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Suppression of the Floating-Body Effect in Poly-Si
Thin-Film Transistors With Self-Aligned Schottky
Barrier Source and Ohmic Body Contact Structure

Po-Yi Kuo, Tien-Sheng Chao, Senior Member, IEEE, and Tan-Fu Lei

Abstract—In this letter, we developed a new self-aligned
Schottky barrier source and ohmic body contact (SSOB) method
that can effectively suppress the floating-body effect in poly-Si
thin-film transistors (TFTs). Experimental results show that the
SSOB-TFTs give higher output resistance, less threshold voltage
variation, improved subthreshold characteristics, and larger
breakdown voltage compared with conventional TFTs. The char-
acteristics of the SSOB-TFTs are suitable for high-performance
driving TFTs with a high output resistance and large breakdown
voltage.

Index Terms—Floating-body effect, kink effect, ohmic body con-
tact, poly-Si TFTs, Schottky barrier source.

I. INTRODUCTION

OLYCRYSTALLINE silicon thin-film transistors (poly-Si

TFTs) are key devices in active-matrix liquid crystal
displays (AMCLDs). Due to the relatively-large field-effect
mobilities in both n- and p-channel devices, poly-Si TFTs
can be used to incorporate the integrated driving circuits in
AMLCDs [1]. Recently, poly-Si TFTs are suitable for the pixel
driving elements of active matrix organic light-emitting diode
(AM-OLED) [2], and the driving TFTs with a high output
resistance are desirable. However, the output characteristics
exhibit an anomalous current increase in the saturation regime,
often called a “kink™ effect [3], [4] due to an analogy with
silicon-on-insulator (SOI) devices [5]. This phenomenon can
be attributed to the floating-body effect [6] and the avalanche
multiplication enhanced by grain boundary-traps [7]. The
avalanche multiplication is caused by the high drain electric
field and the presence of grain boundaries and traps enhances
the kink effect in poly-Si TFTs [7]. The added drain current
enhances impact ionization which leads to a premature break-
down in return [6]. Several structures, such as lateral body
terminal (LBT) [8], low-barrier body-contact (LBBC) [9], and
Schottky body contact [10] have been reported in order to
reduce the kink current. However, LBT needs an additional
terminal for the body bias; LBBC needs additional implantation
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Fig. 1. Key processes of the SSOB-TFTs: (a) nt drain-side implantation;
(b) pT body-contact implantation; (c¢) Ni-salicidation and Schottky barrier
source formation; and (d) poly-Si TFTs with SSOB after contact and
metallization processes.

processes and thicker channel thickness for the body contact;
and the high-forward-bias turn-on voltage of the Schottky
diode was reported using Schottky body contact. Among these
structures, Schottky barrier MOSFETs (SB-MOSFETs) are
thought to have some advantages over conventional MOSFETs,
such as the reduction of parasitic resistance and capacitance,
and the immunity to the short channel [11], latch-up, or SOI
floating-body effects [12].

In this letter, we have developed a self-aligned Schottky bar-
rier source and ohmic body contact (SSOB) method for con-
tacting the body terminal of poly-Si TFTs and forming the sili-
cided source applicable to technologies that incorporate self-
aligned silicide cladded junctions. The new structure provides a
very effective body contact to suppress all undesirable floating-
body effects. Various device parameters, such as subthreshold
characteristics, output characteristics, and breakdown voltage,
are compared with conventional poly-Si TFTs.

II. EXPERIMENT

The key processes to fabricate the SSOB-TFTs are shown
in Fig. 1. First, a 50-nm amorphous silicon (a-Si) layer was de-
posited by low-pressure chemical vapor deposition (LPCVD) at
550 °C on oxidized silicon wafers. Next, the a-Si layer was then
recrystallized by solid-phase crystallization (SPC) at 600 °C
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Fig. 2. Transfer characteristics of the conventional and the SSOB-TFTs with
W/L = 50 um/5 pm.

for 24 h. After the active region patterning, a 50-nm gate oxide
layer was deposited by high-density plasma chemical vapor
deposition at 350 °C. Subsequently, a 150-nm in situ n* doped
a-Si layer and a 150-nm SizNy4 hard mask layer were deposited
by LPCVD. After defining gate electrode, the remaining oxide
on source/drain regions was removed by diluted HF. A mask
was used to perform the nt drain-side implantation with P™ to
dose 5 x10* cm~2 and energy 18 keV [Fig. 1(a)]. A 250-nm
oxide sidewall spacer was formed by deposition and etching of
TEOS oxide. A similar mask was used to perform the p* doped
body-contact BF, implantation with dose 5 x10'® cm~2 and
moderate energy 35 keV. This implantation serves to form a
pT junction below the Schottky barrier source for ohmic body
contact and also improves the conductivity at the bottom of
the source for better body current collection simultaneously
[Fig. 1(b)]. Meanwhile, only source- side oxide spacer was
removed by buffered oxide etch (BOE). After removing the pho-
toresist of body-contact mask, the SizN4 hard mask layer was
then selectively etched in a hot phosphoric acid bath. A second
25-nm oxide sidewall spacer was again formed by deposition
and etching of TEOS oxide. Dopants were activated by rapid
thermal annealing (RTA) at 750 °C for 20 s. A Ni film of about
10 nm was deposited by sputtering after a dilute HF-dip and then
Ni-salicidation was carried out at 500 °C for 30 s by one-step
RTA in the Ny ambient. Unreacted Ni was removed in H,SO4
: HoOg solution. The Schottky barrier source was formed by
the Ni-salicidation [Fig. 1(c)]. After contact and the metal-
lization processes, the resultant poly-Si TFT with SSOB was
shown in Fig. 1(d). Conventional devices with self-aligned nt
source/drain and without Ni-salicidation were also fabricated
to serve as control ones. No further hydrogenation procedures
were implemented after sintering at 400 °C for 30 min.

