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EVALUATION OF DYNAMIC VEHICLE LOAD ON BRIDGE

DECKS

Jeng-Hsiang Lin* and Cheng-Chiang Weng

ABSTRACT

Developed herein is a spectral approach for evaluating the dynamic vehicle load
due to the passage of a vehicle moving at constant speed along a rough bridge surface.
Based on the approach, a simple closed-form solution for predicting the variation of
dynamic vehicle load on a bridge deck is derived.  Numerical examples of the appli-
cation of the solution to a simply-supported bridge are presented. Four different classes
of pavement roughness (including: very good, good, average, and poor pavements)
and three different vehicle speeds (speeds of 60, 100, and 140 km/h) are used in nu-
merical analysis.  The Dynamic Load Coefficient (DLC), a parameter used to charac-
terize the magnitude of dynamic vehicle load, is estimated.  The effects of vehicle
speed and pavement roughness on the variation of dynamic vehicle load are
investigated.  It is concluded that if the effect of engine motion on vehicle vibration is
disregarded, both the DLC and standard deviation of dynamic vehicle load are pro-
portional to the square root of the pavement roughness coefficient S(n0) for a speci-
fied vehicle speed.
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I. INTRODUCTION

The dynamic force induced by vehicle-bridge
interaction resulting from the passage of vehicles
plays a significant role in the design of a bridge
structure.  In practice, to allow for such a dynamic
effect, it is required that the static vehicle force be
increased by a dynamic allowance factor, called the
impact factor, in design.  Many codes, including
AASHTO, specify the factor as a function of span
length only (AASHTO, 1992).  However, it has been
observed that the dynamic force, called the dynamic
vehicle load on a bridge, depends on dynamic prop-
erties of the vehicle, dynamic properties of the bridge,
vehicle speed,  and bridge-surface roughness.
Recently, there has been an increasing interest in and
concern about bridge design forces.  The dynamic
force is an important parameter in bridge design and
evaluation. In addition to the importance in design,

the dynamic vehicle load causes subtle problems and
contributes to fatigue, surface wear, and cracking of
concrete that leads to corrosion (Anon, 1992).  It con-
tinually degrades bridges and increases the necessity
of regular maintenance.  Thus, the determination of
the dynamic vehicle load resulting from the passage
of a vehicle across a span of a bridge is a problem of
great interest for bridge engineers.  The need to de-
velop an approach and derive a simple closed-form
solution to predict the dynamic vehicle load for ap-
plications of bridge design is apparent.  To solve the
problem of vehicle-bridge interaction, two sets of
equations of motion can be written, one for the ve-
hicle and the other for the bridge.  To couple math-
ematically the motion of the vehicle and the bridge,
the interactive force existing at the contact point be-
tween the two subsystems is considered in analysis.

The main objective of this study is to develop a
spectral approach for evaluating the dynamic vehicle
load due to the passage of a vehicle moving at con-
stant speed along a rough bridge surface.  A simple
closed-form solution for predicting the variation of
dynamic vehicle load on bridge pavement is derived.
In this study, the vehicle is replaced by a simple, linear,
damped spring-mass system which moves on a bridge
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at constant speed.  The vehicle is in contact with the
bridge surface.  A displacement is imposed at the lower
end of the vehicle system to model the bridge surface
roughness and the deflection of the bridge due to dy-
namic vehicle load.  A harmonic engine-induced force
is applied to the mass to model the effect of engine
motion.  Numerical examples of the application of
the proposed solution to a simply-supported bridge
are presented.  Comparisons of the numerical results
and the available experimental results are made to
validate the accuracy of the developed approach.

II. LITERATURE REVIEW

The subject of dynamic responses of bridges to
the passage of vehicles has been studied for many
years.  Numerous research results, including theoreti-
cal and numerical results (Jeffcott, 1929; Huang and
Veletsos, 1960; Wen and Veletsos, 1962; Luthe-Garcia
et al., 1964; Tan and Shore, 1968; Timoshenko et al.,
1974; Warburton, 1976; Sridharan and Mallik, 1979;
Blejwas et al., 1979; Inbanathan and Wieland, 1987;
Fryba, 1987; Smith, 1988; Akin and Mofid, 1989;
Hwang and Nowak, 1991; Wang et al., 1991; Yang
and Lin, 1995), and results of laboratory and field
tests (Biggs et al., 1959; Fenves et al., 1962a;1962b;
Walker, 1968; Swannell and Miller, 1987; Mitchell
and Gyenes, 1989; Green, 1990) have been proposed.

