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Abstract

A computer vision method is proposed to determine all the visible 3D planar surfaces in a scene from uncalibrated

images and locate them in a single 3D projective space. Most of the existing methods for reconstructing planar objects

use point correspondences to estimate the fundamental matrix and derive the compatible projection equations, before

they apply the standard triangulation technique to find the 3D points and fit the planes to the 3D points. This type of

approaches is generally slow and less accurate because the 3D points are estimated separately, making them vulnerable

to image error. We present a plane based reconstruction method to estimate the 3D projective structure using the planar

homographies estimated from the plane features in the images. First, we estimate the homography for each visible

plane, and then we use the homographies of two primary planes to compute an epipole. We proceed to represent the

epipolar geometry for each image pair using the estimated homography and epipole, together with a specified reference

plane coefficient vector. Next, we show that the 3D plane coefficient vector of any plane visible in each image pair can be

determined with respect to the reference plane coefficient vector once its planar homography is found. Finally, the

reconstruction results obtained in individual projective spaces are integrated within a common projective space. To this

end, we use the homography and plane equation information of two planes and the epipole associated to derive the

coordinate transformation matrix between two involved projective spaces. To evaluate the performance of our method,

we apply our method to the synthetic images and real images. All the results indicate the method works successfully.
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1. Introduction

In the physical world (especially the man-made

world) planar surfaces such as walls, windows,

table, roof, road, and terrace can be found in the

indoor as well as the outdoor scenes. Our task is to

reconstruct the 3D planar surfaces in a scene from

multiple uncalibrated images taken by a camera

mail to: zchen@csie.nctu.edu.tw
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placed at different viewpoints. In general, the

methods for 3D projective or uncalibrated recon-

struction (Mohr and Arbogast, 1991; Faugeras,

1992, 1993; Hartley et al., 1992, 1994; Beardsley

et al., 1997) are point-based. They estimate the

fundamental matrix from a sufficient number of
corresponding point pairs first, and then derive the

epipole and the canonical geometric representation

for projective views using the fundamental matrix.

Then, for each pair of corresponding points, they

use a triangulation technique or bundle adjust-

ment technique to compute the 3D point coordi-

nates in the projective space. Finally, for the

determination of the uncalibrated planar scene
structure (Luong and Faugeras, 1993; Sawhney,

1994; Criminisi and Zisserman, 1998; Irani et al.,

1998; Szeliski and Torr, 1998; Fradkin et al., 1999;

Johansson, 1999; Zelnik-Manor and Irani, 2000),

the 3D points found are fitted by planes. However,

it is desirable to derive the 3D planar scene

structure in terms of plane features in the images

directly, for these features are more reliable than
the point or line features (Luong and Faugeras,

1993). The estimation of the 3D projective planar

structure based on the projected plane feature

information exclusively has not yet received much

attention, although it is known that the corre-

sponding projected plane regions in a pair of

stereo images induce a homography. It is also

known that homographies are useful to many
other practical applications including:

(a) Fundamental matrix estimation or canonical

projective geometry representation (Luong

and Vieville, 1996; Luong and Faugeras,

1993).

(b) 2D image mosaicing or view synthesis

(Szeliski, 1996).
(c) Plane +parallax analysis (Irani et al., 1998;

Criminisi and Zisserman, 1998; Sawhney,

1994).

(d) Planar motion estimation and ego-motion

(Irani et al., 1997; Szeliski and Torr, 1998;

Zelnik-Manor and Irani, 2000).

Recently, two methods have been proposed for
the 3D projective reconstruction of planes and

cameras. The first method assumes all planes are
visible in all images and the second method as-

sumes a reference plane is visible in all images

(Rother et al., 2002, 2003). In practice, it is not

realistic to have all planes or even one plane visible

in all images unless a very large ground plane is

available. When there is no reference plane visible
in all images, the reconstruction problem cannot

be formulated within a common projective space

and the reconstruction results will be inevitably

obtained in different projective spaces.

We shall recover the 3D scene planar structure

from the uncalibrated images using the plane-

induced homographies without assuming that all

planes or one plane must be seen in all images. To
obtain the homographies, we must locate the

projected regions of planar surfaces in the images.

