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Chaos, chaos control and synchronization of the
vibrometer system

Z-M Ge*, C-C Lin and Y-S Chen

Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China

Abstract: The dynamic system of the vibrometer is shown to produce regular and chaotic behaviour
as the parameters are varied. When the system is non-autonomous, the periodic and chaotic motions
are obtained by numerical methods. Many effective methods have been used in chaos
synchronization. It has been shown that chaos can be synchronized using special feedback control
and that external excitations affect the synchronization.

Keywords: bifurcation, chaos, chaos control, chaos synchronization, vibrometer system

1 INTRODUCTION

During the past two decades, many studies have shown
that chaotic phenomena are observed in many physical
systems that possess non-linearity [1–4]. It was also
reported that the chaotic motion occurred in many non-
linear control systems [5, 6].

In nature, most physical systems are non-linear and
can be described by the non-linear equations of motion,
which in general cannot be linearized. Hence, research
into non-linear systems has spread quickly. For the non-
linear system, the study of the types of periodic solution,
the effects to the solutions caused by different para-
meters and initial conditions and the stability analysis of
the solutions comprise the major tasks. The central
characteristics are that a process such as randomization
happens in the deterministic system and small differ-
ences in the initial conditions produce very large ones in
the final phenomena. The irregular and unpredictable
motions of many non-linear systems have been labelled
‘chaotic’. A large number of studies on chaotic
behaviour has been undertaken up to now.

An earthquake is one of the largest natural disasters.
Therefore measurement of an earthquake is extremely
important. The vibrometer is a useful and convenient
tool to do this.

The aim of this paper is to present the stability, chaos,
chaos control and synchronization of a vibrometer.
Many modern techniques are used in analysing deter-
ministic non-linear system behaviour. In section 2, the
governing equations of motion will be formulated. In
section 3, bifurcation diagrams, phase portraits, the
Poincaré map and Lyapunov exponents are presented.
In section 4, the time history and power spectrum are
given. In section 5, attention is shifted to controlling
chaos [7]. In order to improve the performance of a
dynamic system or avoid chaotic phenomena, a chaotic
system for periodic motion that is beneficial in working
with a particular condition must be controlled. For this
purpose, chaos control by constant torque, by periodic
torque, by periodic impulse torque, delayed feedback
control [8], optimal control [9], adaptive control [10]
algorithm and periodic parametric forcing are used to
control chaos.

In section 6, synchronization [9, 11, 12] of two or
more dynamical systems is a fundamental phenomenon
for study in science, engineering and technology.
Traditionally, synchronization has been limited for
periodic signals. It has now been realized that chaotic
signals can also be used for synchronization. There are
many effective methods that can be used for chaos
synchronization. Synchronization of feedback methods
[13] in the two identical non-autonomous coupled
systems has been studied in this paper. Feedback
synchronization and the phase effect of two external
excitations to synchronization for two coupled systems
are studied.

The MS was received on 22 April 2003 and was accepted after revision
for publication on 28 May 2004.
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2 EQUATIONS OF MOTION

The system considered here is depicted in Fig. 1. It is
assumed that viscous dampings exist. The pendulum is
swinging in a vertical plane. The kinetic energy and
potential energy and the Rayleigh dissipation function
of the system are written as follows:

