
www.elsevier.com/locate/csi

Computer Standards & Interfaces 26 (2004) 377–399
Designing an XML-based context-aware transformation framework

for mobile execution environments using CC/PP and XSLT

Tzu-Han Kao*, Shyan-Ming Yuan

Department of Computer and Information Science, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan
Received 13 July 2003; received in revised form 28 September 2003; accepted 28 September 2003
Abstract

Mobile and embedded devices provide the function of surfing the Internet anytime and anywhere. There are several kinds of

mobile execution environments (MExE) built on these appliances, such as WAP, J2ME, PJava, and Microsoft CLI. It is difficult

for programmers to write a program only once and then execute it on these mobile devices. The primary reason is there are a

variety of devices with different runtime environments and diverse hardware/software capabilities. Therefore, in order to

accomplish the following: (1) applications can be designed regardless of what kind of the target mobile device belongs to; (2)

the program of an application can be automatically adapted to the target MExE environments. We propose an XML-based

Context-Aware transformation Framework (X-CAF). In this framework, we design an XML-based programming model to

divide programmers into two roles, user interface (UI) designer and logic programmer, so as to efficiently develop an

application in separation-of-concern way. Besides, we exploit the XSLT/XPath transformation mechanism to transform

documents of XML User-interface Language (XUL) and LoGic Markup Language (LGML) into others of the target MExE

languages by means of the context information, device capabilities and user preferences. Moreover, to generate codes of the

applications flexibly and efficiently, we divide the code processing of an application into that of the user interface occurring at

runtime and that of the event-handling logic occurring at static time. In brief, our paper contributes an XML-based application

development environment and transformation framework to the access to device independence.
D 2003 Elsevier B.V. All rights reserved.
Keywords: Transformation; Context-aware; Mobile execution environment; XSLT; CC/PP; XML; XUL; Programming
1. Introduction

Mobile and wireless technologies have been

changing over the past few years. Through mobile

and embedded devices, such as PDAs, palms, smart

phones, and Java phones, people can surf the content
0920-5489/$ - see front matter D 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.csi.2003.09.003

* Corresponding author. +886-3-571-2121x59265 (Lab.),

+886-3-571-2121x56602 (Office); fax: +886-3-572-1490.

E-mail addresses: gis89539@cis.nctu.edu.tw (T.-H. Kao),

smyuan@cis.nctu.edu.tw (S.-M. Yuan).
on the Internet. Besides, they can download and install

applications from a content provider’s server over the

Internet, like Java game download. Currently there

have been four kinds of the mobile execution environ-

ments on plentiful mobile appliances. These environ-

ments include WAP [2], J2ME [4,5], PersonalJava [3],

and Microsoft CLI. In the Microsoft .NET platform

[25], the mobile runtime environment supported can

be classified into: (1) ASP .NET Mobile Pages [27]

and (2) .NET Compact Framework [28]. The former

attempts to support major PDAs, cell phones, pagers,



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399378
and other devices, while the latter supports all equip-

ments running Pocket PC 2000, Pocket PC 2002,

Pocket PC Phone Edition, etc. Called Mobile Execu-

tion Environments (MExE) in the standard [1], these

environments—class mark 1 to 4—are defined by the

3GPP working groups. They stand for WAP, J2ME,

PJava, and Microsoft CLI, respectively.

Each of these mobile runtime environments has

abundant resources and application interfaces (APIs)

for application developing. Nevertheless, in applica-

tion developers’ points of view, developing applications

for certain platform of the execution environments,

they difficultly execute these applications on any other

of the mobile execution environments. For example, a

J2ME application cannot be executed on a cellular

phone merely with a WAE platform (the runtime

environment of WAP). Due to a wide range of the

client devices with diverse hardware/software capabil-

ities, a number of researches focus on device indepen-

dence [6–9] and context-aware computing [10,11] for

mobile execution environments.

In our paper, in order to achieve two objectives: (1)

applications can be designed without concerning

about what kind of the target mobile devices belongs

to; (2) the program of an application can be automat-

ically adapted to the target MExE environments. We

propose an XML-based Context-Aware Transforma-

tion Framework (X-CAF), and design two primary

techniques an XML-based programming model and a

context-aware transformation mechanism.

The XML-based programming model divides pro-

grammers into two roles. One role is a user interface

(UI) designer who focuses on devising the user

interface of an application by writing an XUL

[22,23] document, an XML-based user interface de-

scription language. The other role is a logic program-

mer who concentrates on implementing the event-

handling logic of the application by writing an LGML

document. LoGic Markup Language (LGML) is an

XML-based language that we design can describe the

event-handling logic of the application, explained in

Section 4. XUL and LGML share the same charac-

teristic of being all XML-based languages, the objec-

tives of which vary, yet. XUL is capable of describing

the user interfaces of the applications running on

desktop computers, while LGML can generally de-

scribe the event-handling logic with computational

statements: if-then-else condition-control statements,
for-loop flow-control statements, etc. This division

can accelerate developing applications, because each

role only devotes himself to designing the user inter-

face or the event-handling logic.

The context-aware transformation mechanism

aims to solve the following problem. This problem

is encountered during our system transform a program

of an application into the codes written in the MExE

languages. Some widgets on the user interfaces need

to be adjusted during the transformation, or they may

not be displayed on screens of some devices. These

widgets are called device-sensitive widgets in this

paper. An image element, for example, can be shown

on the screens of Java phones if its type is PNG; if

remaining PNG, it cannot be displayed on those of the

WAP-capable devices. Namely, without being adapted

appropriately in terms of the context information of

these devices, the widgets might not be displayed on

some devices; accordingly, a context-aware transfor-

mation mechanism is designed to solve it. We trans-

form XUL and LGML documents into the others with

the syntaxes of the target MExE languages by apply-

ing XSLT/XPath [12], and adapt device-sensitive

widgets on user interfaces to the context profiles of

the mobile devices based on the context information

user device profile and user preference profile.

Also, in order to adapt and transform XUL and

LGML documents, and compile their output codes

(translate a source program into a binary executable

code) efficiently and flexibly, we divide the entire

process of the LGML and XUL documents into two

sub-processes which process XUL and LGML docu-

ments separately: (1) to transform XUL documents

at runtime, called runtime XUL transformation, and

compile the transformed data subsequently, called

runtime compilation; (2) to transform LGML docu-

ments at static time, named static-time LGML trans-

formation, and compile the transformed data sub-

sequently, named and static-time compilation. These

operations will be illustrated in Section 5.3. Briefly,

in this system, we emphasize on developing an

XML-based programming model and context-aware

transformation framework to approach cross-platform

and device-independent.

This paper is organized as follows. Section 2 is an

introduction to some related work and the back-

ground technologies. After an overall explanation

of the context-aware transformation framework in



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 379
Section 3, we describe an XML-based programming

model using XUL and LGML in Section 4. Section

5 presents the context-aware transformation mecha-

nism including user interface adaptation, code trans-

formation, and code serialization for applications.

Finally, we conclude and discuss future work in

Section 6.
2. Backgrounds

2.1. Context information

There are several important international working

groups who endeavor to provide the related technol-

ogies for the context information and device-inde-

pendence of the mobile devices, such as Device

Independence Working Group (DI WG) [9], Com-

posite Capabilities/Preferences Profile Working

Group (CC/PP WG) [13–16] in W3C. In addition,

they define and standardize device capabilities and

user preferences of the mobile and embedded devices

for authoring, adaptation and presentation of Web

content and applications that can be delivered effec-

tively through different access mechanisms.