III. RESULTS AND DISCUSSION

The measured transfer characteristics of the conventional
and the SSOB-TFTs with W/L = 50 ym/5 pm are shown
in Fig. 2. The off-state leakage currents in the conventional
TFTs are slightly higher than that in the SSOB-TFTs. Fig. 2
also displays that the threshold voltage Vrpy (defined as
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Fig. 3. Transfer characteristics of the Schottky drain and the SSOB-TFTs with
W/L = 50 um/5 pm.

Ip =W/L x 100 nA)is 6.9 V and 6.1 V for the conventional
TFTs at Vpgs = 0.5 V and Vpg = 10 V, respectively. However,
Vra is 5.4 Vand 5.2 V in the SSOB-TFTs at Vpg = 0.5 V and
Vbs = 10 V, respectively. Since the hole accumulation at the
channel increases the body potential and lowers the junction
barrier at the source region, a large number of hole carriers
may be collected by the source. The leakage current is the sum
of the electron current by field-emission at the drain region
and the hole current caused by p-n forward bias at source [8].
With this ohmic body contact, the hole accumulation in the
body and parasitic bipolar effects can be eliminated, resulting
in a stable Vg [9], [13] and lower off-state leakage current
in the SSOB-TFTs [14]. The benefit of the SSOB-TFTs also
can be found on subthreshold swing (S.S.). The S.S. of the
conventional and the SSOB-TFTs are about 1230 mV/dB and
1100 mV/dB, respectively. We believe that it may be due to
the shallow silicided source junction and pT junction in the
SSOB-TFTs.

To prove asymmetric S/D embedded in our SSOB struc-
ture, devices were measured again with interchanged S/D,
i.e., Schottky drain TFTs with Schottky barrier drain and n*
source. Fig. 3 shows the transfer characteristics of the Schottky
drain and the SSOB-TFTs with W/L = 50 pm/5 pm. No-
tably, the subthreshlod and on-state transfer characteristics
for both devices are almost the same, except for gate-in-
duced-drain-leakage (GIDL)-like currents when Vg was at
negative bias. Normally, GIDL-like currents were often found
for Schottky drain TFTs due to holes tunneling to the channel
from drain metal silicide [15]. The GIDL-like currents become
significant at the stronger accumulation region and higher drain
voltage in the Schottky drain TFTs. This GIDL-like current can
be three orders of magnitude reduced by the n™ drain in the
SSOB-TFTs.

The measured output characteristics of the conventional, the
Schottky drain and the SSOB-TFTs are shown in Fig. 4. The
kink effect of the SSOB-TFTs is considerably reduced com-
pared with the conventional and the Schottky drain TFTs. Under
high drain voltage, excessive holes are accumulated at the body
region and the drain breakdown is reduced by the floating-body
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Fig. 4. Output characteristics of the conventional, the Schottky drain, and the
SSOB- TFTs with W/L = 50 pm/5 pm.

effect in the conventional TFTs [16], [17]. This hole accumu-
lation causes a profound kink effect, which in turn deteriorates
the output characteristics and induces parasitic bipolar transistor
action [18], [19]. Since the SSOB-TFTs effectively collect the
hole current generated by impact ionization, the floating-body
effect is significantly suppressed and breakdown voltage is in-
creased. Fig. 4 also indicates that the output characteristics of
the Schottky drain TFTs have a finite drain voltage offset which
is considered to arise from the Schottky barrier formed between
the Schottky barrier drain and nT inversion layer [20]. The low
breakdown voltage (Vp ~ 15 V) and kink-like current for
Schottky drain TFTs may result from the inherent p-i-n diode
forward biased at Vp > 0 V.

IV. CONCLUSION

We have developed a self-aligned SSOB structure for poly-Si
TFTs to provide an effective body contact and suppress the
floating-body effect. The GIDL-like currents occurred in the
Schottky drain TFTs are reduced by the SSOB-TFTs. These
SSOB-TFTs show a reduced kink effect and increased break-
down voltage and are suitable for driving circuit applications
for high-voltage gain.
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