T ¼ 1
2
mA _xx2A þ 1

2
mBf½ _xxA � ‘ _ff cosðaþ fÞ�2

þ ½‘ _ff sinðaþ fÞ�2g
V ¼ 1

2
kf½a0 � ðaþ fÞ�2 �mBg‘ cosðaþ fÞ þ 1

2
kxx

2
A

R ¼ 1
2
cx _xx

2 þ 1
2
cf _ff2

where

mA ¼ mass of the slider

mB ¼ mass of the pendulum

xA ¼ displacement of the slider

f ¼ angle between the equilibrium position and the
pendulum

‘ ¼ length of the pendulum

cf and cx ¼ damping constants

kf and kx ¼ spring constants

a ¼ equilibrium angle

It is easy to obtain the Lagrangian

L ¼T � V

¼ 1
2
mA _xx2A þ 1

2
mB ð _xx2A � 2‘ _xxA _ff cosðaþ fÞ þ ‘2 _ff2

h i
� 1

2
kf½a0 � ðaþ fÞ�2 þmBg‘ cosðaþ fÞ � 1

2
kxx

2
A

Using Langrange equations,

d

dt

qL
q _xx

� �
� qL

qx
þ qR

q _xx
¼ 0

d

dt

qL

q _ff

� �
� qL
qf

þ qR

q _ff
¼ 0

and the equilibrium condition

mBg‘ sin a ¼ kfða0 � aÞ
gives

ðmA þmBÞ€xxA �mB‘€ff cosðaþ fÞ
þmB‘ _ff

2 sinðaþ fÞ þ kxxA ¼ �cx _xxA

mB‘
2€ff�mB‘€xxA cosðaþ fÞ þ kff

þmBg‘½sinðaþ fÞ � sin a� ¼ �cf _ff

ð1Þ
where the variable f indicates the measured quantity in
the range of linear theory.

This vibrometer cannot work properly for non-linear
dynamic equations (1), even where no chaotic behaviour
exists. The chaotic systems have the intrinsic property
sensitivity depending on initial conditions. It is therefore
not possible to predict the long-time behaviour of chaotic
systems. Thus the measurement of the vibrometer does
not make sense if chaotic motion exists in this system.

Let xA=‘ ¼ x1, _xxA=‘ ¼ x2, aþ f ¼ x03, _ff ¼ x4,
kx ¼ k1, kf ¼ k2, cx ¼ c1, cf ¼ c2 and change the time-
scale to dimensionless time t ¼ Ot. Denote d=dt also by
a dot ? for simplicity. The state equations can then be
written as

_xx1 ¼ x2

_xx2 ¼ � sin x03
a� cos2 x03

x24 �
g cos x03ðsin x03 � sin aÞ

O2‘ða� cos2 x03Þ
� k2ðx03 � aÞ cos x03
O2mB‘2ða� cos2 x03Þ

� k1

O2mBða� cos2 x03Þ
x1

� c1

OmBða� cos2 x03Þ
x2 � c2 cos x

0
3

OmB‘2ða� cos2 x03Þ
x4

_xx3 ¼ x4

_xx4 ¼ � sin x03 cos x
0
3

a� cos2 x03
x24 �

agðsin x03 � sin aÞ
O2‘ða� cos2 x03Þ

� ak2ðx03 � aÞ
O2mB‘2ða� cos2 x03Þ

� k1 cos x
0
3

O2mBða� cos2 x03Þ
x1

� c1 cos x
0
3

OmBða� cos2 x03Þ
x2 � ac2

OmB‘2ða� cos2 x03Þ
x4

ð2Þ
where

a ¼ mA þmB

mB
, O ¼

ffiffiffi
g

‘

r
Fig. 1 Sketch of a vibrometer
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The equilibrium state of equations (1) can be found by
the equilibrium condition mBg‘ sin a ¼ kfða0 � aÞ, or by
letting the right-hand side of equations (2) be zero.
Unfortunately, this equation cannot be solved by
elementary functions. It is often solved numerically.

3 BIFURCATION DIAGRAM, PHASE

PORTRAITS, POINCARÉ MAP AND

LYAPUNOV EXPONENT

Because of the given vertical vibration A sinot of the
horizontal basement for the Lagrange equations written
in the non-inertial coordinate system fixed with the
moving basement, the gravity is represented by a
constant term and a harmonic term ðgþ A0o2 sinotÞ,
where g,A0 and o are constants. Then equations (2) are
rewritten in the form