CC/PP [13–16] derives from earlier work done

within the W3C Mobile Access Interest Group and the

WAP Forum’s User Agent Profile working group. In

the CC/PP framework, the context information of the

mobile and embedded devices is collected in appear-

ance of profiles in the XML/RDF format [17,18].

These profiles described with XML come into two

advantages—validity and well-formedness. Further-

more, the context profiles can facilitate resources

exchange on the Internet after using the RDF frame-

work with three-tuples (object, type, value).

WAP UAProf [19] is a general and extensible

framework from the CC/PP framework. It is stan-

dardized by the WAP Forum and proposed to specify

user preferences and device capabilities. DELI [20],

an open-source library developed at HP Labs,

exploits Java servlets as server components to re-

solve HTTP request messages containing CC/PP or

UAProf context information. It implements a nego-

tiation protocol between WAP devices and servers

(e.g., Wireless profiled HTTP). We use it as the

context-aware service in this framework, explained

in Section 3.
2.2. XML-based user interface description

There are several markup languages capable of

describing user interfaces of applications: XUL

[22,23], UIML [21]. XML User-interface Language

(XUL) is designed as a cross-platform language to

describe the graphical user interfaces of the applica-

tions on desktop computers. It works to make the user

interfaces of the applications portable. Being an

XML-based user interface description language as

well, UIML [21] provides a user interface model with

five description blocks, including description, struc-

ture, data, style, and events. Because of the generality

of UIML, it can describe the user interfaces of the

applications running on desktop computers, and even,

small and handheld devices.

Although the two languages get developed, in our

research, at the present time, we focus on transforming

codes of applications to enable those to be run on the

mobile execution environments. Thus, it is not neces-

sary to apply sophisticated methods to our system

design. In other words, it is meaningless to define the

< toolbar>, < scrollbar>, < progressmeter>
elements in the user interface description language

for the applications on the small and display-limited

handsets, because these control elements cannot be

displayed on the screens of these devices.

Therefore, we abstract useful elements from the

original XUL elements to describe the widgets on the

screens of the display-limited devices. These abstract-

ed ones are sufficient to describe the widgets of the

user interfaces of the applications on the mobile or

small handheld devices, such as the < textbox>
element representing a Text Field. The other elements

are arranged in Table 2 in Section 5.3.

2.3. XML-based transformation

To transform an XML document into another, we

can apply SAX, DOM, and XSLT/XPath. In this

research, we exploit the XSLT technology [12] to

convert XML documents to others with the syntaxes

of the target MExE languages. We can write an XSLT

style sheet to specify ‘‘How to transform an XML

document into another with the syntax of the target

language we want’’. A template, in a style sheet, is

used to represent a fragment of a result tree (a trans-

formed tree) to substitute for some parts of an input



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399380
XML document. XPath, a language for addressing

parts of an XML document, is the method which

provides the path expression mechanism to select the

sets of the nodes of an input tree; this use of XPath is

described in Ref. [34].
3. XML-based Context-Aware Framework

(X-CAF)

(Fig. 1).

3.1. Device tier

This tier involves the mobile and embedded devi-

ces capable of downloading applications from the
Fig. 1. The overview of our system framework inclusive of four la
servers over the Internet. On these devices, all of the

four MExE environments are capable of running

applications. For example, the execution environment

of Java phones is composed of MIDP, CLDC, and

KVM, supports J2ME MIDlets running.

3.2. Bearer tier

This tier consists of wireless access networks

(2.5G, 3G, wireless LAN, etc). It provides the

functionality for these client devices to request

services at the server side, and to obtain required

information from the servers: via 2.5G or 3G

wireless networks, a Java phone can download a

J2ME game application from some content provid-

er’s server.
yers: Device Tier, Bearer Tier, Portal Tier, and Service Tier.



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 381
3.3. Portal tier

In the tier, there is a portal, named MExE Server,

responsible for listening requests sent from client

devices and replying the required data to these client

devices. There could be two types of the protocol to

deliver the context information of the client devices.

One transports profiles over Wireless Profiled HTTP

(W-HTTP) and the other transports profiles over a

combination of WSP and HTTP 1.1. We use DELI,

which serves as the context resolver, can parse and

resolve the request message containing the requesting

client’s context profiles. Essentially, it takes advantage

of Java Servlet [24] and JENA [20]. Java Servlet

technology provides a mechanism that web develop-

ers can extend the functionality of a Web server.

JENA supports some application interfaces (APIs)

for retrieving the context information related to client

devices. Through this mechanism, this system can be

aware of user preferences and device capabilities to

adapt the device-sensitive widgets of the user inter-

faces to the context profiles of the devices.

3.4. Service tier

This tier contains several core components includ-

ing: CC/PP and UAProf storage, component reposi-

tory, component manager, XUL and LGML pro-

cessors, context-aware service (CAS), and MExE

Language Compiler (mexe-compiler). In order to

facilitate storing profile information persistently and

retrieving the information efficiently, we design a CC/

PP and UAProf storage to store the context profiles of

the devices, and a component repository to store the

executable or interpretable codes—the codes which

will be read and processed by the user agents of client

devices directly—of the event-handling logics. Be-

sides, this system offers two kinds of processors, XUL

processor and LGML processor, for processing XUL

and LGML documents, respectively. The following

details these server components.

3.4.1. CC/PP and UAProf

It serves as a database storing the context profiles

of the devices. It can keep track of the profile

information of the devices beforehand. Namely, when

an agent adapts an application, it can directly obtain

the necessary profile from the repository without any
other work. If the required profile does not exist in the

database unfortunately, the agent will obtain the

profile from other context providers over the Internet.

In addition, the storage can cache the context profiles

which have been requested by certain clients. This

way can reduce the size of the messages exchange

between the client devices and server. A client device

has no need to send its complete profile. Instead, it

sends the difference between the present hardware/

software configurations and the profile stored in this

storage. For example, a client boosts the memory size

of his device from 32 MB to 64 MB, but other

configurations of hardware utilities are not changed.

In this case, the device can deliver its profile infor-

mation within only the memory size in its requesting

message to the server.

3.4.2. Component repository

The repository serves as a database system helping

store the complied codes of the event-handling logics

of the applications, and the UI DOM trees of the

applications permanently. In order to retrieve the

required component directly, we can store the codes

and trees of an application in the repository upon

programmers compete their designing of the applica-

tion. As a result, it avoids processing these compo-

nents when a client is requesting this application; also,

it can reduce the cost of waiting for the response of

application downloading.

In the repository, besides, three main tables are

designed to preserve the information related to the

deployed applications: (1) application table recording

which applications have been saved, (2) application

component table recording information related to the

compiled codes of the event-handling logic segments

of the applications, and (3) application UI table

recording information related to the UI DOM trees

of the applications. In brief, the storage cannot only

store the deployed applications permanently, but also

retrieve them efficiently.

