)C(s)(I + P(s)C(s)) " (12)

and the H,-norm in (9) and (10) is defined as
IA(S)]loo = m“a)LXE(A(jw)). (13)

A balanced performance criterion to minimize both .J, and .J
simultaneously is to minimize Jo, [3], [13]

Jo = (24 32)%

For advancing the system performance, robust stability and dis-
turbance attenuation are often not enough in the control system
design. The minimization of tracking error .J (i.e., Ho norm)
should be taken into account

= OoeT (&
k_A (t)e(t)dt

where e(t) = r(t)—y(t) is the error which can be obtained from
the inverse Laplace transformation of E(s) with AP(s) = 0
and d(t) = 0

E(s) = (I + P(s)C(s)) " R(s). (16)

In the proposed method, the handling of constraints (9) and (10)
is to recast the constraints as objectives to be minimized and,
consequently, a weighted-sum approach is conveniently used.
Therefore, the objective function of the investigated problem of
designing mixed Hy /H, optimal controllers is as follows:

(14)

5)

mcinJ =Jo+ Jo- a7

The order of the derived optimal controller is very high by
using conventional methods, so that it is not easy to be imple-
mented. To cope with this difficulty, we investigate the mixed
H,/Ho optimal control problem from suboptimal perspective.
A structure-specified controller of the following form [3]:

N(s)  Bpms™+ B,,_1s™" '+ ---+ By

C =
(5) DC(S) s"+an_1s"_1+-~-—|—ao

(18)

is assigned with some desired orders m and n to minimize .J,
where

br11 bkin;
By = : (19)
bkn,1 bknon,
for k = 0,1,..., m. Most of the conventional controllers used

in industrial control systems have fundamental structures such
as PID and lead/lag configurations. Such controllers are special
cases of the structure-specified controllers. For the PID con-
troller, we have n = 1, m = 2 and ag = 0, i.e.,

_ B282 + Bls + BO

c(s) :
brir  briz  bris

By = | bra1 braa bras |, k=0,1,2. (20)
brar b3z bras

The PID controller has 27 design parameters. A PI controller
with 18 design parameters is a special case of the PID controller,
where By, = 0. Similarly, for the lead/lag controller, we have
n=m=1,1ie.,

_ B 18 + BO

C(s) ST a

2y

B. Design of Controllers Using OSA

For convenience and simplicity, from the structure-specified
controller (18), we denote

T

0= [ao - p_1bo11 - bOlnib021 cee b02n4 ce bmnoni]

=[01,...,6,)" (22)

as the solution representation, where p = n+(m-+1) xn; xXn, is
the number of design parameters. Denote © as the search space
consisting of all admissible #;,¢2 = 1,. .., p. The structure-spec-
ified mixed Ho /H, optimal control design problem is equiva-
lent to finding an optimal # from © to minimize the objective
function J in (17) subject to the inequality constraints (9) and
(10). Chen and Cheng [3] used prior domain knowledge, i.e., the
Routh—Hurwitz criterion, for decreasing the domain size of each
design parameter 6;. In this study, we do not use any domain
knowledge to confine the search space © in order to demon-
strate the strong search ability of OSA in efficiently obtaining a
near-optimal solution to the investigated problem.

The parameters of OSA, using a constant value of I = 1 for
the investigated problem, are: N, C R, T}, and threshold values
6 and N, for specifying a stopping condition. The proposed
OSA-based method for finding a near-optimal solution 6, to
the mixed Hy /H, optimal control design problem is described
as follows.

Step 1) Randomly generate a solution # as a current solution
and let 0, = 0. Let J* be the value of J at the ith
iteration and = = 0. Compute the value .J°.
Perform an IGM operation using 6 to generate a
candidate solution (.

Accept @ to be the new 6 with probability P(Q) in
(5).

Increase i by one. Compute .J¢ using the current 6.
If J¢ < J~ 1, let the new Oopt be 0.

Step 2)
Step 3)

Step 4)
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Step 5)
Step 6)
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Decrease temperature using. Tj11 = CR-T;.
Let AJ! = |Ji=t — Ji|/Ji=L If AJF < ¢ for

k=1,i—1,...,i—(Nstop+1), stop the algorithm.
Otherwise, go to Step 2.

C. Test Problem

For comparison with the GA-based methods proposed in [3]
and [13], the same MIMO optimal control design problem is
tested. Consider the design problem of a longitudinal control
system of the super maneuverable F18/HARV fighter aircraft in
horizontal flight at an altitude of 15 000 (ft) with Mach number
0.24, airspeed Vp = 238.7 (ft/s), attack angle o = 25 (°),
and pitch angle # = 25 (°). The trim value of the path angle
is 8 — a = 0 (°) and the trim pitch rate is v = 0 (°/s). The
longitudinal dynamics of the system can be described as

:t:Aa:—i—Bu}

y=0Cz

where A, B, and C are given as shown in (24) at
the bottom of the page, = [Vr,a,v,0]F and u
[ury,uas, uss, urLe, urE, ur]’. Where ury, uas, uss,
urg, urg, and up are the perturbations in symmetric thrust
vectoring vane deflection, symmetric aileron deflection,
symmetric stabilator deflection, symmetric leading edge flap
deflection, symmetric trailing edge flap deflection, and throttle
position, respectively. Note that the rank of the matrix B is
only three. It is important to remove the redundancy in the
control inputs. By employing the pseudocontrol technique
[27], we can transform the six control inputs ( ury, u4s, uss,
urg, urEg, and up ) to three linearly independent variables.
Therefore, the system can be rewritten as

(23)

T = Az + B,v (25)

where B,, and v are given as shown in (26) at the bottom of the
next page.