_xx1 ¼ f1 ¼ x2

_xx2 ¼ f2

¼ � sin x03
a� cos2 x03

x24 �
fgþ A0o2 sin½ðo=OÞt�g cos x03ðsin x03 � sin aÞ

O2‘ða� cos2 x03Þ
� k2ðx03 � aÞ cos x03
O2mB‘2ða� cos2 x03Þ

� k1

O2mBða� cos2 x03Þ
x1 � c1

OmBða� cos2 x03Þ
x2 � c2 cos x

0
3

OmB‘2ða� cos2 x03Þ
x4

_xx3 ¼ f3 ¼ x4

_xx4 ¼ f4

¼ � sin x03 cos x
0
3

ða� cos2 x03Þ
x24 �

afgþ A0o2 sin½ðo=OÞt�gðsin x03 � sin aÞ
O2‘ða� cos2 x03Þ

� ak2ðx03 � aÞ
O2mB‘2ða� cos2 x03Þ

� k1 cos x
0
3

O2mBða� cos2 x03Þ
x1 � c1 cos x

0
3

OmBða� cos2 x03Þ
x2 � ac2

OmB‘2ða� cos2 x03Þ
x4

ð3Þ

where

a ¼ 2:0, g ¼ 9:8, k1 ¼ 1, k2 ¼ 2, c1 ¼ 0:1, c2 ¼ 0:3,mB

¼ 2,o ¼ O ¼ 1, ‘ ¼ 1, a ¼ 0:2,A ¼ A0o2:

The information concerning the dynamics of the non-
linear system for specific values of the parameters is
provided. The dynamics may be viewed more completely
over a range of parameter values. As the parameter is
changed, the equilibrium points can be created or
destroyed, or their stability can be lost. The phenom-
enon of sudden change in the motion as a parameter is
varied is called bifurcation and the parameter values at
which they occur are called bifurcation points. The
bifurcation diagram of the non-linear system of
equations is depicted in Fig. 2, where A [ ½26:5, 29:2�
with the incremental value of A as 0.01.

The phase portrait is the evolution of a set of
trajectories emanating from various initial conditions
in the state space. When the solution reaches stable, the
asymptotic behaviours of the phase trajectories are

Fig. 2 Bifurcation diagram for A between 26.5 and 29.2 versus x1
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particularly interested and the transient behaviours in
the system are neglected. The Poincaré map is a better
method of displaying the dynamics. Periods 1, 2 and 4
and chaos for equations (3) are plotted in Figs 3 to 6
for A ¼ 27:2, 27.3, 28.8 and 29.

The Lyapunov exponent may be used to measure the
sensitive dependence on initial conditions. It is an index
for chaotic behaviour. Different solutions of the
dynamical system, such as fixed points, periodic
motions, quasiperiodic motion and chaotic motion,

Fig. 3 Phase portraits and the Poincaré map of period 1

Fig. 4 Phase portraits and the Poincaré map of period 2
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can be distinguished using it. If two trajectories start
close to one another in phase space, they will move
exponentially away from each other for small times on
average. Thus, if d0 is a measure of the initial distance

between the two starting points, the distance is
dðtÞ ¼ d062lt. The symbol l is called the Lyapunov
exponent. The divergence of chaotic orbits can only be
exponential locally, because if the system is bounded,

Fig. 5 Phase portraits and the Poincaré map of period 4

Fig. 6 Phase portraits and the Poincaré map of chaos
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dðtÞ cannot grow to infinity. A measure of this
divergence of orbits is that the exponential growth at
many points along a trajectory has to be averaged.
When dðtÞ is too large, a new ‘nearby’ trajectory d0ðtÞ is
defined. The Lyapunov exponent can be expressed as:

l ¼ 1

tN � t0

XN
k¼1

log2
dðtkÞ

d0ðtk � 1Þ

The signs of the Lyapunov exponents provide a
qualitative picture of a system dynamics. The criterion is

l40 ðchaoticÞ
l4 0 ðregular motionÞ

The periodic and chaotic motions can be distinguished
by the bifurcation diagram, while the quasiperiodic
motion and chaotic motion may be confused. However,
they can be distinguished by the Lyapunov exponent
method. The Lyapunov exponents of the solutions of
the non-linear dynamical system are plotted in Fig. 7 as
A ¼ 26:5---29:2.