Research on the dynamic responses of bridges
subjected to a moving vehicle load dates back to the
work of Jeffcott (1929).  In the mid-twentieth century,
approximate solutions were developed for the particu-
lar problem of idealized beam structures.  Several of
these classical solutions have been summarized (Ayre
et al., 1951).  In past decades, for simplicity, the
weight of a vehicle was taken to be the only external
force acting on the bridge.  A moving vehicle force
traveling along a bridge has been modeled as a mov-
ing “constant” force.  The inertia force resulting from
vibrations of vehicle mass is neglected (Tan and
Shore, 1968; Fryba, 1999; Timoshenko et al., 1974;
Warburton, 1976; Sridharan and Mallik, 1979;
Mackertich, 1990; Pesterev and Bergman, 1998a).  It
is noted that the results are only valid for a case when
the bridge surface is smooth or very good.  For cases
when the vehicle is moving along a rough bridge
surface, the inertia of a vehicle is significant and can-
not be ignored.  A moving-mass model has to be used
instead (Blejwas et al . ,  1979; Inbanathan and
Wieland, 1987; Sadiku and Leipholz, 1987; Akin and
Mofid, 1989; Pesterev and Bergman, 1998b).  The
moving mass contains a term that depends on the lo-
cation of the moving vehicle mass in order to take
care of inertial interaction between vehicle and bridge.
Although most research has focused on the moving
force problem or the moving mass problem, the

moving oscillator problem has been addressed rela-
tively infrequently.  It should be noted that neither
the moving force solution nor the moving force/mov-
ing mass solution could adequately account for the
complex and important dynamic effects caused by the
compliance of the moving oscillator.

Recently, more realistic and sophisticated mod-
els that consider various dynamic characteristics of
the moving vehicle have been used to solve the prob-
lem of vehicle-bridge interaction (Chu et al., 1986;
Hwang and Nowak, 1991; Wang et al., 1991; Yang
and Lin, 1995).  Valuable insights on the behaviors
of vehicle-bridge interaction have been proposed.
However, most investigators have focused their at-
tentions on the deterministic aspect of the problem
(Smith, 1988; Timoshenko et al., 1974; Sridharan and
Mallik, 1979; Warburton, 1976; Wu and Dai, 1987).
It has been recognized that the load process of a ve-
hicle moving along a rough pavement surface is sto-
chastic (LaBarre et al., 1970; Dodds and Robson,
1973; Inbanathan and Wieland, 1987; Marcondes et
al., 1991) and depends on characteristics of vehicles,
vehicle speed, and pavement roughness (Mannering
and Kilareski, 1990; Ullidtz, 1987).  Dynamic inter-
active forces between a vehicle and a rough pavement
surface are essentially random in nature and are as-
sumed to have properties of a stationary process.  The
forces can be experimentally determined for a par-
ticular stretch of pavement (Warburton, 1976).  Very
few models have been proposed for evaluating the
dynamic force due to the complexity of analysis.

III. EQUATION OF MOTION OF VEHICLE

Figure 1(a) shows a possible profile of the ir-
regularities on a fixed surface, for instance, a pave-
ment surface on a bridge.  The height, yr, of the sur-
face above a fixed datum is plotted as a function of
distance x along the bridge.  An idealized vehicle
model of mass m1, spring constant k, and damping
coefficient c0 moving from left to right with constant
speed V along a rough bridge pavement is considered.
Fig. 1(b) shows the simplified vehicle system whose
behavior is used to model the behavior of a moving
vehicle.  The pavement-surface elevation y (d, t) im-
posed at the lower end of the vehicle can be expressed
as the sum of the pavement roughness and displace-
ment of the bridge.  With respect to an observer on
the moving vehicle, the pavement-surface elevation
y (d, t) and the absolute displacement of the vehicle
Z(t) are functions only of time.  The equation of mo-
tion of the vehicle is then in the form

m1Z(t)+c0(Z(t)−y x=d)+k(Z(t)−y x=d)=f(t)−m1g

(1)
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where Z, Z , and Z  are absolute acceleration, velocity,
and displacement of the vehicle, respectively.  f(t) and
m1g are the engine-induced force and the vehicle grav-
ity force, respectively.  The symbol d expresses the
moving distance of the vehicle on the bridge from
left side, i.e.,d=Vt.