There are methods for detecting regions corre-

sponding to planar surfaces in the image (Sinclair

and Blake, 1996; Hamid and Cipolla, 1997; Theiler

and Chabbi, 1999). After the image regions of

planar surfaces have been extracted, we use the

Gabor filtering technique (Sun et al., 2002) to
identify at least four point correspondences for

every plane in the stereo images in order to obtain

the initial value of the homography. Then we

iteratively refine the homography based on a

nonlinear minimization method given in (Szeliski,

1996). Next, we use two homographies to compute

the epipole and to find the compatible projection

equations in terms of the estimated homography
and an assigned plane coefficient vector of a re-

ference plane, together with the estimated epipole.

With the projection equations thus derived we

then prove that the 3D equation of any other plane

visible in the stereo images can be computed with

respect to the reference plane equation as long as

its homography is determined. Finally, we merge

or integrate all reconstructed plane equations
found in individual projective spaces within a

common space through the coordinate (or space)

transformations. Again, each required coordinate

transformation matrix is expressed by the homo-

graphy and plane coefficient vector information

of two planes visible in the involved image pairs.

Fig. 1 shows the flow diagram of our method.

The remaining sections of the paper are orga-
nized as follows. Section 2 is the preliminaries and

mathematical notations for the projective recon-
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Homography estimation for each image pair

Epipole computation from homographies

Plane equation computation for planes visible in each image pair 

Integration of all plane equations under a common projective space

Image sequence

Final 3D planar structure

Fig. 1. The flow diagram of our reconstruction method.
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struction. Section 3 shows how the 3D equations
of all planar surfaces visible in the stereo images

can be determined from their homographies. Sec-

tion 4 presents the integration of the reconstruc-

tion results obtained in different projective spaces

through the coordinate transformations. Section 5

shows the estimation of the plane-induced homo-

graphies and the related epipole. Section 6 reports

the experimental results on both the synthetic
and real images. Section 7 is the concluding re-

marks.
2. Preliminaries and mathematical notations for

projective reconstruction

Consider any two consecutive images (I i; I j) in
an image sequence for reconstructing the visible

planar surfaces. Let Ri, ~ti be the extrinsic para-

meters and M i be the 3 · 3 upper triangular

intrinsic camera matrix of the ith camera. Then the

coordinates of a 3D point~pE ¼ ½ xE yE zE �T and

its 2D projection point ~ui ¼ ½ ui vi �T in image I i
are related by a pinhole camera model (Hartley

et al., 1992; Faugeras, 1993; Hartley and Zisser-
man, 2000):

ui
vi
1

3
5 ffi M i½Rij~ti�

xE
yE
zE
1

2
664

3
775:
To represent the point in the projective space or

the homogeneous coordinate system, we use the

vectors with a tilde to denote the homogeneous

coordinates of the 3D points and its image pro-

jection point such that ~ui ¼ ~uTi 1
� �T

and ~pE ¼
~pTE 1
� �T

. The symbol ffi indicates an equality up

to a nonzero scale in the homogeneous coordinate

system.
Assume the world coordinate system is chosen

to be the ith camera coordinate system; namely,

Ri ¼ I and~ti ¼~0.

~ui ffi M i � ½I j~0� � ~pE DM i �~pE: ð1Þ

Similarly, let M j, Rj,~tj be the camera parameters

of the jth camera. For image I j, we have

~uj ffi M j � ½Rjj~tj� � ~pE: ð2Þ

Since the epipole on image I j is given by
~ej ffi M j Rj~tj

��� �
0 0 0 1½ �T ffi M j �~tj or ke~ej ¼

M j~tj (ke is the lens depth parameter), we rewrite

Eq. (2) as

~uj ffi ½M jRjjke~ej� � ~pE: ð3Þ

Consider a plane PA, which does not pass

through the optical center of the ith camera

(otherwise, its image will be degenerated into a

line). Let its plane equation be ~aTE~pE þ 1 ¼ 0 with

~aTE ¼ ½ aE1 aE2 aE3 �T. After eliminating the vari-

able ~pE in the two projection Eqs. (1) and (3), we

can obtain a homography Aij as follows (Tsai and

Huang, 1982; Luong and Vieville, 1996; Szeliski,

1996):

~uj ffi Aij~ui with Aij ffi M jRjM
�1
i

n
� ke~ej~a

T
EM

�1
i

o
:

The homography Aij from image I i to image I j is
said to be induced by plane PA. In Section 5 we

shall show how to compute the homography Aij

from image pair (I i, I j).
For an uncalibrated camera the intrinsic and

extrinsic camera parameters in Eqs. (1) and (3)

cannot be estimated. We need to replace these two

equations by some new parameters that can be

estimated. This is done as follows:

