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Abstract

The identical two-degrees-of-freedom loudspeaker systems are discussed for synchronization of chaos in this paper.

Two methods are used to synchronize two identical chaotic systems with different initial condition: the adaptive

control and the Gerschgorin’s theorem. Finally we research the parameter identification for two identical two-

degrees-of-freedom loudspeaker systems by adaptive control and random optimization method.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Lorenz studied the strange changes in the atmosphere which is the first example to study chaos in 1963. In the past

four decades, a large number of studies have shown that chaotic phenomena are observed in many physical systems that

possess nonlinearity [1,2]. It was also reported that the chaotic motion occurred in many nonlinear control systems [3].

In this paper, chaos synchronization of a two-degrees-of-freedom loudspeaker system is researched by many

methods. In Section 2, a two-degrees-of-freedom loudspeaker system model and Lagrange’s equations of motion for it

are introduced. Next, the bifurcation diagram and the Lyapunov exponent are expressed by numerical analysis.

The identical systems are discussed for synchronization of chaos in Section 3. Two methods are presented to achieve

the synchronization: the adaptive control, the Gerschgorin’s theorem.

We research the parameter identification for identical two-degrees-of-freedom loudspeaker systems in Section 4.

Two methods are presented to achieve the synchronization: the adaptive control and the random optimization method.

Finally, the conclusion of the whole paper is briefly stated.
2. Equations of motion

The loudspeaker system considered here is depicted in Fig. 1. It is a loudspeaker system having two-degrees-of-

freedom, where one is the electric charge on the capacitor plate and the other is displacement of the parallel plate

capacitor.

The state equations of loudspeaker system are described by [4]8
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_x1 ¼ x2;
_x2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
s;

_x3 ¼ x4;
_x4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4;
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ð2:1Þ
where a21 ¼ 1, a22 ¼ 0:05, a23 ¼ 2, a24 ¼ 0:0847, a25 ¼ A
mx0X

2, a41 ¼ 0:0694, a42 ¼ 0:0694, a43 ¼ 1:27, a44 ¼ 0:5.
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Fig. 2. Bifurcation diagram for A between 38 and 44.

Fig. 1. A schematic diagram of loudspeaker system.
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The bifurcation diagram of the loudspeaker system is depicted in Fig. 2. The range of A is ½38; 44� with the incre-

mental value is 0.01. Lyapunov exponents of loudspeaker system are plotted in Fig. 3.
3. Synchronization of chaos for identical systems

Two identical systems are discussed for synchronization of chaos in this paper. Two methods are presented to

achieve synchronization: the adaptive control [5] and the Gerschgorin’s theorem [6].

3.1. Synchronization by adaptive control

We study two identical two-degrees-of-freedom loudspeaker systems in this section. Both systems have the same

form and two parameters are unknown. Two identical systems begin with two different initial conditions that will be

synchronized by following methods.



Fig. 3. The Lyapunov exponent for A between 38 and 44.
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The drive system is described as Eq. (2.1).
_x1 ¼ x2;
_x2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
s;

_x3 ¼ x4;
_x4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4:

8>>><
>>>:

ð3:1:1Þ
The response system is described by
_y1 ¼ y2;
_y2 ¼ �a21y1 � a22y2 þ a23y3 þ a24y23 þ a25 sin x

X

� �
s;

_y3 ¼ y4;
_y4 ¼ a41y1 þ a42y1y3 � a43y3 � a44y4:

8>>><
>>>:

ð3:1:2Þ
The values of parameters are a21 ¼ 1, a23 ¼ 2, a24 ¼ 0:0847, a25 ¼ 5:5652, a41 ¼ 0:0694, a42 ¼ 0:0694, a43 ¼ 1:27. The
true values of ‘‘unknown’’ parameters are a22 ¼ 0:05, a44 ¼ 0:5 in numerical simulation.