Rearranging the order of Eq. (1), the equation
of motion of the vehicle then becomes the form

m1Z(t)+c0Z(t)+kZ(t)=f(t)−m1g+c0y x=d+ky x=d

(2)

Since y (x, t)=y (x=d=Vt, t), Eq. (2) falls into the typi-
cal form of a linear single-degree-of-freedom system.
The inputs to the suspension system include the
time varying parameter y (d, t), the engine-induced
force f(t), and the vehicle gravity force m1g.  Note
that y (d , t) can be expressed as the sum of the
bridge deflection yb1(d, t)  due to the moving vehicle
gravity force (a moving constant force), the bridge

deflection yb(d, t) due to the dynamic vehicle load
F(t) (a moving random force with zero mean), and
the pavement roughness yr(t).  Let

Z(t)=Z1(t)+Z(t) (3)

y (d, t)=yb1(d, t)+yr(t)+yb(d, t) (4)

and

y(d, t)=yr(t)+yb(d, t) (5)

Eq. (2) can be further decomposed into two equations:

m1Z1(t)+c0Z1(t)+kZ1(t)=c0yb1(d, t)+kyb1(d, t)

(6)

m1Z(t)+c0Z(t)+kZ(t)=f(t)−m1g+c0y(d, t)+ky(d, t)

(7)

Note that the bridge deflection yb1(d, t) due to the
moving constant force m1g and the vehicle displace-
ment Z1(t) in Eq. (6) are deterministic functions;
f(t), y(d, t), and  Z(t) in Eq. (7) are a random function.
If yb1(d, t) is known, Z1(t) of Eq. (6) can readily be
solved by any available method.

IV. POWER SPECTRAL DENSITY FUNCTION
OF VEHICLE DISPLACEMENT

If the equation of motion of a vehicle is ex-
pressed with reference to the static-equilibrium
position, the vehicle displacements in future discus-
sions will be referenced from the position, and the
response of the vehicle that is determined will be the
dynamic “random” response.  The analytical model
of the dynamic vehicle-bridge interactive system is
shown in Fig. 1(c).  Therefore, total response of the
vehicle, such as: displacement, spring force, etc., can
be obtained only by adding the appropriate static
quantities to the results of the dynamic analysis.  If
the static responses due to the vehicle gravity force
are temporarily ignored in the analysis, Eq. (7) then
becomes the form

m1Z(t)+c0Z(t)+kZ(t)=f(t)+c0y(d, t)+ky(d, t)

(8)

If y(d, t) and f(t) have respectively power spec-
tral density function Syy(d, ω) and Sff(ω) with respect
to time, the relation of the power spectral density
function of the vehicle response Szz(d, ω) and of the
inputs is then given by

yr

yb

yr y=yb+yryb

x=d=Vt

yr(x)
x

x

x

Vehicle moving direction

Moving direction

(a)

Beam

Pavement

Simplified vehicle model

(b)

(c)

k c0

k c0

m1

m1

f(t)

F(t)

z(t)

Fig. 1 Road roughness and analytical model: (a) probable pro-
file of road roughness; (b) simplified vehicle model;
(c) analytical model of a bridge subjected to dynamic ve-
hicle load
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   SZZ(d, ω) = Hr
*(ω)Hs(ω)Srs(d, ω)Σ

s
Σ
r

,

r, s=y(d, t), f(t) (9)

where Hr*(ω) is the complex conjugate of Hr(ω).
In general, the engine-induced force f(t) exhib-

its a harmonic form and little correlative with the
pavement roughness and the moving distance of
vehicle.