3.4.3. XUL and LGML processor

The two processors, XUL processor and LGML

processor, serve as the components which can process

XUL and LGML documents, respectively. The former

can validate the input XUL documents, and send the

UI DOM which is generated by parsing these docu-

ments into the component repository; moreover, it has



Table 1

The outputs generated from the MExE-compiler

Target Output code

MExE platform
XUL LGML

WAP No input No input

J2ME Java bytecode

(conform to

requirements

of J2ME)

Java bytecode

(conform to

requirements

of J2ME)

PJava Java bytecode

(conform to

requirements

of PersonalJava)

Java bytecode

(conform to

requirements

of PersonalJava)

Microsoft CLI C# (conform to

the MSIL format)

C# (conform to

the MSIL format)

T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399382
XUL transformers to transform UI DOM trees. Sim-

ilarly, the latter has the function to parse LGML DOM

trees and transform these results.

The two processors are also involved in the devel-

opment toolkit to support the identical functionality

for logic programmers or user interface designers to

process LGML and XUL documents. In this toolkit,

the LGML processor can parse the input LGML

documents and transform the tree generated; in addi-

tion, it can compile the result trees transformed from

the transformation. However, unlike the LGML pro-

cessor, the XUL processor in this toolkit has no

component to transform UI DOM trees into result

trees, but can validate and parse XUL documents. It is

because transforming UI DOM trees is needless at the

developer site. The detail will be explained in Sec-

tions 4.2 and 5.3.

3.4.4. MExE language compiler

MExE Language Compiler (mexe-compiler) can

compile each of the source programs generated from

the XUL transformer of the XUL processor into its

specific executable code. For example, for the J2ME

and PJava platforms, a Java source program (a .java
file) generated is compiled into Java bytecodes

(.class files). Yet in the Microsoft .NET platform,

source programs a .cs file (C# source code) is

compiled into the MSIL code (the intermediate code

of .NET). The similarity of the two types of the

compiled codes is that they are some kinds of the

intermediate codes, which can be executed on their

individual virtual machines, such as KVM in J2ME

and Common Language Runtime (CLR) in the .NET

platform. The difference between them lies in the

format of the compiled codes.

Nonetheless, not all the generated source programs

need to be compiled. For example, .wml (WML) and

.wmls (WML Script) codes need no compilation,

since they can be interpreted by user agents of client

devices. From this point, if the source programs of

Java and C# were generated, they would be compiled

into executable codes by the mexe-compiler. Other-

wise, when the programs of WML and WML Script

are generated, they are not compiled. Table 1 summa-

rizes the output codes of the compilations depending

on different kinds of the target MExE languages. In

this table, output codes can be classified into two

types; one type is XUL and the other is LGML. With
the different kinds of the inputs and the target lan-

guages, the types of the compiled codes will vary. For

instance, if the target language is Java, the generated

source program, a .java file, will be compiled into

the Java bytecode. If the target language is WML, the

generated source program, a .wml file, will not be

compiled.

3.4.5. Component manager

It provides the functions for context-aware agents

of querying and obtaining the compiled or interpret-

able codes of the event-handling logics, and the UI

DOM trees of the user interfaces. In its implementa-

tion, it takes the advantage of Java RMI interfaces for

accepting the applications deployed from the user

interface designer and logic programmer side. In other

words, at the end of writing an XUL document and an

LGML document, a programmer deploys his applica-

tion into the server, using the development toolkit to

process the XUL and LGML documents. Successfully

processing these documents, executable and inter-

preted codes of LGML and a UI DOM of XUL will

be generated and delivered to the server. Sections 4.2

and 5.2 will discuss these procedures in detail.

3.4.6. Context-aware service (CAS)

It principally maintains the context aware agents.

These agents can be divided into two categories. One

is the agents, which are active to perform the request-

ing clients’ jobs. The other is the initiated and inactive

agents, maintained in the agent pool for waiting

clients’ requests. The term ‘‘inactive’’ means that if



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 383
an agent is inactive, the thread of the agent will be

paused for waiting certain request. In this system, an

agent is composed of a thread and a state actually. The

server will wake up a waiting agent to serve the

requesting client, when receiving the client’s request

message. If the agent has returned the application that

the client requests, the agent will be collected back to

the pool, and be inactivated. In this manner, the server

can recycle agents to avoid creating and initiating

agents, while receiving clients’ requests.

3.4.7. MExE server

MExE server, a web server, can receive and resolve

HTTP request/reply messages for application down-

loading, and transmit the requesting messages to the

DELI service to resolve and retrieve the context

information of the requesting client.

From the explanation of the system components

above, we consider the following scenario to observe

the interaction among these system components. A

user, for example, is using his Java phone to connect

to our system. He selects the function to download an

application. Then, his device transmits the request

message to the MExE server. When the server

receives the request message, it passes the request to

the DELI service to retrieve the context profiles

related to this client. Next, the context information

is sent to the CAS server, which allocates an agent

from the agent pool to serve him upon receiving the

message. The agent will later obtain the UI DOM tree

of the user interface and the Java bytecode of the

event-handling logic, both of which comprise the

requested application. For user interface manipulating,

it transforms the UI DOM tree through the XUL

transformer, and thereupon gets the stream result

formed from the result tree with the syntax of Java

language. It serializes the result into a source program

(a .java file)—the term ‘‘serialize’’ means writing the

content of the StreamResult object into a file which

could be the source programs of the target MExE

languages. Following that, it would compile the

program into a Java bytecode (a .class file) via the

mexe-compiler. Ultimately, the agent aggregates the

.class files of the user interface and event-handling

logic into an application unit .jar file, and then

returns it to the requesting client.

This process needs two key measures: (1) context-

awareness is used to get aware of the context infor-
mation of the mobile devices, and (2) context-aware

transformation is used to transform DOM trees into

the result tree whose content syntactically conforming

to the target MExE languages. The detail of the

mechanisms will be explained and discussed in Sec-

tions 4 and 5.
4. XML-based programming model

4.1. LoGic Markup Language (LGML)

In order to achieve the objectives mentioned in

Section 1, we can transform a program in some

programming language into a program in another

language: transforming programs written in Java

into others written in C + + . However, this way is

complicated for us. Moreover, in this paper, we

emphasize on transforming an XML document into

another with the syntaxes of the MExE languages.

Therefore, we design LGML capable of describing

the common part of the computation logic of these

MExE languages, and exploit the XSLT/XPath

transformation mechanism to accomplish the lan-

guage transformation.

Peripherally the features of LGML and XUL are

different, but essentially the two languages have the

same intention. LGML aims to describe the event-

handling logic in the XML format. The event-han-

dling logic is a section of an application, containing

mathematical, comparison computations, and method

invocations, etc. By composing these statements in

the functions of an LGML document, each of these

can be specified to deal with an event triggered by a

widget of the user interface. A statement is com-

posed of several expressions, each of which is a

series of variables, operators, and method calls.

Through LGML, a logic programmer can write

compound expressions by combining expressions to

construct the logic section of an application in the

XML format. For example, a programmer layouts a

button on the user interface of an application, and he

can write the Increaser() method in the LGML

document to handle the button pressed, shown as

Listing 1 (other details of the LGML syntax are

illustrated in the Appendix A).

Programmers can use LGML elements to write

the event-handling logic. For instance, the < lgml:



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399384
method> element expresses a method declaration

block. The < lgml:in> element contains some child

elements, which are the arguments needed passing

into this method. In LGML, there is an element

< lgml:init> similar to the < lgml:in> element.