Suppose the reference inputis r(t) = [0, 1 —e 3!, 1—e 6T
and the system is encountering with the external disturbance
d(t) = 0.01e792 cos(3162.3t) [1,1,1]T. The bound Wy(s) of
the plant perturbation AP(s) is

_ 0.0125s5% + 1.20255 + 1.25

10

J
10'} 4
100 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of function evaluations
(a)
10°
J 1 §
10° ]
1 1 1
0 500 1000 1500 2000 2500 3000 3500

Number of function evaluations

(b)

Fig. 4. Average convergence of OSA from tens runs. (a) PI controller. (b) PID

Wl(s) 52 4+ 20s 4+ 100 JEPEE @7 controller.
r—0.0750 —24.0500 0 —36.1600
A= —0.0009 —-0.1959 0.9896 0
—0.0002 —0.1454 -0.1677 0
L 0 0 1 0
(1 0 0 O
cC=10 -1 0 1
0 0 01
r—0.0230 0 —0.0729 0.0393 —0.0411 0.1600
B— —0.0002 —0.0001 —0.0004 0 —0.0003 —0.0003 (24)
—0.0067 —0.0007 —0.0120 —0.0006 0.0007 0.0005
L 0 0 0 0 0 0
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(d) OSA-based PI controller. (¢) OSA-based PID controller.

To attenuate disturbance, the stable weighting function Wa(s)
consisting of a low-pass filter is chosen as

0.25s +0.025

(28)

WQ(S) =

s2 + 0.4s + 10000 000 "%

The search space © consists of all admissible 6; €

[—20000,20000], i = 1,...

D. Experimental Results

Let the parameters of OSAbe N = 13, CR = 0.95, T = 80,
and Ngiop = 3. The stopping criteria of OSA for PI and PID

.p [3], [13].

TABLE VII
PERFORMANCE COMPARISONS IN TERMS OF .J5 AND J,
FOR VARIOUS CONTROLLERS

Outputs of systems using various controllers. (a) H. -based controller [3]. (b) GA-based PI controller [3]. (c) Improved GA-based PI controller [13].

Controller J Jeo J=htSx  New
GA-based PI NA 0.8194 NA 18,000
controller [3]

GAbased PL 1114 07682 08796 4,500

controller [13]

OSA-based PL 0374 06290 06673 3,781
controller

OSA-based 0.0019  0.4374 04393 2,971

PID controller

controllers are § = 9 x 1072 and § = 104, respectively. Ten

0
1
0

o O o
o= OO

LO O
[ —0.0230
—0.0002

| —0.0067

0 —0.0729
—0.0001 —0.0004
—0.0007 —0.0120

0.0393 —0.0411 0.1600
0 —0.0003 —0.0003 | u
—0.0006  0.0007 0.0005

(26)
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Fig. 6. Detailed tracking response of the first 0.1-s period. (a) The improved GA-based PI controller [13]. (b) OSA-based PI controller. (¢) OSA-based PID

controller.

independent runs are conducted for each of PI and PID con-
trollers. The best PI controller with J = 0.6673 is obtained
using 140 iterations, 3781 function evaluations as follows:

2055.94 1373.15  —103.66 |
—1184.03 —1038.37 65.41 5
—15397.39 8715.97 19989.70
C(s) = -
s
19620.59  2995.98 —3744.34 |
14513.74 —19999.97 —14359.620
3102.22 —19810.43  13970.38
(29)
s

The average convergence of OSA for PI controllers is shown in
Fig. 4(a). The best PID controller with J = 0.4393 is obtained
using 110 iterations, 2971 function evaluations as follows:

—19788.38 —18237.71 —1347.88
—12517.98 8483.12 622.55 52
11498.13 917.12 3375.39
O(s) = :
[ 19185.69 —12519.68 19960.12
—20000.00 7084.61 —18786.01 | s
n _—10107.62 19 360.44 5944.56
S
[—19060.26 18026.98 20 000.00
4194.82 —2302.57 6856.19
—5180.15 11857.10 —2348.46
+ £ ; (30)

The average convergence of OSA for PID controllers is shown
in Fig. 4(b). This OSA-based PI and PID controllers are ap-
plied to the control system to illustrate the high performance of
the proposed method. The outputs of the system of the derived
controllers with robust stability and disturbance attenuation are
shown in Fig. 5.