For uncorrelated inputs, Szz(d, ω) can be ex-
pressed by the relation

   SZZ(d, ω) = Hy(ω)
2
Syy(d, ω) + H f(ω)

2
S ff(ω)

(10)

where

   Hy(ω) =
k + ic0ω

(k – m1ω
2) + ic0ω

(11)

and

   H f(ω) = 1
(k – m1ω

2) + ic0ω
(12)

The time spectral density function Syy(d, ω) is a
Fourier transform of the time autocorrelation func-
tion Ryy(d, τ) and can be expressed by the form

   Syy(d, ω) = 1
2π Ryy(d, τ )e– iωτdτ

– ∞

∞
(13)

where the time autocorrelation function Ryy(d, τ) is
defined by

Ryy(d, τ)=E[y(d, t)y(d, t+τ)] (14)

To find Ryy(d, τ), substitute Eq. (5) into Eq. (14) to
obtain

Ryy(d, τ)=E[(yb(d, t)+yr(t))(yb(d, t+τ)+yr(t+τ))]

(15)

where yb and yr represent the deflection of bridge due

to dynamic vehicle load F(t) and the pavement
roughness, respectively.

V. PAVEMENT ROUGHNESS

In general, the manner of variation of a bridge
surface as a function of distance is assumed to be a
zero-mean stationary random process.  The power
spectral density function of yr is approximated by an
equation of the form (LaBarre et al., 1970)

   
Syryr

(n) =
S(n0)( n

n0
)– ω1 , n ≤ n0

S(n0)( n
n0

)– ω2 , n ≥ n0
(16)

where n is the spatial frequency and S(n0) is the pave-
ment roughness coefficient, which is suggested by
LaBarre.  n0, ω1, and ω2 are the parameters of spec-
tral shape.  The pavement roughness is determined
by surface condition of the approach and the bridge.
According to Dodds’s research (Dodds, 1973), the para-
metric values for typical principal roads were given
for four different classes of pavement (Table 1).

Sun and Deng (1996) proved that there exits a
definite relationship between the two kinds of spec-
tra expressed by distinct frequencies, that is

Syryr
(n)=2πVSyryr

(ω) (17)

and the time angular frequency ω can be expressed
by

ω=2πnV (18)

Thus, the spectral density Syryr
(ω) can then be ex-

pressed by

   

Syryr
(ω) =

1
2πV S(n0)( ω

2πVn0
)– ω1 , ω ≤ 2πVn0

1
2πV S(n0)( ω

2πVn0
)– ω2 , ω ≥ 2πVn0

(19)

Table 1  Pavement classes based on principal road spectra

ω1 ω2

Pavement class S(n0) Standard Standard
Mean Mean

deviation deviation

Very good 2-8
Principal Good 8-32 2.05 0.487 1.44 0.266

roads Average  32-128
Poor 128-512

S(n) measured in units of 10−6 (m3/cycle), n0=1/2π (cycle/m)
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VI. ENGINE-INDUCED FORCE

The engine-induced force exhibits generally a
harmonic form and can be expressed as

f(t)=A0sin(ω0t+θ) (20)

where A0 and ω0 are the amplitude and the circular
frequency of engine force, respectively.  The phase
angle θ is a random variable in the range of 0 to 2π.

The one-sided spectral density of engine force
f(t) can be expressed by the form

   
S ff(ω) =

A0
2

2 δ(ω – ω0) (21)

VII. DYNAMIC RESPONSE OF BRIDGE

1. Equation of Motion of Bridge

Consider an elastic uniform straight bridge of
length L and mass per unit length  m  subjected to a
viscous damping force c per unit length per unit ve-
locity and a transverse force p(x, t) per unit length.
The end-support conditions for the bridge are
arbitrary.  The equation of motion of this bridge sys-
tem can readily be derived by considering the equi-
librium of forces acting on the differential segment
of the bridge and introducing the basic moment-cur-
vature relationship of elementary beam theory.  Thus,
the transverse deflection yb(x, t) of the bridge satis-
fies the following partial differential equation

   
m

∂2yb

∂t2 + c
∂yb

∂t
+ EI

∂4yb

∂x4 = p(x, t) (22)

where yb(x, t) is the transverse deflection of the bridge
at time t and distance x from its left-hand end and EI
is the constant bending stiffness of the bridge.

For a moving vehicle load at constant speed V,
p(x, t) can be replaced by

p(x, t)=δ(x−d)P(t)=δ(x−d)(m1g+F(t))

=δ(x−d)m1g+δ(x−d)F(t) (23)

where F(t) is a stationary Gaussian random process
with zero mean; m1g is the vehicle gravity force (a
constant force); the total vehicle load on the bridge
P(t) is a stationary Gaussian random process with a
mean value of m1g.