Let Aij be rewritten as Aij ¼ kA M jRjM
�1
i �

�
ke~ej~aTEM

�1
i g, then
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M jRj ¼
1

kA
AijMi þ ke~ej~a

T
E :

Eq. (3) can be rewritten as

where ~aij (with aij4 6¼ 0) is assumed to be a nonnull

column vector. Then

ð4Þ

A similar formulation of Eq. (4) has been de-

rived in (Luong and Vieville, 1996). In this way,
the original Euclidean point ~pE becomes point
~pij ¼ ½~pTij pij4 �T in the new projective space, de-

noted by f~pijg, which describes the projective

geometry associated with images i and j.
The coordinate transformation from the

Euclidean space f½½~pTE 1�T�g to the projective space

f½½~pTij pij4�T�g is given by

~pij ¼ M i~pE;

pij4 ¼
kAke
aij4

� �
~aTE~pE

�
þ 1

�
�

~aTij
aij4

M i~pE:

Also,

~aTij~pij þ aij4pij4 ¼~aTij~pij þ ðkAkeÞ ~aTE~pE

�
þ 1

�
�~aTij~pij

¼ kAke ~aTE~pE

�
þ 1

�
¼ 0:
It implies that ~aTij~pij þ aij4pij4 ¼ 0 is the new 3D

equation of the plane in the projective space ~pij
� 	

.

Since the projective structure can only be deter-

mined up to a 4 · 4 nonsingular projective matrix

(Hartley and Zisserman, 2000), the new plane

coefficient vector ~aij ¼ ~aTij aij4
� �T

can take on
some general value, say, ½ 1 1 1 1 �T (more

discussion on the values of ~aij is given in Section

6). In this new space the parameters including

homography Aij, epipole ~ej and plane coefficients

~aij ¼ ~aTij aij4
� �T

involved in Eq. (4) are now all

known.

Next, we shall describe how to obtain the

projective reconstruction for the other planes vis-

ible in the image pair (I i, I j) in the newly defined
projective space f~pijg.
3. Reconstruction of all visible planes from a given

image pair

In the new projective space the projection

equations become

ð5Þ

Similarly, for any other plane PB visible in (I i,
I j) the induced homography between the plane

regions in image pair (I i, I j) is expressed by

Bij ¼ kB M jRjM
�1
i

n
� ke~ej~b

T
EM

�1
i

o
ð6Þ

with the plane equation of PB being~bTE~pE þ 1 ¼ 0.

Next, we shall prove the fact that the relation

between plane coefficient vectors of planes PB and

PA is determined once their homographies Aij and

Bij are found. From above we have

M jRjM
�1
i ¼ 1

kA
Aij þ ke~ej~a

T
EM

�1
i

¼ 1

kB
Bij þ ke~ej~b

T
EM

�1
i
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or

Aij ¼
kA
kB

Bij þ kAke~ej ~b
T
E

h
�~aTE

i
M�1

i D
kA
kB

Bij þ ~ej~g
T
ij;

ð7Þ
where ~gij ¼ kAke½~bE �~aE�M�1

i . We can apply the

least-squares method to estimate the unknowns~gij
and kA

kB
in a system of nine linear equations; here the

epipole ~ej can be determined in advance from the

two homographies Aij and Bij based on the fact

that BT½~ej��Aðffi BT½~ej��B) is skew symmetric.

Therefore,

Substituting Aij ¼ kA
kB
Bij þ ~ej~g

T
ij into the above

equation, we have

Then

Since aij4 6¼ 0 and bij4 6¼ 0 (i.e., planes PA and PB

do not contain the lens center), we obtain,

Thus

kB
kA

~gTij



þ kB
kA

~aTij
kB
kA

aij4

����
�
ffi ~bTij

���bij4h i
:

In other words, the relationship between two

plane coefficient vectors is given by

~bij ffi ~aij

�
þ ~gij

0


 ��
: ð8Þ
Thus, ~bij can be determined with respect to ~aij once
the planar homography Bij is known.
4. Integration of planes reconstructed from different
image pairs

Next, we consider the integration of recon-

structed planes obtained from different image pairs

(I i, I j) and (I j, I k), which contain the projections

of two commonly visible planes. We shall use the

plane-based coordinate transformation method for

integrating the reconstruction results defined in
different spaces.