Differently, it is used to declare and initiate the local

variables in a flow-control element < lgml:
for>. . . < /lgml:for>, or a method declaration

block < lgml:method> . . . < /lgml:method>.
Listing 2 demonstrates the Java source program

transformed from the LGML description in Listing

1. Shortly speaking, the program of the event-han-
dling logic expressed in LGML is capable of pro-

viding several advantages, listed as follows:

� Transforming a source into others in the target

MExE languages easily
� Providing the characteristics of cross-platform and

device-independence
� Neglecting which MExE environment to run

applications when writing the programs of the

applications.

Listing 1. A method declaration in LGML:
Listing 2. The LGML expression of Listing 1 is

transformed into the following code in Java:
4.2. The programming model

Fig. 2 indicates the programming model of this

system. In this model, the program of an applica-

tion is separated into two divisions. It covers the

XUL description for the user interface, and the
LGML expression for the event-handling logic.

Such a separation offers two merits. First, it makes

programmers develop an application with separa-

tion-of-concern characteristic. A programmer can

devote himself to writing the program of the user

interface of an application without considering how

to implement the event-handling logic of the appli-

cation. On the contrary, the other programmer can

center on writing the event-handling logic section

without understanding how to layout the widgets of

the user interface. Secondly, this separation provides

flexibility for adapting user interfaces at runtime

and efficiency for generating the codes of the

event-handling logics at static time. We will take

the proceeding two examples to explain what sit-

uations encountered if an application is not sepa-

rated into two divisions, a user interface and an

event-handling logic.



Fig. 2. The programming model and its sequence flow.

T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 385
The first example is that the whole program of

an application is not transformed until a client

requests for the application. Under this circum-

stance, the transformation and compilation occur

while the system receives the client’s request. It

leads the requesting client to spend more time

awaiting the feedback than that in the separation

manner. As to the second example, the transforma-

tion and compilation of the whole program have

been completed before the system receives any

client request. In this case, the executable code of

the application can be returned to the client’s

device directly. However, this example causes loss

of a good opportunity to adapt the application in

accordance with the client’s context profiles. In

other words, it loses flexibility to dynamically adapt

the device-sensitive widgets of the user interfaces to

a variety of the devices at runtime. For instance, a

programmer can write the < image> element in

his XUL document to display an image on the user

interface. Owing to the transformation and compi-

lation occurring before receiving any request, the

size attribute of the < image> element has been

assigned some value. Perhaps, the image cannot fit

the screen of certain device. Therefore, we design
static-time and runtime mechanisms to deal with the

user interfaces and event-handling logics separately.

Section 5.2 will discuss these details.

From the previous considerations, dividing an ap-

plication into a user interface and an event-handling

logic can benefit our system, hence the flexibility and

the efficiency. Regarding efficiency, because the event-

handling logic is device independent, the LGMLDOM

tree can be transformed into result trees. The stream

results (explained in Section 4.2) are formed from the

result trees, and then serialized into the source pro-

grams of the MExE language. The programs of J2ME,

PJava, and C# need to be compiled into their

corresponding executable codes, whereas those of

WML andWMLS require no compilation. It is because

codes of WML and WMLS can be interpreted by user

agents of the WAP-capable devices. The compiled or

interpretable results, in the end, are delivered to the

server and stored into the repository. In this way, an

agent can obtain the event-handling logic from the

repository directly while serving a client. Respecting

flexibility, the widgets of the user interface are adapted

properly, when the application that the user interface

belongs to, is requested. The adaptation (explained in

Section 5.2) can be accomplished by assigning suitable



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399386
values to the attributes of the device-sensitive widgets

on the basis of the client’s context profiles. The

following procedures illustrate how to process XUL

and LGML documents (as shown in Fig. 2).

The XUL document processing:

1. (1.1): When finishing writing an XUL document, a

user interface designer uses the development

toolkit, inclusive of the XUL processor, to validate

and parse the XUL document.

2. (1.2): Within the XUL processor, an XUL parser is

capable of checking well-formedness and validity

for the XUL document. With no error found in the

document, the XUL parser parses it into a UI DOM

tree, and then transmits the tree to the component

manager on this system.

3. (1.3): When the manager receives the tree, it checks

whether the tree has been deployed in the repository.

4. (1.4): If there is no such a tree found in the

repository, the input tree will be stored in the

component repository, and its identifier will be

registered into the component registry. For dupli-

cated-deployment handling of the applications,

such a number of policies as replacement of the

previous one with the new one are designed. In the

case, when an application is being deployed, the

new one replaces the original one in the repository.

The LGML document processing:

1. (2.1): Likewise, after a logic programmer completes

writing an LGML document, he uses the develop-

ment toolkit, which contains the LGML processor to

validate and parse the LGML document.

2. (2.2), (2.3): When the processor receives the

document, it also checks the well-formedness and

validity of the document. If no error were found, the

document would be parsed into an LGML DOM

tree and then passed to the LGML transformer.

3. (2.4), (2.5): Next, the transformer transforms the

tree into the four kinds of the result trees through

each transformation style sheet for the target

languages. Each of stream results (javax.xml.
transform. stream.StreamResult) ,
formed from a result tree, is generated; besides,

the stream results are serialized into source

programs. Then, the mexe-compiler is notified

to compile the source programs including the
languages of J2ME, PJava, and C#, except that

of WAP. For instance, if the serialized source

program was a .java file, the mexe-compiler

would be notified to compile the program into a

Java bytecode. Finally, these executable binary

codes of J2ME, PJava, and C#, and interpretable

files of WML are delivered to the component

manager.

4. (2.6), (2.7): When the component manager receives

these programs, it examines whether these inter-

pretable or executable programs of the application

have been deployed. If not, the codes will be stored

into the component repository and be registered into

the registry.

In summary, the programming model separates

an application into XUL and LGML documents, for

describing the user interface and event-handling

logic, respectively. Besides, to adapt user interfaces

flexibly, we make the adaptation and transformation

of the user interfaces occur when clients are

requesting. On account of efficiently returning appli-

cations to the requesting client devices, in this

system, programmers can compile the codes of the

event-handling logic upon finishing writing LGML

documents. The details concerning the transforma-

tion and adaptation will be explained in the next

section.
5. Context-aware transformation

5.1. The context information

In Section 4.2, we illustrate a simple example that

the size attribute of the < image> element can be

assigned some suitable values for conforming to the

context profiles of the target devices. To achieve the

user interface adaptation, we exploit the context infor-

mation inclusive of user device profile and user

preference profile based on the CC/PP and UAProf
framework.

By using user device profile, context-aware

agents can be aware of capabilities of user devices.

For example, if an agent was serving a requesting

client, it would retrieve the client’s profiles related

to his context to decide what values assigned for

the attributes of the device-sensitive widgets on the



Fig. 3. On the left, an RDF graph of the user device profile, on the right the RDF graph of the user preference profile.

T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 387
user interface. Fig. 3 depicts the profile of Nokia

6610 and a user preference profile in the Resource

Description Framework (RDF) form. The left profile

describes the several hardware capabilities of Nokia

6610: prf:Vendor and prf:Model refer its man-

ufactory and type, respectively. Some attributes of

the profile can support to adapt user interfaces, such

as ScreenSize, ColorCapable, ImageCapable
attributes. They offer the function to decide how to

present an image element on the screens of the

diverse devices. On the right side, it is user prefer-

ence profile that describes the client’s preferences.