Let the external load p(x, t) be a non-stationary
process with mean (deterministic) value m1g and with
a centred (random) value F(t).  It is assumed that F(t)
is independent of the mean deterministic deflection
of the bridge, i.e., the inertial forces in the vehicle
due to the mean deterministic deflections of the bridge

are disregarded.  Eq. (22) may be rewritten as two
equations:

   
m

∂2yb1

∂t2 + c
∂yb1

∂t + EI
∂4yb1

∂x4 = δ(x – d)m1g (24)

   
m

∂2yb

∂t2 + c
∂yb

∂t + EI
∂4yb

∂x4 = δ(x – d)F(t) (25)

In other words, the total deflection y b(x, t) of the
bridge due to the moving vehicle force is expressed
as the sum of the deflection yb1 of the bridge due to
the moving constant force m1g and the deflection yb

(as shown in Fig. 1(c)) due to the moving dynamic
vehicle load F(t).  Note that y b=yb1+yb, yb1 is a deter-
ministic function, and yb is a random function.

The first, Eq. (24), is valid for mean determin-
istic values of random function yb(x, t), p(x, t), and
Yj(t) while the second, Eq. (25), is valid for their
centred “random” components.

2. Response of Bridge to Static Vehicle Load

The statistical characteristics of the first order
(mean value of y b) can be obtained from Eq. (24).
The solution of the equation may be calculated as a
response of the bridge to a moving constant load m1g.
For the case of a simply-supported bridge, the solu-
tion of Eq. (24) can be expressed in the following
form (Fryba, 1999)

   
yb1(x, t) = v0

sin
jπx
L

j2( j2( j2 – α 2)2 + 4α 2β2)
Σ

j = 1

∞

   ⋅ { j2( j2 – α 2)sin
jπVt

L

   
–

jα( j2( j2 – α 2) – 2β2)
( j4 – β2)1/2 e– ωbtsinωj′t

   – 2 jαβ(cos
jπVt

L – e– ωbtcosωj′t)} (26)

Here the following notation has been introduced:

  v0 =
(m1g)L3

48EI (27)

is the static deflection of the bridge at the middle span
under a constant load m1g at the same point,

   α = V
2 f1L

(28)

is the dimensionless speed parameter where is the
first-mode natural frequency, and

   β =
ωb
ω1

= ϑ
2π (29)

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

6:
42

 2
7 

A
pr

il 
20

14
 



700 Journal of the Chinese Institute of Engineers, Vol. 27, No. 5 (2004)

is the dimensionless damping parameter where ωb=
c/2  m  is the circular frequency of damping of the
bridge, ω1=2πf1 and ϑ  is the logarithmic decrement
of damping.

3. Response of Bridge to Dynamic Vehicle Load

The statistical characteristics of the second or-
der (variation of yb) can be obtained from Eq. (25).
One form of solution of Eq. (25) can be obtained by
separation of variables, assuming that the solution has
the form

   yb(x, t) = ψ j(x)Y j(t)Σ
j = 1

∞
(30)

In other words, it is assumed that the free-vibration
motions consist of a series of constant shape ψj(x)
and the amplitude of which is varying with time ac-
cording to Yj(t).  For the undamped free vibration
analysis considering the boundary conditions at the
ends of the bridge segment, the undamped angular
frequencies ωj and the mode shapes ψj(x) of the bridge
can readily be evaluated.

For a simply-supported bridge, the undamped
angular frequencies ωj and the modes ψj(x) of the
bridge can be given by

   ωj = ( jπL)2 EI
m (31)

and

   ψ j(x) = 2sin( jπx
L ) (32)

respectively.  The modes ψj(x) satisfy the orthogonal
conditions

   ψ j(x)ψk(x)dx
0

L
= Lδ jk (33)

where δjk is the Kronecker delta function.
Substituting Eq. (30) into Eq. (25), multiplying

through by ψj(x), integrating over x, and using the
orthogonal conditions, leads to the uncoupled equa-
tion of motion for Yj(t)

   Y j + β jY j + ωj
2Y j = G j(t) (34)

where

   β j = c
m (35)

and

   
G j(t) = 1

m L ψ j(x)δ(x – d)F(t)dx
0

L
(36)