The initial conditions of the drive and the response systems are ðx1ð0Þ; x2ð0Þ; x3ð0Þ; x4ð0ÞÞ ¼ ð1; 0; 1; 0Þ, ðy1ð0Þ; y2ð0Þ;
y3ð0Þ; y4ð0ÞÞ ¼ ð1:1; 0:1; 1:1; 0:1Þ, respectively. The initial values of estimate for ‘‘unknown’’ parameters are â22ð0Þ ¼ 0:1,
â44ð0Þ ¼ 0:1.

For synchronizing two two-degrees-of-freedom loudspeaker systems, we add four controllers, u1, u2, u3, u4 on the

first, second, third, and fourth equations of Eq. (3.1.2), respectively.
_y1 ¼ y2 þ u1;
_y2 ¼ �a21y1 � a22y2 þ a23y3 þ a24y23 þ a25 sinðxXÞsþ u2;
_y3 ¼ y4 þ u3;
_y4 ¼ a41y1 þ a42y1y3 � a43y3 � a44y4 þ u4:

8>>><
>>>:

ð3:1:3Þ
First, subtracting Eq. (3.1.1) from Eq. (3.1.3), we can obtain the error dynamics
_e1 ¼ e2 þ u1;

_e2 ¼ �a21e1 � a22e2 þ a23e3 þ a24ðy23 � x23Þ þ u2;

_e3 ¼ e4 þ u3;

_e4 ¼ a41e1 þ a42ðy1y3 � x1x3Þ � a43e3 � a44e4 þ u4;

ð3:1:4Þ
where e1 ¼ y1 � x1, e2 ¼ y2 � x2, e3 ¼ y3 � x3, e4 ¼ y4 � x4.
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Next, a Lyapunov function is selected as
Fig. 4

at t ¼
V ðe; ~a22; ~a44Þ ¼ 1
2
eTeþ 1

2
ð~a222 þ ~a244Þ; ð3:1:5Þ
where ~a22 ¼ a22 � â22, ~a44 ¼ a44 � â44 and â22, â44 are estimate values of the unknown parameters a22 and a44, respec-
tively.

Its derivative along the solution of Eq. (3.1.4) is
dV ðe; ~a22; ~a44Þ
dt

¼ eT _eþ ~a22 _~a22 þ ~a44 _~a44

¼ e1ðe2 þ u1Þ þ e2½�a21e1 � a22e2 þ a23e3 þ a24ðy23 � x23Þ þ u2� þ e3ðe4 þ u3Þ þ e4½a41e1
þ a42ðy1y3 � x1x3Þ � a43e3 � a44e4 þ u4� þ ~a22ð� _̂a22Þ þ ~a44ð� _̂a44Þ: ð3:1:6Þ
Select u1, u2, u3, u4, _̂a22, _̂a44 as
u1 ¼ �e1 � e2;

u2 ¼ a21e1 þ â22e2 � a23e3 � a24ðy23 � x23Þ � e2;

u3 ¼ �e3 � e4;

u4 ¼ �a41e1 � a42ðy1y3 � x1x3Þ þ a43e3 þ â44e4 � e4;

_̂a22 ¼ �e22;

_̂a44 ¼ �e24:
Then, Eq. (3.1.6) becomes
dV ðeÞ
dt

¼ �e21 � e22 � e23 � e24 < 0: ð3:1:7Þ
This means that the synchronization of two identical two-degrees-of-freedom loudspeaker systems can be accom-

plished. The results are shown in Figs. 4–11.

3.2. Synchronization by Gerschgorin’s theorem

We continue to study two identical two-degrees-of-freedom loudspeaker systems in this section. Two identical

systems begin with two different initial conditions which will be synchronized by following methods. The drive system is

described as Eq. (3.1.1).
. The time response of states for drive system’s x1 (––) and response system’s y1 (� � �). The controller is acceded to response system

50 s.



Fig. 5. The time response of states for drive system’s x2 (––) and response system’s y2 (� � �). The controller is acceded to response system

at t ¼ 50 s.