The outputs of the systems using the GA-based PI con-
trollers and conventional H.-based controller for the same test
problem are borrowed from [3] and [13], as shown in Fig. 5.
The GA-based method [3] used the population size Npop
100, crossover rate p. = 0.9, mutation rate p,, = 0.2, and
200 generations. The improved GA-based method [13] used
Npop = 100, p. = 0.9, p,,, = 0.02, and 50 generations. The

0.012
L
001+ . -
J, oomp . 1
0.006 | . .
®
®
0.004 .
. .
o2t : .
D 1 1 1 1 1
0.43 0.44 045 0.46 0.47 048 0.49
J

Fig. 7. Distribution of the ten PID controllers.

performance comparisons in terms of .J5 and .J, for various con-
trollers are given in Table VII. Note that only the H,, norm value
Joo Without tracking error J5 is considered in the PI controllers
of the GA-based methods [3] and [13]. The value of .J5 of the
method [13] is derived from the reported controller and that of
the method [3] is not available. Fig. 5(a) and (b) reveal that the
H.-based controller is superior to the GA-based controller [3]
because the simple GA is hard to cope with large parameter opti-
mization problems for obtaining an accurate solution in a limited
amount of computation time. Fig. 5(c) shows that the improved
GA-based method [13] performs better than the H.,-based
method. However, the performance of the proposed OSA-based
PI controller is superior to those of the GA- and H,-based
controllers from the comparisons of Fig. 5 and Table VII. Of
course, the performance of the OSA-based PID controller is
superior to the OSA-based PI controllers due to the increase in
the number of design parameters and the superiority of OSA.
The encouraging performance, .Jo 0.0019 and J
0.4374, of the PID controller using 2971 function evaluations
demonstrate the efficiency of the OSA-based method. To further
examine the performance of the system outputs in Fig. 5(c)—(e),
we show the detailed tracking response of the first 0.1-s period
in Fig. 6. It is obvious that the OSA-based PI controller has
smaller oscillations than the improved GA-based one [13] and
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TABLE VIII
PERFORMANCE OF THE OSA-BASED PID CONTROLLER FROM TEN INDEPENDENT RUNS
Controller > = J
best avg. std. best avg. std. best avg. std.
OSA-based PID 0.0019 0.0057 0.0032 0.4374 0.4601 0.0161 0.4393 0.4658 0.0183

controller

the PID controller has almost no oscillation. The 10 OSA-based
PID controllers are reported in Fig. 7 and Table VIII. The stan-
dard deviations of .J, and .J, are very small. The simulation
results illustrate that the OSA-based method can economically
and robustly provide a near-optimal solution to the problem of
designing mixed Ho/H,, optimal structure-specified MIMO
controllers with robust stability and disturbance attenuation
without using prior domain knowledge.

VII. CONCLUSION

This paper proposes an OSA algorithm and its application to
providing a near-optimal solution to the problem of designing
mixed Hy/H,, optimal structure-specified MIMO controllers
with robust stability and disturbance attenuation. OSA performs
well in solving intractable engineering problems comprising lots
of system parameters. The IGM of OSA can adaptively adopt
the two- and three-level OAs for handling various optimization
problems. It is shown that OSA outperforms conventional GAs
and SA for high-dimensional parametric optimization functions
in a limited amount of computation time. The optimal control
design problem is to minimize the tracking error (Hy-norm) with
robust constraints of the type H.,-norm. The OSA-based method
without prior domain knowledge can efficiently solve the design
problems of MIMO optimal control systems. The high perfor-
mance and validity of the proposed method are demonstrated
by a MIMO super maneuverable F18/HARV fighter aircraft
system with PI and PID controllers. It is shown empirically that
the performance of the proposed method is much superior to
those of existing GA- and H,-based methods. The OSA-based
method can be widely used for designing high-performance
optimal controllers. We believe that domain knowledge and
auxiliary techniques can further advance the performance of the
OSA-based method in solving various engineering problems.

APPENDIX

The following algorithm generates the Q-level OA L (Q%)
used by OSA with N factors where M = Q7 and K = (M —
D/(Q=1),Q=23.1Q =27 = [logy(N + 1)].IfQ =
3, J = [logs(2N + 1)]. Let a; be the jth column of the OA
[ai j]1nx ic- The columns a; where j = 1,2, (Q*71)/(Q—1)+
L(@Q-1)/(Q—-1)+1,...,(Q7~1=1)/(Q—1)+1 are called

basic columns, and the others are called nonbasic columns.

Step 1: Construct the basic columns.
for k=1 to J do

{

j= @ = 1)/Q-1)+1;
for =1 to M do
: a;j = (i—1)/Q"7*] mod Q

Step 2: Construct the nonbasic columns.
for k=2 to J do

{
j=@"-1/(Q-1+1;
for s=1 to j—1 do
for t=1 to Q-1 do
@ (s—1)(Q-1)+t = (@5 X t +a;j) mod Q;
}

Step 3: Increase a;; by one where i=
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