The formal solution to Eq. (34) is given by the con-
volution integral

   Y j(t) = G j(t – θ)h j(θ)dθ
0

t
(37)

where the impulse response function is

   
h j(t) = e

– 0.5β j t

ωj 1 –
β j

2

4ωj
2

sin(ωj 1 –
β j

2

4ωj
2 t)

t≥0 (38)

Substituting Eq. (36) into Eq. (37), the modal ampli-
tude Yj(t) may then be written as

   
Y j(t) = 1

m L0

t
ψ j(x)δ(x – d)F(t– θ)dx h j(θ)dθ

0

L

   
=

ψ j(d)
m L F(t– θ)h j(θ)dθ

0

L
(39)

Thus, yb(x, t) can be obtained in the form

   yb(x, t) = ψ j(x)Y j(t)Σ
j = 1

∞

   
=

ψ j(x)ψ j(d)
m LΣ

j = 1

∞
F(t– θ)h j(θ)dθ

0

t
(40)

Based on random vibration theory, the spectral den-
sity function of yb(x, t) can then be given by

   Sybyb
(x, ω) = 1

2π Rybyb
(x, τ )e– iωτdτ

– ∞

∞

   
= SFF(ω)

ψ j(x)ψ j(d)ψk(x)ψk(d)

( m L)2Σ
k = 1

∞
H j(ω)Hk(– ω)Σ

j = 1

∞

(41)

where SFF(ω) is the power spectral density function
of F(t);

Rybyb
(x, τ)=E[yb(x, t)yb(x, t+τ)] (42)

   H j(ω) = 1
(ωj

2 – ω2) + iβ jω
(43)

Let

Sybyb
(x, ω)=SFF(ω)B(x, ω) (44)

   B(x, ω) =
ψ j(x)ψ j(d)ψk(x)ψk(d)

( m L)2Σ
k = 1

∞
Σ

j = 1

∞

   ⋅ H j(ω)Hk(– ω) (45)
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VIII. DYNAMIC VEHICLE LOAD SPECTRUM

The dynamic vehicle load can be experimentally
determined for a particular stretch of pavement.  As
the process of pavement roughness is a stationary
Gaussian random process with zero mean, the load is
essentially random in nature and is assumed to have
properties of a stationary Gaussian random process
with zero mean.  A comprehensive description of the
dynamic vehicle load can be obtained using power
spectral density function, called dynamic vehicle load
spectrum.

Since the dynamic vehicle load F(t) is defined
by

F(t)=c0(Z−y)+k(Z−y)=f(t)−m1Z (46)

the spectral density function of F(t) can then be ap-
proximately given by

SFF(ω)=Sff(ω)+  m1
2 ω4Szz(d, ω) (47)

Substituting Eqs. (13) and (21) into Eq. (10) with in-
troducing Eqs. (19), (45), and x=d, gives

   
SZZ(d, ω) =

( Hy(ω)
2
B(d, ω) + H f(ω)

2
)S ff(ω) + Hy(ω)

2
Syryr

(ω)

1 – m1
2ω4 Hy(ω)

2
B(d, ω)

(48)

Substituting Eq. (48) into Eq. (47), the one-sided dy-
namic vehicle load spectrum, SFF(ω), is then given
by

SFF(ω)=Tf(ω)Sff(ω)+Tr(ω)Syryr
(ω) (49)

or in matrix form

   
SFF(ω) = T f(ω) Tr(ω)

S ff(ω)

Syryr
(ω)

(50)

where

   
T f(ω) = 1 + m1

2ω4
Hy(ω)

2
B(d, ω) + H f(ω)

2

1 – m1
2ω4 Hy(ω)

2
B(d, ω)

(51)

and

   
Tr(ω) = m1

2ω4
Hy(ω)

2

1 – m1
2ω4 Hy(ω)

2
B(d, ω)

(52)

Note that as the constant flexural rigidity, EI, of the
bridge approaches infinite, Eqs. (51) and (52) can be
further simplified.  The simplified versions of Eqs.
(51) and (52) have been developed by the authors  (Lin
and Weng, 2001) for dynamic vehicle loads on “rigid”
pavement, due to the passage of the vehicle moving
along a rough road surface and can be respectively
expressed as