4 TIME HISTORY AND THE POWER

SPECTRUM

A useful technique for the identification and character-
ization of the system is the power spectrum. It is often

used to distinguish between periodic, quasi-periodic and
chaotic behaviours for a dynamical system [14]. Any
function xðtÞ may be represented as a superposition of
different periodic components. The determination of
their relative strength is called spectral analysis. If it is
periodic, the spectrum may be a linear combination of
oscillations whose frequencies are integer multiples of
basic frequency. The linear combination is called a
Fourier series. If it is not periodic, the spectrum must
then be in terms of oscillations with a continuum of
frequencies. Such a representation of the spectrum is
called the Fourier integral of xðtÞ. The representation is
useful for dynamical analysis. The non-autonomous
system is observed by portraits of time history and the
power spectrum in Figs 8 to 11 for A ¼ 27:2, 27.3, 28.8,
29.

5 CONTROLLING CHAOS

Chaos has been found in many different physical
systems. Analysing and predicting the behaviour of a
chaotic system is beneficial, in order to maximize the
benefit and thus be able to control it. Chaos control can
be understood as a process or mechanism that enhances
existing chaos in a dynamical system when it is useful
and suppresses it when it is harmful.

Fig. 7 The largest Lyapunov exponent for A between 26.5 and 29.2
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Fig. 8 Time history and the power spectrum of period 1 versus x1

Fig. 9 Time history and the power spectrum of period 2 versus x1
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Fig. 10 Time history and the power spectrum of period 4 versus x1

Fig. 11 Time history and the power spectrum of chaos versus x1
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5.1 Controlling chaos by the addition of a constant

torque

Several interesting non-linear dynamic behaviours of the
system have been studied in previous sections. It was
shown that the forced system exhibited both regular and
chaotic motion. Converting chaotic oscillations into
desired regular ones with a periodic time dependence
would be beneficial in working with a particular system.

A constant term can be added when controlling
chaos. The torque T is applied to the pendulum. Thus
the equations become

_xx1 ¼ f1

_xx2 ¼ f2

_xx3 ¼ f3

_xx4 ¼ f4 þ T ð4Þ
Increasing the torque T from zero upwards, the chaotic
behaviour is changed to regular motion when
A ¼ 28:95. The system returns to regular motion when
the magnitude of the constant torque T is large enough.
It is clear that when T ¼ 2, the system is in period 1,
shown in Fig. 12.

5.2 Controlling chaos by the addition of periodic torque

The method of suppression of chaos by addition of a
periodic force is similar to the method used in the

previous section. However, T ¼ T1 sin$t is used in the
pendulum. Then the equations become

_xx1 ¼ f1

_xx2 ¼ f2

_xx3 ¼ f3

_xx4 ¼ f4 þ T1 sin$t

Here $ ¼ 1 is fixed and T is increased from zero
upwards. In Fig. 13, it is clear that the system is in
period 1 when T is 1.04.

5.3 Controlling chaos by the addition of periodic impulse

torque

As in section 5.2, a periodic impulse torque can also be
added instead of a period torque. Consider the system of
the form (4) and assume that the system is controlled by
a periodic impulse input

T ¼ r
X?
t¼0

dðt� itdÞ ð5Þ

where r is a constant impulse intensity, td is the period
between two consecutive impulses and d is the standard
Kronecker delta function.

With different values of r and td the controlled
system can be stabilized at different periodic orbits.
When td ¼ 0:1, the appropriate parameter r is adjusted

Fig. 12 Phase portraits and the Poincaré map of period 1 for T ¼ 2
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to be equal to 4.2 and the chaotic behaviour disappears.
The results are shown in Fig. 14.