Let the 4 · 4 coordinate transformation matrix

H ijk, mapping the points in the projective space

f~pijg to the points in the projective space f~pjkg, be
defined by

~pjk ¼ H ijk~pij:

Then, the plane coefficient vectors ~cij, ~cjk of a

common plane, which are respectively defined in
the two different projective spaces f~pijg and f~pjkg,
will be related by:

~cjk ffi H�T
ijk ~cij: ð9Þ

Thus, it requires the information of five common

planes in the two different projective spaces in

order to solve for the transformation matrix H ijk.
It is usually not very practical to find five common

planes in the image pairs.

On the other hand, the two respective 3 · 4
projection matrices associated with image I j de-

fined in the two projective spaces f~pijg and f~pjkg are
related directly by the matrix H ijk (Fitzgibbon and

Zisserman, 1998). This relationship provides 11

linear equations in the 15 matrix elements in H ijk.
Then, it is reduced to a need of two plane infor-

mation to provide six additional linear equations to

solve for the 15 unknowns. In the following we

shall give a system of 24 linear equations using the

information of two planes for solving for the 15

unknowns; the result will be more reliable.

From Eq. (4), we have
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Combining this equation with a plane equation
~bTij~pij ¼ 0, we have

Thus,

Similarly, for the same point on plane PB, but

represented as ~pjk in the different projective space

f~pjkg, we can relate it to the same 4 · 1 vector

lj~uTj 0
� �T

by

Then

After some algebraic manipulation, this can be

reduced to

I

�bTjk=bjk4

" #
~uj ¼ kBH ijk

B�1
ij

�bTijB
�1
ij =bij4

" #
~uj:

Since this equality holds for all image points on

plane PB, it further implies:

I

�bTjk=bjk4

" #
Bij ¼ kBH ijk

I

�bTij=bij4

" #
:

This leads to a system of 12 linear equations in

16 unknowns: 15 from the matrix H ijk plus one

from kB. Therefore, we need another system of

equations provided by a second visible plane, say,
PG:

I

�gTjk=gjk4

" #
G ij ¼ kGH ijk

I

�gTij=gij4

" #
:

Combining the above two systems of equations,

we have a total of 24 linear equations in 17 un-

knowns. Here we give a least squared solution by

placing the two systems of equations in the fol-

lowing form

H ijk
I

�b
*T

ij=bij4

2
64

3
75 I

�g
*T

ij=gij4

2
4

3
5

������
3
5

2
64

ffi I

�b
*T

jk=bjk4

2
64

3
75Bij

2
64

�������
kB
kG

I

�g
*T

jk=gjk4

2
4

3
5G ij

3
75

ð10Þ

where the ratio of kB=kG has been estimated during

the plane reconstruction phase (see Eq. (7)). We

can find the matrix H ijk using the pseudo-inverse
matrix of the 4 · 6 matrix on the left-hand side of

the above equation.
5. Computation of homographies

We need to estimate Aij from the image data

associated with the planar surface PA. We shall
use the region-based matching, instead of point-

based matching, to find the homography. First of

all, we use the Gabor filtering technique (Sun

et al., 2002) to identify at least four point corre-

spondences in order to obtain the initial solution

of the homography. We then use the Levenberg–

Marquardt iterative nonlinear minimization algo-

rithm (Szeliski, 1996) to minimize the sum of the
squared intensity differences of the transformed

and original image points due to the plane PA in

the image pair

E ¼
X
k

fI jððuikÞ
0
; ðvikÞ

0Þ � I iðuik; vikÞg
2
:

Here the transformed location ðuikÞ
0
; ðvikÞ

0
; 1

� �T
is

obtained from the image point (uik; v
i
k) using an

estimated Aij, and I j ðuikÞ
0
; ðvikÞ

0� 

is the intensity

obtained by a bilinear interpolation from the ori-

ginal image I j. The intensity values of the image

points in the common region of the two images are

normalized to remove the possible illumination
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difference. The above minimization method con-

verges in a few iterations.