   T f(ω) = 1 + m1
2ω4 H f(ω)

2
(53)

and

   Tr(ω) = m1
2ω4 Hy(ω)

2
(54)

The mean square of F(t) is related to SFF(ω) by the
equation

   σF
2 = SFF(ω)dω

0

∞
(55)

If the SFF(ω) is integrable, the closed-form solution
of  σF

2  can be evaluated by the formal integration of
Eq. (55).  Unfortunately, it is limited in practical
cases.  Thus, the values of  σF

2  must be evaluated by
numerical processes and a cut of frequency, ω, must
be applied on this numerical integration.  For conve-
nience of numerical calculation, the SFF(ω), in this
study, has been evaluated at equal frequency incre-
ments ∆ω, successive values of the function being
identified by appropriate subscripts.  The value of the
integral can then be obtained approximately by sum-
ming these ordinates multiplied by appropriate
weighting factors.

IX. MAGNITUDE OF DYNAMIC VEHICLE
LOAD

The magnitude of dynamic vehicle load depends
on the characteristics of vibrations of the bridge, the
pavement roughness, the vehicle speed, and the sus-
pension system of the vehicle.  A parameter used to
characterize the magnitude of the dynamic vehicle
load is the ‘Dynamic Load Coefficient’ (DLC), which
is defined as

   DLC =
RMS dynamic vehicle load

Static vehicle load =
σF

m1g
(56)

Under normal operating conditions, DLC’s of
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0.1-0.3 are typical for the case of vehicle-road pave-
ment interaction (Ervin et al., 1983; Hu, 1988;
Magnusson et al., 1984; Sweatman, 1980; 1983).
Note that the DLC is an important parameter in de-
sign and evaluation.  The variation of dynamic ve-
hicle load causes subtle problems and contributes to
fatigue, surface wear, and cracking of concrete that
leads to corrosion.  Sweatman (1983) measured val-
ues  up  to  0 .4  for  par t icu lar ly  poor  tandem
suspensions.  According to Hahn, measured peak dy-
namic vehicle loads usually exceed the root mean
square (RMS) levels by a factor of about 3.  This is
consistent with a Gaussian probability distribution.

X. NUMERICAL EXAMPLES

The proposed solutions are useful in evaluating
the variation of dynamic vehicle load and the DLC
for a specified vehicle speed and pavement roughness.
Numerical examples of a simply-supported bridge are
presented as follows.

1. Parameters Considered in Analysis

In analyses of numerical examples, the param-
eters of vehicle weight, suspension stiffness, and sus-
pension damping were, respectively, taken as 294 kN,
3220 kN/m, and 9 percent of the critical damping.
The vibration frequency of the vehicle system was
equal to 10.4 rad/s (1.65 Hz).  Three different ve-
hicle speeds were considered, 60, 100, and 140 km/
hr.

 It is assumed that a road profile is a realization
of a random process that can be described by a power
spectral density function.  Four different classes of
pavement roughness (including: very good, good,
average, and poor pavements) for principal roads were
used in the analyses.  In the parametric study, the road
spectra suggested by LaBarre et al. were used to
model the road pavement roughness.  The parameters
n0, ω1, and ω2 in Eq. (19) were taken as 1/2π (cycle/
m), 2.05, and 1.44, respectively.  The effect of en-
gine motion on vehicle vibration was disregarded in
numerical analyses.

The bridge was modeled as a simply-supported
bridge.  The mass per unit length  m  and flexural ri-
gidity EI of the bridge were taken as 11000kg and
120×106 kN m2, respectively.  The modal damping
ratios were assumed to be 0.02. Span length of 40 m
was considered in this study.  The first three modal
frequencies of bridge vibration were 3.3, 12.9, and
29.1 Hz.