5.4 Controlling of chaos by delayed feedback control

Delayed feedback control is based on a self-controlling
feedback, which combines feedback with a periodic

delay of a special form. It is achieved by using the
output signal, which is fed in a periodic delay time td
and adjusts the weight of the feedback. The controlling
input has the following style:

uðtÞ ¼ k½xðt� tdÞ � xðtÞ�

Fig. 14 Phase portraits and the Poincaré map of period 1 for r ¼ 4:2

Fig. 13 Phase portraits and the Poincaré map of period 1 for T ¼ 1:04
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where

k ¼ an adjustable weight of the feedback

td ¼ periodic delay time

xðtÞ ¼ uncontrolled system state

Therefore the equations become

_xx1 ¼ f1

_xx2 ¼ f2

_xx3 ¼ f3

_xx4 ¼ f4 þ u

Choosing an appropriate k for the feedback stabilization
can be achieved. The result for period 2 with k ¼
1:6, td ¼ 0:1 is shown in Fig. 15.

5.5 Optimal control of chaos

Optimal control is a well-established engineering control
strategy and is useful for both linear and non-linear
systems with linear or non-linear controllers. Optimiza-
tion in control is often a main objective in engineering
systems and can be used to design a bounded controller.

For the concept of optimal control, the system with a
controller u is considered:

_xx01 ¼ x2 ¼ f1

_xx2 ¼ � sin x03
a� cos2 x03

x24 �
g cos x03ðsin x03 � sin aÞ

O2‘ða� cos2 x03Þ
� cðx03 � aÞ cos x03
O2mB‘2ða� cos2 x03Þ

� k2

OmBða� cos2 x03Þ
x2

� k1 cos x
0
3

OmB‘2ða� cos2 x03Þ
x4 þ u ¼ f2

_xx3 ¼ x4 ¼ f3

_xx4 ¼� sin x03 cos x
0
3

a� cos2 x03
x24 �

agðsin x03 � sin aÞ
O2‘ða� cos2 x03Þ

� acðx03 � aÞ
O2mB‘2ða� cos2 x03Þ

� ak1

OmB‘2ða� cos2 x03Þ
x4

� k2 cos x
0
3

OmBða� cos2 x03Þ
x2 ¼ f4

ð6Þ

The Hamilton function is defined as H ¼ l1 f1 þ
l2 f2 þ l3 f3 þ l4 f4 and the variation principle of
optimal control is followed. To achieve a stationary
point, the stationary condition must therefore finally be
imposed:

qH
qu

¼ p2 ¼ 0 ð7Þ

Fig. 15 Phase portraits and the Poincaré map of period 2 for k ¼ 1:6
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and

p1x2 þ p2f2 þ p3x4 ¼ 0

� qf4
qx4

p4

¼ 2 sin x03 cos x
0
3

a� cos2 x03
x4 þ ak1

OmB‘2ða� cos2 x03Þ
� �

p4 ¼ 0

ð8Þ

This yields a non-trivial solution for ðp1, p3, p4Þ if and
only if

2 sin x03 cos x
0
3

a� cos2 x03
x4 þ ak1

OmB‘2ða� cos2 x03Þ
¼ 0 ð9Þ

This gives an optimal surface singularly in the state
space. This type of control assumes values on the two
allowable boundaries (7) and (8) alternatively, according
to a switching surface. Locating system trajectories on
the surface, a typical feedback control in the form

u ¼ � kb sgn
2 sin x03 cos x

0
3

a� cos2 x03
x4 þ ak1

OmB‘2ða� cos2 x03Þ
� �

can be used. The sgn function has the following style:

sgn½n� ¼
þ 1 if n40
0 if n ¼ 0
� 1 if n50

(

For kb ¼ 2, the phase portraits and Poincaré map are
shown in Fig. 16 for period 1.

5.6 Control of chaos by the adaptive control algorithm

An adaptive control algorithm utilizes an error signal
proportional to the difference between the goal output
and the actual output of the system. Generally speaking,
an adaptive controller is one that has adjustable
parameters and the capability of self-adjusting these
parameters in response to changes within the dynamics
and environment of the controlled system. The system
motion is set back to a desired state xs by adding
dynamics on the control parameter p through the
evolution equation

_pp ¼ eRðx� xsÞ ð10Þ
where R could be either linear or non-linear and e
indicates the stiffness of the control. In order to convert
the dynamics of system (3) from chaotic motion to a
desired motion xs, parameter A is chosen to be
perturbed as

_AA ¼ e½ðx1 � xs1Þðx2 � xs2Þðx3 � xs3Þ� ð11Þ
Then the system can reach the desired periodic
trajectory shown as Fig. 17 with e ¼ 0:16 for period 1.