Similarly, the attributes of the profiles provide the

information to aid the user interface adaptation. For

example, the Language attribute set English
means the language mode of the client’s device is

English, and the AllowPushMsg attribute set No

stands for his unwanted interruption.

5.2. User interface adaptation

The section details how to adapt the user interfaces

to the context of mobile and embedded appliances.

Conceptually, assigning different values for some

attributes of the device-sensitive widgets can affect

different displays. For example, the type attribute of

the image element could be PNG for J2MEMIDP, or

WBMP for WAP-capable devices. The length attri-

bute of the TextLabel element can be used to adjust

the length of this label widget on user interfaces. Thus,

by assigning suitable values by means of the context

profiles, the device-sensitive widgets can be adapted to

the specifications of the target devices. This adaptation
occurs before transforming a UI DOM tree into a result

tree. The following sequence shows this procedure:

1. (1): The Java phone transmits the request message

with a header containing an URI of its profile and

the profile-diff information, which is the different

part from the original profile, to the MExE server.

2. (2): When receiving the client’s request, the MExE

server dispatches the request to the DELI service to

resolve the request with a CC/PP header.

3. (3): Next, the request solver parses the request, and

then transmits the result to the CAS server.

4. (4), (5), (6), (7): When receiving the request, the

CAS server assigns an agent to perform the job that

client requests. For example, context-aware agent 1,

shown in Fig. 4, is allocated to serve this client who

is using the Java phone for application down-

loading. The agent invokes the interfaces of the

DELI service to obtain this client’s context in-

formation. As a result, a Vector object (a Java

abstract collection object Ref. [26]) consisting of the

information of the requested profile will be created

and returned to the agent.

5. (8), (9): The agent, after obtaining the context

information, retrieves the executable code (the Java

bytecode in this case) of the event-handling logic

from the component repository depending on the

device’s class mark information. Thus, .class files

comprising the event-handling logic of the appli-

cation are retrieved as well as the UI DOM tree.

6. (10), (11): The agent passes the UI DOM tree to the

XUL transformer. Then, the transformer transforms

the tree into a result tree with the syntax of J2ME



Fig. 4. Interaction diagram of the user interface adaptation.

T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399388
MIDP, and assigns the suitable values to the attri-

butes of the device-sensitivewidgets bymeans of the

client’s context profiles. For example, on the basis of

the ScreenSize, ColorCapable, and Image
Capable attributes in its profile, the value of the

size attribute in an < image> element can be deci-

ded properly. Because the form of the user interface

is a DOM tree before the agent transforms it, to as-

sign values for the attributes is expanding the nodes

which are selected through the XUL-to-J2ME trans-

formation style sheet. Completing that, a result tree

with the syntax of J2ME MIDP is generated; sub-

sequently, source program is formed from this tree.
7. (12), (13): The agent notifies the mexe-compiler

to compile the program .java file into a Java

bytecode. A .class file of the user interface is

generated and packed with the .class files of

the logic of the requested application into a

compressed .jar file.

8. (14), (15), (16): Finally, the agent delivers the

executable code of the application back to the

client’s device.

In this procedure shown in Fig. 4, steps 10–13

are displayed in Listing 3. There are four objects,

CASAgent, XULProcessor, XULTrans-
former, and MexeCompiler. The getApp()



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 389
method of the CASAgent class provide function

to obtain the application which a client is request-

ing for. When the getApp() method is invoked,

the method of the XUL processor to transform an

input UI DOM tree into the result trees would be

invoked. Moreover, the result is serialized into a

program file, such as the .wml file for WAP, and

the .java file for J2ME MIDP or PJava, etc. If the

getApp() method is invoked, the process()
method of the XULProcessor object will be

invoked to transform the input UI DOM tree.

Within the XULTransformer class, we exploit

the APIs of Xalan-Java 2.5.1 [35], which serves as the

XSLT transformation engine in our system, for trans-

forming documents. These APIs are listed as follows.

The javax.xml.transform.Source interface is

implemented by the javax.xml.transform.
dom.DOMSource (used in Lines 19 and 31) class

for passing the input DOM trees. The javax.xml.
transform.Result interface is implemented by the

javax.xml.transform.stream.StreamResult class (used

in Lines 22 and 32) for serializing the stream result

into source programs.

The XULTransformer class provides the

transformToClassLang() method for transform-

ing the input tree into the result trees with the syntax

of target language. Within the method, the jav-
ax.xml.transform.Transformer (Line 34)

class is used for transforming. It can transform the

input tree and then generate its corresponding source

program.Line 34 shows that an arrayTransformer[]
keeps track of four types of the transformers, each of

which can transform the input DOM tree into a result

tree with the syntax of the specified MExE language.

For example, the transformation style sheet referred

by the Transformer[0] object is an XUL-to-

J2ME style sheet, which has the function to trans-

form the input DOM tree into the result tree with the

syntax of J2ME MIDP.

The MexeCompiler class (mexe-compiler

shown in Fig. 1) is responsible for compiling

source files into executable codes. The compi-
leTo() method of the MexeCompiler class ca-

pable of compiling programs of Java or C#.

However, if the results generated by the transformer

were .wml or .wmls files, compilation of the files

would be unnecessary—methods of the Mexe
Compiler class are not invoked for compilation.
In brief, if being the source program of J2ME,

PJava, and C#, the generated code will require

compilation.

In the implementation of compilation (Lines 45

and 50), we invoke the runtime.exec(command
Line) method to invoke external compiling process.

The Java_commandLine object is an array com-

posed of five java.lang.String objects as its argu-

ments. Each of them sequentially corresponds to an

argument of a command line in the console mode. For

instance, we want execute the command c:\>javac
in.java, we can set javac (java compiler) as the first

argument and in.java (a file name of source program)

as the second argument in theJava_commandLine
array. This equals to executing c:\>java in.java
under the console. In current version, our system

compile .java files via javac-bootclasspath
c: \mobileclass \classes.zip-target 1.1
source.java.

Some real-time issues respecting the compilation

are considered as follows. Compiling the program

of an application while the application is requesting

provides flexibility to adapt the user interface of the

application, though it costs more time to wait for

the requesting client. To improve the responsiveness

of returning applications to the requesting clients,

we can consider the following measures: (1) pre-

serve the executable codes or interpretable files of

the applications that have been requested, in the

system repository; (2) replace invoking external

process with invoking some APIs.

In the first approach, when receiving the request

for downloading the same application, the system

determines whether or not the client device’s hard-

ware/software capabilities constraints the running of

this application. If the capabilities satisfied the re-

quirements of the application, this application

would be delivered to the requesting client’s device.

Thus, the executable or interpretable files can be

retrieved directly without any redundant compila-

tion. The second approach reduces the time that the

operating system creates and executes a new pro-

cess. The reason for applying this method is that

invoking external process presumably wastes more

time in context-switch of two processes. Therefore,

to solve it, we can compile source program through

some APIs to diminish time spent in the compila-

tion process.



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399390
Listing 3. Code sections of CAS agent, XUL processor, XUL transformer, and mexe-compiler



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 391
5.3. Code transformation

We have mentioned how to transform XUL and

LGML DOM trees in the last section; however,

when and where the two processes occur differs.