2. Numerical Results

The effects of vehicle speed and pavement

roughness on the standard deviation of dynamic ve-
hicle load are shown in Fig. 2.  As shown in this
figure, the standard deviation of dynamic vehicle load
increases with the increases in vehicle speed and
pavement roughness.  In the figure, Zones 1 to 4 cor-
respond to very good, good, average, and poor
pavements, respectively.  Fig. 2 also shows that, for
a specified vehicle speed, as the value of pavement
roughness coefficient S(n0) increases four times (e.g.
the value of S(n0) changes from 2×10−6 m3/cycle to
8×10−6 m3/cycle or from 8×10−6 m3/cycle to 32×10−6

m3/cycle), the standard deviation of dynamic vehicle
load increases two times.  This observation indicates
that, for a specified vehicle speed, the standard de-
viation of dynamic vehicle load is proportional to the
square root of the pavement roughness coefficient
S(n0). This conclusion can be further demonstrated
from Eq. (55) with the help of Eqs. (49) and (19).  As
shown in Eq. (49), if the effect of engine motion on
vehicle vibration is disregarded, the spectrum SFF(ω)
is proportional to the pavement roughness coefficient
S(n0).  Then, the variance  σF

2  of dynamic vehicle load
is also proportional to the pavement roughness coef-
ficient S(n0).  In other words, the standard deviation
of dynamic vehicle load is proportional to the square
root of the pavement roughness coefficient, S(n0), for
a specified vehicle speed.  It is noted that, in general,
the effect of engine motion on dynamic vehicle load
is small due to significant difference between the fre-
quency of engine motion and of vehicle vibration.

Figure 3 shows the relation between the DLC
and vehicle speed for four different classes of pave-
ment roughness from very good to poor conditions.
As shown in Fig. 3, the DLC depends on vehicle speed
and pavement roughness.  The DLC increases with
the increases in vehicle speed and pavement
roughness.  If the effect of engine motions on vehicle
vibrations is disregarded, the DLC is also proportional
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Fig. 2 Standard deviation of dynamic vehicle load versus vehicle
speed for four different classes of pavement roughness
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to the square root of the pavement roughness coeffi-
cient S(n0) for a specified vehicle speed.  Note that
the DLC is proportional to the standard deviation of
dynamic vehicle load.  Fig. 3 also shows that, for the
conditions of good and average pavements (Zone 2
and 3) with vehicle speeds in the range of 60 to 100
km/hr, the values of DLC are in the range from 0.05
to 0.26. Note that, under normal operating conditions,
DLC’s of 0.1-0.3 are typical (Ervin et al., 1983; Hu,
1988; Magnusson et al., 1984; Sweatman, 1980;
1983).

XI. CONCLUDING REMARKS

This study develops a spectral approach for
evaluating the dynamic vehicle load due to the pas-
sage of a vehicle moving at constant speed along a
rough bridge surface.  Based on the assumptions of
linear elastic and stationary Gaussian random
responses, a simple closed-form solution for predict-
ing the variation of dynamic vehicle load on bridge
decks is proposed.  It is concluded that if the effect
of engine motion on vehicle vibration is disregarded,
both the Dynamic Load Coefficient (DLC) and stan-
dard deviation of dynamic vehicle load on bridge
decks are proportional to the square root of the pave-
ment roughness coefficient S(n0) for a specified ve-
hicle speed.  The dynamic vehicle loads vary signifi-
cantly with vehicle speed and pavement roughness.
However, there is no specific consideration for ve-
hicle speed and pavement roughness in the related
specifications of AASHTO.

It is noted that a real vehicle is much more com-
plex than the simplified model adopted in this study,
and the use of the calculated results according to the
proposed solutions is subject to errors resulting from
the simplification of the analytical model.  However,
the procedure developed herein can be extended to

more complex situations because complete descrip-
tions of the motion of both the vehicle and the bridge
are maintained in the solution process.

NOMENCLATURE

A0 amplitude of engine force
c0 damping coefficient of vehicle suspension

system
f engine-induced force
F dynamic vehicle load
H frequency response function or transfer func-

tion
H* complex conjugate of H
k spring constant of the vehicle suspension sys-

tem
m1 vehicle mass
n spatial frequency
R autocorrelation function
S power spectral density function
S(n0) pavement roughness coefficient
V vehicle speed
Y modal amplitude of bridge vibration
yb bridge deflection due to dynamic vehicle load

F
yb1 bridge deflection due to vehicle gravity force

m1g
yr pavement surface elevation
Z vehicle displacement due to dynamic vehicle

load F
Z1 vehicle displacement due to vehicle gravity

force m1g
δ delta function
θ random phase angle

 σF
2 ensemble mean square of F

ψ mode shape of bridge vibration
ω0 circular frequency of engine force
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