5.7 Control of chaos by periodic parametric forcing

One of the early studies on parameter-dependent
approaches to chaos control focuses on the possible
effect of a periodic variation of some system parameter

Fig. 16 Phase portraits and the Poincaré map of period 1 for kb ¼ 2
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in modifying the dynamics of a system with a strange
attractor and directly reducing or suppressing chaos.
The suggestion of such a possible effect is based on the
observation that parametric excitation can stabilize
unstable equilibria of linear or linearized systems.

First k2 ? k2½1þ c sinðOptÞ� is considered where c is a
constant. This type of coupling of weak periodic
oscillations to a control parameter can be quite effective
when applied to chaotic systems. The interesting
consequence of varying the parameter k2 to k2½1þ
c sinðOptÞ� can be observed from Op � l (maximum
Lyapunov exponent) shown in Fig. 18. The suppression
of chaos occurs ðl ¼ 0Þ when Op is 5.

6 CHAOS SYNCHRONIZATION

Chaos synchronization has increasing potential for
applications. In conventional communication systems,
sinusoidal signals are used as carriers, which normally
offer excellent bandwidth efficiency. However, their
transmitted power is concentrated within a narrow
band, resulting in high power spectral density. Then, it
may lead to loss of synchronization, high interception
possibilities, etc. On the contrary, chaotic signals are
usually broadband and noiselike. Hence, synchronized
chaotic systems can be used as cipher generators for
secure communication [15], symmetry and pattern
formation and self-organization [16–18].

There are many effective methods that can be used for
chaos synchronization. It is achieved by adding a single
coupled term and detected by the Lyapunov exponent.
In this paper, synchronization of feedback methods in
two identical non-autonomous coupled systems has
been studied. Then the phase effect of external excita-
tions of two coupled systems [19] has also been
researched.

6.1 Feedback synchronization

Synchronization of the two coupled systems can be
understood from a feedback control point of view, as
follows:

_xx1 ¼ f1

_xx2 ¼ f2

_xx3 ¼ f3 � eðx3 � x7Þ
_xx4 ¼ f4

ð12Þ

_xx5 ¼ f5

_xx6 ¼ f6

_xx7 ¼ f7 þ eðx3 � x7Þ
_xx8 ¼ f8

ð13Þ
where equations (12) and (13) are identical systems but

Fig. 17 Time history of adaptive control for A of period 1
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have different initial conditions. From Figs 19 to 21, it
can be seen that the two coupled systems are syn-
chronized. Changing eðx3 � x7Þ to e sinðx3 � x7Þ and
ðeeðx3�x7Þ � 1Þ, the same results can also be seen in Figs
19 to 21. Then, eðx3 � x7Þ is taken as an example. In
Fig. 22, it can be seen that if e exceeds 0.6,

synchronization can always be achieved. In Fig. 23,
when e ¼ 0:6 one of the Lyapunov exponents trans-
verses the zero value from positive to negative. This
indicates that transversality means synchronization. In
Fig. 24, when e becomes larger, the time to achieve
synchronization becomes smaller.

Fig. 19 Synchronized submanifolds of coupled systems with coupling eðx3 � x7Þ, e ¼ 1

Fig. 18 The largest Lyapunov exponent for Op between 0 and 8
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Fig. 20 Errors of two coupled systems with eðx3 � x7Þ, e ¼ 1

Fig. 21 Phase portraits of two coupled systems with eðx3 � x7Þ, e ¼ 1
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Fig. 22 Bifurcation diagram for e between 0 and 1 versus x1

Fig. 23 The Lyapunov exponent for e between 0 and 1
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Fig. 24 Synchronization time for different e

Fig. 25 Diagram for f between 0 and 2p versus error
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6.2 Phase effect of two external excitations for two

coupled systems

The phase difference between the two external excita-
tions may affect chaos synchronization. Recently, it has
been shown that the phase difference between two
externally driven forces can play an important role in
the driven systems [20, 21]. Now, the systems become