Thus, for the transformation and compilation we

design runtime and static-time mechanisms, which

happen at different intervals. It can improve the

responsiveness when a client is requesting for

application downloading, shown as in Fig. 5. There

are two types of transformations in the XUL

processing flow and LGML processing flow, called
Fig. 5. The processing flows
runtime XUL transformation and static-time LGML

transformation, respectively.

Runtime XUL transformation means that an agent

transforms UI DOM trees into the result trees with

the syntaxes of the four MExE languages, while

receiving a request for the application which con-

tains this user interface. It is demonstrated in Fig. 4,

and its flow is shown in Fig. 5. Some source files

formed from the result tree need to be compiled into

executable binary codes subsequently. This phase is

called run-time compilation. Conceptually, the sce-

nario of adapting user interfaces is mentioned below.
of XUL and LGML.



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399392
When receiving a request message for downloading

a J2ME application, the MExE server allocates an

agent performing the following job. The agent

retrieves the UI DOM tree belonging to the appli-

cation from the component repository; it adapts this

tree and transforms it into a result tree. The steam

result of the result tree will be serialized into a

source program .java file next. Besides, the pro-

gram is compiled into a Java bytecode. In the

process, to transform the document, we apply the

XSLT/XPath technique. Table 2 lists the mappings

of the elements of the user interface from the XUL

tags to its related J2ME MIDP expressions, which is

used in the XUL-to-J2ME transformation style

sheet.

Respecting LGML (Fig. 5), upon completing

writing the program of the logic, a programmer

can transform the LGML trees and compile the

source codes generated locally, named static-time

LGML transformation. In other words, after a

logic programmer writes an LGML document, he

can use the LGML parser of the development

toolkit to validate and parse this document to

get an LGML DOM tree. Following that, he uses

the LGML transformer to transform the tree into

the result trees with the syntaxes of the MExE

languages. Then, the stream results of the result

trees will serialized them into the source pro-

grams. Compiling the program subsequently is

named static-time compilation. Unlike the process

flow of the user interfaces, adapting the logic is

not necessary in that of the logic. It is because

the event-handling logic has device-independence

property. Hence, the workload of transforming and

compiling can be distributed on every programm-
Table 2

The mappings from XUL tags into MIDP expressions in the XUL-to-J2M

XUL tag

Text string < label>
Text field < textbox>
Item list < listbox>
Image display < image>
Action trigger <button>
Container item <box>
er’s working computer when the applications are

being developed.

5.4. Code aggregation and serialization

Programming the user interface and the event-

handling logic is divided. The codes of two seg-

ments need to be aggregated into a complete

application finally. Namely, the related functions

of the event-handling logic to execute the required

actions must be performed when user interface

manipulating trigger those functions. We consider

the following scenario to see how to accomplish

notifying the event-handling logic if the widgets of

the user interfaces are triggered.

A client, for example, is manipulating his device

to download a J2ME application from our system.

The application manager, on the client device,

transmits a request message to the MExE server.

The MExE server passes this message to the DELI

service after receiving. Then, the DELI service will

retrieve the context profiles of the client, and

forward the request to the CAS server. Upon

receiving the request, the CAS server allocates an

agent to perform the transformation, serialization,

and compilation for the user interface of the

requested application. The agent will insert infor-

mation into the program of the user interface during

XUL transformation. This information contains a

package name for aggregating the user interface

and event-handling logic, and import statements to

import other packages.

A package is a named collection of classes.

Packages are capable of grouping related classes

and define a namespace for the classes they contain.
E transformation style sheet

MIDP expression

javax.microedition.lcdui.StringItem
javax.microedition.lcdui.TextField
javax.microedition.lcdui.ChoiceGroup
javax.microedition.lcdui.ImageItem
javax.microedition.lcdui.Command
javax.microedition.lcdui.Form



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 393
For example, java.lang contains two more special-

ized packages, named java.lang.reflect and ja-
va.langref. The package namespace of the event-

handling logic, and the package name are inserted to

the program of the user interface when a DOM tree

is transformed. Actually, to transform a source tree

into another result tree means expanding the speci-

fied nodes of the source tree through the selection

mechanism of XPath. For example, the text (shown

in Fig. 4) related to the root node, are inserted when

the root node of the tree is expanded at the begin-
ning of transformation. Likewise, similar declarations

(shown in Listing 5) are also inserted into the event-

handling logic; nevertheless, the insertion takes place

in the static-time LGML transformation. At the end

of the runtime XUL transformation and compilation,

the code of the user interface is packed into a .jar
file with the code of the event-handling logic.

Finally, application_name.jar will be generated

and delivered to the requesting client device.

Listing 4. Lines are inserted to a Java source

program of the user interface.
Listing 5. Lines have been inserted in a transformed and serialized Java code of the event-handling logic.
6. Conclusions and future work

To summarize, in this paper we aim at the

development of a context-aware transformation

framework, making two main contributions, de-

vice-independence and application adaptation. For

device-independence, this framework enables devel-

opers to use the XML-based language to write
applications regardless of the target MExE environ-

ments. Besides, the programming model in this

paper separates the behaviors of developing appli-

cations into to two divisions, including the design

of the user interface by a user interface designer

and the event-handling logic programming by a

logic programmer. This separation comes into the

benefit so that programmers can develop applica-



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399394
tions rapidly by writing XUL and LGML docu-

ments in separation-of-concern way. In order to

adapt applications efficiently and flexibly, we adapt

the device-sensitive widgets at runtime by means

of the context information, and generate the pro-

gram of the event-handling logic at static time.

Currently, there have been several XML-based

user interface description languages, such as XUL

[22,23], UIML [21], AUIML [29], XIML [30],

etc., as well as JavaML [31], an XML-based logic

description language. So far, however, no one has

integrated them to provide a full XML-based

programming environment comprising XML-based

description languages for the user interface and

computational logic. We found out that this

programming model can be extended to cope with

the increasing and changing mobile execution

environments through adding XSLT transformation

style sheets easily. Programming using XML docu-

ments causes some related issues, yet, discussed

below.

The size of the program are larger than that of

programming using some general programming

languages, like Java, C+, C, etc. To improve that,

we will develop a toolkit, which can provide a

GUI making programmers layout the user interfa-

ces by a drag-and-draw measure readily.

As to LGML, constructing a common standard

library can enhance its computational capabilities

further. The common standard library can be

abstracted from the intersection of the functions

of these target MExE languages. In other words,

the functions existing in the MExE languages

have the same purpose; these functions can be

retrieved and given a name in LGML. For exam-

ple, to find the minimal one between two integer

number a and b, we use Lang.min(a,b) in

WML Script, but become to use java. lang.-
Math.max(a,b) in Java. Although the represen-

tation of them is different, the function remains

the same. Thus, we can abstract these functions in

four MExE languages to define a common stan-

dard library, which enables programmers use use-

ful APIs in the event-handling logic. Our system

can render the names of the functions to the

corresponding ones of the target language specifi-

cations when transforming LGML documents.