After finding two homographies, recall that we

can compute the epipole ~ej from the skew sym-

metry property of BT½~ej��A. Also, in turn, we can
compute the fundamental matrix F using the epi-

pole ~ej as follows:

½~ej��A ffi ½~ej�� M jRjM
�1
i � ke~ej~a

T
EM

�1
i

n o� �
ffi ½~ej��M jRjM

�1
i ¼ F:
T
a
b
le

1

3
D

o
b
je
ct

ce
n
te
re
d
co
o
rd
in
a
te
s
o
f
th
e
to
w
er

fe
a
tu
re

p
o
in
ts

P
o
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6. Experimental results

6.1. Experiment 1

In the first experiment we use a synthetic tower

whose feature points and schematic diagram are

given in Table 1 and Fig. 2. We take a sequence of

six pictures to cover all aspects of the tower using a

virtual camera looking down from the upper

positions. The image resolution is 640 · 480 in
pixel. Three consecutive images of the sequence, I1,

I2, and I3, are shown in Fig. 3. We apply the

reconstruction process to this data set. We employ

a linear least-squares method based on eight cor-

responding image point pairs available in the

synthetic data to get the true homography for

each of the five planes, PGr, PA, PB, PE, PF vis-

ible in the pair (I1, I2). In addition, to handle the
possible problems caused by data translation

and scaling change, we also use the normaliza-

tion transform proposed by Hartley (1997) to

compute the homographies. We choose PGr as

the reference plane. During the reconstruction

process, we find the plane coefficient vectors with

respect to the reference plane PGr vector desig-

nated as ½ 1 1 1 1 �T. To check the correctness
of the final 3D projective reconstruction result, we

convert the 3D camera centered projective space

back to the 3D object centered Euclidean space

using the 3D Euclidean data of the tower available

in Table 1 to measure the reconstruction errors in

the metric space. The computation times for esti-

mating the plane coefficient vectors and the coor-

dinate transformation matrix for space integration
are within a second.



Table 2

The statistics of the distance errors of the reconstruction results

Error value Noise level R (in

0

Error type Distance mean error x 6.624e)5
y 2.492e)5
z 7.341e)5

Standard deviation x 2.027e)4
y 3.188e)5
z 1.192e)4

Fig. 3. Three distinct images I1, I2 and I3 taken at a distance of about

PE, PF in I1 and I2, and PGr, PB, PF, PC, PG in I3.
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Fig. 2. The schematic diagram of the tower. The dimensions of

the tower are 40 in. in depth (the x-direction), 40 in. in width

(the z-direction) and 180 in. in height (the y-direction).
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In what follows we assume the noise is uni-

formly distributed over the interval [�R;R], where
R indicates the noise strength or level. We generate

500 copies of noisy image data using the given

noise model with R ¼ 0:5, 1.0, 1.5 and 2.0 pixels,

respectively. Then we find the 500 reconstruction
results and compute the mean and standard devi-

ation of the differences between the true and the

estimated values of the 3D coordinates of the

tower feature points. Table 2 lists the statistics of

the relative distance errors into the x, y, and z
components. The results indicate our reconstruc-

tion method is quite stable in the presence of the

noise.
Since the rest of the planes visible in the images

are estimated relative to the reference plane, we

shall examine the effect of the assigned value of the

reference plane coefficient vector on the recon-

struction. Five hundreds of the reference plane

coefficient vectors are uniformly generated from

the range [10�3, 102]; we also randomly select the
pixels)

0.5 1 1.5 2

0.0547 0.1096 0.2108 0.2505

0.0896 0.1811 0.2944 0.3923

0.0761 0.1514 0.3379 0.3798

0.0855 0.1707 0.3655 0.3850

0.1323 0.2673 0.4416 0.5745

0.1165 0.2320 0.6085 0.9093

500 in. The visible planes in the three images are PGr, PA, PB,



Fig. 4. The effects of the uniformly generated reference plane coefficient vectors and the noise at different levels on the reconstruction

result.
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positive or negative sign for the coefficients. Fig. 4

depicts the reconstruction results under the effects

of the random selection of the reference plane

coefficient vector and the noise at different levels.

The horizontal axis indicates the trial number of

the reconstruction process and the vertical axis

indicates the resulting distance errors. The various
marks ‘‘.’’, ‘‘o’’, ‘‘x’’, ‘‘+’’ and ‘‘�’’ stand for mean

errors of the computed relative distances associ-

ated with the uniform noise levels of R ¼ 0, 0.5, 1,

1.5 and 2 pixels, respectively. The figure indicates

the reconstruction results are virtually not affected

by the random selection of the reference plane

coefficient vector under the given specified noise. A

remark is in order here. That is, we must avoid
using ð1; 1; 1; 0ÞT for the reference plane coeffi-

cient vector, since the camera origin ð0; 0; 0; 1Þ is

supposed not to lie on the plane.
Table 3

The mean errors of the reconstructed Euclidean point positions for d

Method Noise level (in pixel)

0 0.2

Ours 0.0000301259 0.2030772297

ð4; 2; 2Þa 0.0000781737 1.6271384793

ð4; 4; 1Þa 0.0000125658 0.2113535985

ð4; 4; 2Þa 0.0000134805 0.2128984139

a (n;m; p): n, m are the respective numbers of points on the two pla
6.2. Experiment 2

For a comparison between our method and the

point-based method employing the fundamental

matrix estimated from two arbitrary planes with

the aid of hallucinated points (Szeliski and Torr,

1998), we use the same setup as in the previous
experiment and run the experiment 500 times with

a uniform distribution at different noise levels. The

reconstructed Euclidean position errors are com-

puted and tabulated in Table 3. The position

errors are in the unit of inch.