_xx1 ¼ f1

_xx2 ¼ f2ðx1, x2, x3, x4, sinðotÞÞ
_xx3 ¼ f3 � eðx3 � x7Þ
_xx4 ¼ f4ðx1, x2, x3, x4, sinðotÞÞ

ð14Þ
_xx5 ¼ f5

_xx6 ¼ f6ðx5, x6, x7, x8, sinðotþ fÞÞ
_xx7 ¼ f7 þ eðx3 � x7Þ
_xx8 ¼ f8ðx5, x6, x7, x8, sinðotþ fÞÞ

ð15Þ

where f is the phase difference of external excitation
and o is the external excitation. Then o ¼ 1 is selected.
In Fig. 25, x1 � x5 versus f is shown with the coupling
strength e ¼ 1. The corresponding Lyapunov exponents
of the responses of the non-linear dynamical system are
plotted in Fig. 26.

To determine the level of the mismatch of chaos
synchronization quantitatively, a similarity function

SðsÞ is used as a time-averaged difference between the
variables x1 and x5 taken with the time drift s [22], and
the similarity function Sð0Þ versus f is plotted in Fig. 27.
This shows that at f ¼ 0,Sð0Þ is zero. When f becomes
large, the mismatch increases at first, then keeps around
2, when f ¼ 2p, and Sð0Þ becomes zero again. Thus

S2ðsÞ ¼ h½x1ðtþ sÞ � x5ðtÞ�2i
½hx21ðtÞihx25ðtÞi�1=2

In Fig. 28, SðsÞ versus s is plotted using different
coupling strengths e. When e40:6,Smin, a minimum of
SðsÞ, appears to be zero.

Above all, the phase effect of the two mutually
coupled systems have been considered. The phase
difference plays an important role. It destroys the
complete synchronization of two coupled systems even
if it is a small value. Then synchronization is achieved
again at f ¼ 2p.

7 CONCLUSIONS

In this paper, the dynamic system of the vibrometer
exhibits regular and chaotic behaviour as the parameters
are varied. In sections 3 and 4, computational analyses
have been studied. Considering the system to be non-
autonomous, the periodic and chaotic motions are

Fig. 26 Similarity function SðsÞ versus the different strength e
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obtained by numerical methods such as bifurcation, the
Poincaré map, Lyapunov exponents and the power
spectrum. In addition, a large amount of information of
the behaviours of the periodic and chaotic motions can

be found in parameter diagrams. The changes of
parameter play an important role in the non-linear
system. The chaotic motion has been detected using
Lyapunov exponents. Though there are some errors

Fig. 28 The similarity function Sð0Þ versus the phase difference f

Fig. 27 The Lyapunov exponent for f between 0 and 2p
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with the results of the computer simulation, the
conclusions match the bifurcation diagrams.

Because chaotic motion has a sensitive dependence on
the initial condition in deterministic physical systems, a
chaotic system must be controlled to yield a periodic
motion that is beneficial in working with a particular
condition. There are seven control methods that have
been studied in section 5. The first three methods of
controlling chaos are provided by conventional open-
loop control. In the others closed-loop control is used.
The delayed feedback control of chaos is a simple way to
govern the chaotic system. By setting a delayed signal,
the weight of the control signal can easily be adjusted to
achieve the stabilization. The optimal control is also
useful in suppression of chaos. This method can steer a
chaotic trajectory towards a regular trajectory. If the
aim is to set the system motion to a desired predeter-
mined regular orbit of the original system, the adaptive
control is the sole method among the seven methods
given in this paper.

During the past decade, there have been many
effective methods that could be used for chaos
synchronization. Synchronized chaotic systems can be
used as cipher generators for secure communication,
symmetry and pattern formation, and self-organization.
It is worthy of further research. In section 6, feedback
synchronization, one of many effective methods for
chaos synchronization, was studied. It can be seen that
chaos can be synchronized with some special feedback
control and that the phase difference of external
excitations affects the synchronization.
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