Moreover, we will apply the service invocation
mechanism of XML Web Services [32] to those

applications to make the applications invoke the

computational functions of the services over the

Internet. The enhancement can be explained in the

following two reasons. First, the target languages

have begun to support XML Web Services, such

as Sun J2ME (J2ME supporting Web Services in

Ref. [33]) and Microsoft Compact Framework

[28]. The other reason is that, to add more

abundant functions enriches the event-handling

logic for using LGML conveniently.

Some real-time issues concerning transforming

and compiling codes at runtime will be discussed

in the future. We will profile the requesting flow

from receiving client request to returning the re-

quired application, to find out critical performance

obstructions. Also, to enhance transforming codes,

we will attempt different XSLT engines and refine

transformation style sheets to measure their influ-

ences on transformation. To improve compiling

codes, we will experiment on several methods, such

as caching mechanisms, or attempt applying the

APIs of the compilation, etc., as mentioned in

Section 5.2.

Furthermore, we will investigate using self-ad-

aptation in our framework to adapt the device-

sensitive widgets of the user interface by changing

the types of these widgets with the various

capabilities of the devices. For example, a high-

quality image widget that can be shown on the

screen of some device, but cannot be displayed on

resource-restricted ones. Instead, the image can be

replaced by a lower quality one or translated into

a text string. Therefore, to approach combining

the transformation and the adaptation functional-

ities, we will try integrating various adaptation

mechanisms to use the context-aware transforma-

tion framework best.
Acknowledgements

This work was supported by Computer and

Communication Research Laboratory’s Program of

Research and Development of Intelligent Self-

adaptive Technology for Pervasive Computing

under Grant T1-92016-5 in Industrial Technology

Research Institute.



T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 395
Appendix A. The LGML syntax and its corresponding MIDP expression
(continued on next page)



Appendix A (continued)

T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399396



Appendix A (continued)

T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 397
References

[1] 3GPP TS 22.057 V5.4.0. 3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Mobile Execution Environment (MExE); Service description,

Stage 1 (Release 5), 2002, http://www.3gpp.org.

[2] WAP, http://www.wapforum.org/.

[3] PersonalJava, http://java.sun.com/products/personaljava/.

[4] Sun Microsystems. Java 2Platform Micro Edition Technology

for Creating Mobile Device, Sun Microsystems, Inc., 4150

Network Circle Santa Clara, CA 95054, 2000, http://www.

sum.com.

[5] JSR 118 Expert Group. JSR-000118 Mobile Information De-

vice Profile 2.0 (Final Release), Sun Microsystems, Inc., 4150
Network Circle Santa Clara, CA 95054, 2002 May, http://

www.sum.com, http://jcp.org/aboutJava/communityprocess/

final/jsr118/index.html.

[6] M.H. Bulter, Current Technologies for Device Independence,

Hewlett-Packard Company, Technical Publications Depart-

ment HP Labs Research Library, 1501 Page Mill Road Palo

Alto, CA 94304-1126, 2001 March, http://www.hpl.hp.com/

techreports/, http://www-uk.hpl.hp.com/people/marbut/

currTechDevInd.htm.

[7] M. Bulter, F. Giannetti, R. Gimson, T. Wiley, Device Independ-

ence and the Web, IEEE Internet Computing, IEEE Computer

Society, 10662 Los Vaqueros Circle P.O. Box 3014 Los Ala-

mitos, CA 90720-1314, 2002 October, http://www.computer.

org/.

 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 
 http:\\www.3gpp.org 
 http:\\www.wapforum.org\ 
 http:\\java.sun.com\products\personaljava\ 
 http:\\www.sum.com 
 http:\\www.sum.com 
 http:\\jcp.org\aboutJava\communityprocess\final\jsr118\index.html 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www-uk.hpl.hp.com\people\marbut\currTechDevInd.htm 
 http:\\www.computer.org\ 


T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399398
[8] R. Gimson, S.R. Finkelstein, S. Maes, L. Suryanarayana,

Device Independence Principles, W3C Working Draft 18,

W3C (MIT, ERCIM, Keio), in the United States, in Europe,

and in Japan, 2001 September, http://www.w3.org/.

[9] W3C, Device independence working group charter, W3C

(MIT, ERCIM, Keio), in the United States, in Europe, and in

Japan, HP Labs Research Library, 1501 Page Mill Road Palo

Alto, CA 94304-1126, http://www.hpl.hp.com/techreports/,

http://www.w3.org/2002/06/w3c-di-wg-charter-20020612.

html.

[10] J. Indulska, R. Robinson, A. Rakotonirainy, K. Henricksen,

Experiences in using CC/PP in context-aware systems, in:

M.-S. Chen, P.K. Chrysanthis, M. Sloman, A.B. Zaslavsky

(Eds.), Proceedings of Mobile Data Management, 4th Inter-

national Conference, MDM 2003 (Lecture Notes in Com-

puter Science, vol. 2574), Springer, Melbourne, Australia,

2003, pp. 239–245.

[11] B.N. Schilit, N. Adams, R. Want, Context-aware computing

applications, Proceedings of IEEE Workshop on Mobile

Computing Systems and Applications, Santa Cruz, CA, IEEE

Computer Society, 10662 Los Vaqueros Circle P.O. Box 3014

Los Alamitos, CA 90720-1314, 1994, pp. 85–90, http://

www.computer.org/.

[12] H. Maruyama, K. Tamura, N. Uramoto, M. Murata, A.

Clark, et al., XML and Java Second Edition: Developing

Web Applications, Addison-Wesley, 75 Arlington Street, Suite

300 Boston, MA 02116, 2002, http://www.awprofessional.

com/.

[13] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm, M.H.

Butler, L. Tran, Composite Capability/Preference Profiles

(CC/PP): Structure and Vocabularies. W3C Working Draft,

W3C (MIT, ERCIM, Keio), in the United States, in Europe,

and in Japan, 2003 March, http://www.w3.org/, http://

www.w3.org/TR/CCPP-struct-vocab/.

[14] L. Suryanarayana, J. Hjelm, CC/PP for content negotiation

and contextualization, Lecture Notes in Computer Science,

vol. 1987, Springer Verlag, Heidelberg, 2001.

[15] M.H. Butler, Implementing Content Negotiation using CC/PP

and WAP UAProf. External Technical Report HPL-2001-190,

2001, http://www.hpl.hp.com/techreports/2001/HPL-2001-

190.html.

[16] H. Ohto, J. Hjelm, CC/PP Exchange Protocol Based on HTTP

Extension Framework. W3C Note, W3C (MIT, ERCIM,

Keio), in the United States, in Europe, and in Japan, 1999

June, http://www.w3.org/, http://www.w3.org/TR/NOTE-

CCPPexchange.

[17] D. Brickley, R.V. Guha, B. McBride, RDF Vocabulary De-

scription Language 1.0: RDF Schema. W3C Working Draft,

W3C (MIT, ERCIM, Keio), in the United States, in Europe,

and in Japan, http://www.w3.org/, http://www.w3.org/TR/rdf-

schema/.

[18] O. Lassila, R.R. Swick, Resource Description Framework

(RDF) Model and Syntax Specification. W3C Recommenda-

tion, W3C (MIT, ERCIM, Keio), in the United States, in

Europe, and in Japan, 1999 February, http://www.w3.org/,

http://www.w3.org/TR/REC-rdf-syntax.
[19] WAP Forum, User Agent Profiling Specification, Open mo-

bile Alliance, Ltd., Management Office 2570 West El Ca-

mino Real, Suite 304 Mountain View, CA 94040-1313

USA, 2001 October, http://www1.wapforum.org, http://

www1.wapforum.org/tech/terms.asp?doc=WAP-248-

20011020-a.pdf.