From this table, we observe that in the noiseless

cases where the noise level is 0, all the recon-

struction results obtained by the two methods are
almost equally good and very small; the errors

are due to the rounding/truncation errors arising

from numerical computations. As the noise level
ifferent setups

0.5 1.0

0.4996064197 1.2803144642

14.5382797879 47.6350445089

0.5662224535 1.4202651215

0.5343441024 1.4456471793

nes, p is the number of points hallucinated per plane.
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increases from 0 to 1.0 for all the (n;m; p) cases, we
notice that the homography estimation using the

four noisy data points varies dramatically, and,

thus, the fundamental matrix computation with

the resulting noisy data points is bad. These lead

to the final reconstruction results with large
errors. For a more interesting comparison, we

compute the homography using the four outmost

data points and then use the estimated homo-

graphy to generate the hallucinated points located

inside the area surrounded by the four outmost

points; we denote these hallucinated points as the

p (p ¼ 1 or 2) points. In our method since the

homographies are iteratively estimated in a re-
gion-based way, so our reconstruction results are

good even in the presence of image noise. In these

simulations, the reconstruction results of the two

methods are nearly equally good. Even so, our

method is better in the sense that we can effi-

ciently find each 3D plane without the need of

computing 3D points, while the authors in the

other method alternated a plane estimation stage
with the point reconstruction stage. Thus, their

method conducted two kinds of estimations:

plane and points.
Fig. 6. New views of the reconstructe
6.3. Experiment 3

In this experiment the real images of a polyhe-
dral, depicted in Fig. 5, are used to reconstruct the

model of seven major planar surfaces. We go

through the whole reconstruction process as we

did in Experiment 1. The line parallelism and

perpendicularity properties of the scene are used to
d object with texture mapping.



Table 4

The estimated angles between the object planes and the ground

plane

Planes form the angle Angle

Estimated value Actual value

(PGr;PA) 92.21 90

(PGr;PB) 92.69 90

(PGr;PC) 97.09 90

(PGr;PD) 91.67 90

(PGr;PE) 1.69 0

(PGr;PF) 45.31 45

(PGr;PG) 1.66 0
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compute the projective-to-Euclidean coordinate
transformation matrix. First, the line parallelism is

used to compute the plane at infinity which is then

used to transform the reconstruction results from

projective space to affine space. Secondly, the line

perpendicularity is used to transform the recon-

struction results from affine space to metric space.

Further details can be found in (Daniilidis and

Ernst, 1996; Zhang et al., 1998). Fig. 6 shows the
four new views of the reconstructed model, which

look like the real ones. Besides, the metric angles

between individual object plane and the ground

plane are shown in Table 4. The reconstructed

object is found to be rather close to the true one.
7. Conclusions

An uncalibrated planar object reconstruction

method has been described in which we rely on the

plane information. We first estimate the homo-

graphy for all planar surfaces using the region

features of planar surfaces, and then we use the

homographies induced by two planes to compute

the epipole. We represent explicitly the compatible
projection equations for the stereo images using

the information of planar homographies and an

assigned reference plane coefficient vector. We

continue to derive the 3D equations of the planes

visible in the stereo images with respect to the

assigned reference plane once the planar homo-

graphy is determined. Finally, to integrate the

reconstruction results obtained from different
image pairs under a unified projective space, we

use the homography and the plane coefficient
vector information of two planes to derive the

coordinate transformation matrix. We then com-

pute the new plane equation for the planes in the

unified projective space. In the experiments we

conduct the sensitivity analysis on our method by

introducing image noise. We also consider the ef-
fect of assigning the different values of the refer-

ence plane coefficient vector on the reconstruction

results. Experimental results on the synthetic and

real images indicate the reconstruction method

works quite successfully. In the future, we shall

consider combining this plane based reconstruc-

tion method with other methods to determine the

3D structure of more complex objects.
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