[20] M.H. Butler, DELI: A DElivery context LIbrary for CC/PP

and UAProf. External Technical Report HPL-2001-260, HP

Labs, 2002, http://delicon.sourceforge.net/.

[21] M. Abrams, C. Phanouriou, A.L. Batongbacal, S.M. Williams,

J.E. Shuster, UIML: An Appliance-Independent XML User In-

terface Language, http://www8.org/w8-papers/5b-hypertext-

media/uiml/uiml.html.

[22] N. Deakin, XULTutorial, TheMozilla Organization, 2002 July,

http://www.mozilla.org/mozorg.html, http://www.xulplanet.

com/tutorials/xultu/.

[23] XUL Language Specification, http://www.mozilla.org/xpfe/

languageSpec.html.

[24] Sun Microsystems, Java Servlet technology, http://java.sun.

com/products/servlet/.

[25] Microsoft, Microsoft .NET, Microsoft Corporation, Microsoft

Chicago and Microsoft Technology Center 77 W. Wacker

Suite 2300 Chicago, IL 60601, 2002, http://www.microsoft.

com/, http://msdn.microsoft.com/library/default.asp?url=/

library/en-us/dnmapnet/html/mapintronet.asp.

[26] J. Zukowski, Java collections, Apress, 2560 Ninth St., Ste.

219 Berkeley, CA 94710, 2001, http://www.apress.com/.

[27] Microsoft Mobile Web Forms, http://samples.gotdotnet.

com/mobilequickstart/(mgk4rd2jnyo1zm55tgnot02p)/Default.

aspx.

[28] NET Compact Framework, http://samples.gotdotnet.com/

quickstart/compactframework/.

[29] R.A. Merrick, et al., AUIML: An XML Vocabulary for

Describing User Interfaces, IBMUnited KingdomLimited, UK

HeadOffice POBox41,NorthHarbourPortsmouthHampshire,

PO6 3AU, 2001 May, www.uk.ibm.com, http://www.belchi.

be/download/merrick.pdf.

[30] A. Puerta, J. Eisenstein, XIML: A Common Representation for

Interaction Data, Proceedings of the Sixth Intelligent User In-

terfaces Conference (IUI 2002), San Francisco, California,

USA, 2002 January.

[31] G.J. Badros, JavaML: A Markup Language for Java Source

Code, Proceedings of Ninth International World Wide Web

Conference, Amsterdam, 2000 May.

[32] V. Chopra, Z. Zoran, G. Damschen, et al., Professional XML

Web Services, Wrox. Press, Wrox, Customer Care Center

10475 Crosspoint Blvd. Indianapolis, IN 46256, 2001 Sep-

tember, http://www.wrox.com/.

[33] J. Ellis, J2MEk Web Services Specification, Sun Microsys-

tems, Inc., 4150 Network Circle Santa Clara, CA 95054, 2003

July, http://www.sum.com.

[34] J. Clark, XML Path Language, W3C Recommendation, W3C

(MIT, ERCIM, Keio), in the United States, in Europe, and in

Japan, 1999 November, http://www.w3.org/, http://www.

w3.org/TR/xpath.

[35] Xalan-Java 2.5.1, http://xml.apache.org/xalan-j/.

 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 
 http:\\www.w3.org\ 
 http:\\www.hpl.hp.com\techreports\ 
 http:\\www.w3.org\2002\06\w3c-di-wg-charter-20020612.html 
 http:\\www.computer.org\ 
 http:\\www.awprofessional.com\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\CCPP-struct-vocab\ 
 http:\\www.hpl.hp.com\techreports\2001\HPL-2001-190.html 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\NOTE-CCPPexchange 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\rdf-schema\ 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\REC-rdf-syntax 
 http:\\www1.wapforum.org 
 http:\\www1.wapforum.org\tech\terms.asp?doc=WAP-248-UAProf-20011020-a.pdf 
 http:\\delicon.sourceforge.net\ 
 http:\\www8.org\w8-papers\5b-hypertext-media\uiml\uiml.html 
 http:\\www.mozilla.org\mozorg.html 
 http:\\www.xulplanet.com\tutorials\xultu\ 
 http:\\www.mozilla.org\xpfe\languageSpec.html 
 http:\\java.sun.com\products\servlet\ 
 http:\\www.mozilla.org\mozorg.html 
 http:\\msdn.microsoft.com\library\default.asp?url=\library\en-us\dnmapnet\html\mapintronet.asp 
 http:\\www.apress.com\ 
 http:\\samples.gotdotnet.com\mobilequickstart\mgk4rd2jnyo1zm55tgnot02p\Default.aspx 
 http:\\samples.gotdotnet.com\quickstart\compactframework\ 
 http:\\www.uk.ibm.com 
 http:\\www.belchi.be\download\merrick.pdf 
 http:\\www.wrox.com\ 
 http:\\www.sum.com 
 http:\\www.w3.org\ 
 http:\\www.w3.org\TR\xpath 
 http:\\xml.apache.org\xalan-j\ 


T.-H. Kao, S.-M. Yuan / Computer Standards & Interfaces 26 (2004) 377–399 399
Tzu-Han Kao was born on December

20, 1976 in Taichung, Taiwan, Republic

of China. He received his BS degree in

Computer Science and Information En-

gineering from Chung Hua University,

Taiwan, in 2000. He is now a PhD

candidate in Department of Computer

and Information Science of National

Chiao Tung University. His current re-

search interests include Context-aware,

Ubiquitous, and Pervasive Computing,
Internet Technologies, Data Mining, and Machine Learning.
Shyan-Ming Yuan was born on July 11,

1959 in Mauli, Taiwan, Republic of China.

He received his BSEE degree from Nation-

al Taiwan University in 1981, his MS

degree in Computer Science from Univer-

sity of Maryland, Baltimore County in

1985, and his PhD degree in Computer

Science from the University of Maryland

College Park in 1989. Dr. Yuan joined the

Electronics Research and Service Organi-
zation, Industrial Technology Research Institute as a Research

Member in October 1989. Since September 1990, he has been an

Associate Professor at the Department of Computer and Information

Science, National Chiao Tung University, Hsinchu, Taiwan. He

became a Professor in June 1995. His current research interests

include Distributed Objects, Internet Technologies, and Software

System Integration. Dr. Yuan is a member of ACM and IEEE.


	Designing an XML-based context-aware transformation framework for mobile execution environments using CC/PP and XSLT
	Introduction
	Backgrounds
	Context information
	XML-based user interface description
	XML-based transformation

	XML-based Context-Aware Framework (X-CAF)
	Device tier
	Bearer tier
	Portal tier
	Service tier
	CC/PP and UAProf
	Component repository
	XUL and LGML processor
	MExE language compiler
	Component manager
	Context-aware service (CAS)
	MExE server


	XML-based programming model
	LoGic Markup Language (LGML)
	The programming model

	Context-aware transformation
	The context information
	User interface adaptation
	Code transformation
	Code aggregation and serialization

	Conclusions and future work
	Acknowledgements
	The LGML syntax and its corresponding MIDP expression
	References