Fig. 6. The time response of states for drive system’s x3 (––) and response system’s y3 (� � �). The controller is acceded to response system

at t ¼ 50 s.
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The following response system is constructed for Eq. (3.1.2) with linear unidirectional couplings:
_y1 ¼ y2 þ k1ðx1 � y1Þ;
_y2 ¼ �a21y1 � a22y2 þ a23y3 þ a24y23 þ a25 sin x

X

� �
sþ k2ðx2 � y2Þ;

_y3 ¼ y4 þ k3ðx3 � y3Þ;
_y4 ¼ a41y1 þ a42y1y3 � a43y3 � a44y4 þ k4ðx4 � y4Þ:

8>>><
>>>:

ð3:2:1Þ
The parameters of drive and response systems are chosen as a21 ¼ 1, a22 ¼ 0:05, a23 ¼ 2, a24 ¼ 0:0847, a25 ¼ 5:5652,
a41 ¼ 0:0694, a42 ¼ 0:0694, a43 ¼ 1:27, a44 ¼ 0:5.

The drive and the response systems can be written as
_x ¼ Axþ gðxÞ þ u;

_y ¼ Ay þ gðyÞ þ uþ Kðx� yÞ;
ð3:2:2Þ
where A 2 Rn�n is a constant matrix, gðxÞ is a nonlinear function, and u is the external input vector. K is a diagonal

matrix to be designed later.



Fig. 7. The time response of states for drive system’s x4 (––) and response system’s y4 (� � �). The controller is acceded to response system

at t ¼ 50 s.

Fig. 8. Time history of error for e1.
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Assuming that
gðxÞ � gðyÞ ¼ Mx;yðx� yÞ: ð3:2:3Þ
The elements are dependent on x and y in Mx;y .

From Eq. (3.2.2), we can obtain the error dynamics
_e ¼ ðA� K þMx;yÞe; ð3:2:4Þ
where e ¼ x� y.
If P is a positive definite symmetric constant matrix, and all the eigenvalues of ðA� K þMx;yÞTPþ PðA� K þMx;yÞ

are negative, the error dynamics would be asymptotically stable about ð0; 0; 0Þ [6]. In the other words, the two-degrees-

of -freedom loudspeaker systems would be synchronized.

Let Q ¼ ðA� K þMx;yÞTPþ PðA� K þMx;yÞ. The eigenvalues of Q are ki, and ki 6 l < 0, where l is a negative

constant:
Q ¼ ðA� K þMx;yÞTPþ PðA� K þMx;yÞ ¼ ½PðAþMx;yÞ þ ðAþMx;yÞTP� � ½PK þ KTP� ¼ ½�aij� � ½bij�: ð3:2:5Þ



Fig. 9. Time history of error for e2.

Fig. 10. Time history of error for e3.
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Let Ci be the Gerschgorin’s circles of Q, then the centers of circles are �aii � 2kipi, the radiuses are ri and

ri ¼
Pn

j¼1;j6¼i j�aijj. Gerschgorin’s theorem guarantees that each eigenvalue of Q, when plotted in the complex plane, must

lie on or within the circle Ci. Then, we can get that �aii � 2kipi þ ri 6 l, and the range of ki can be obtained:
ki P 1
2pi
ð�aii þ ri � lÞ; i ¼ 1; 2; . . . ; n: ð3:2:6Þ
For convenience, we choose P ¼ I, and Eq. (3.2.6) can be written as
ki P 1
2
ð�aii þ ri � lÞ; i ¼ 1; 2; . . . ; n: ð3:2:7Þ
Considering the two-degrees-of-freedom loudspeaker systems investigated in this section, we can obtain
A ¼

0 1 0 0
�a21 �a22 a23 0

0 0 0 1

a41 0 �a43 �a44

2
664

3
775; ð3:2:8Þ



Fig. 11. Time history of error for e4.
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K ¼

k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4

2
664

3
775 ð3:2:9Þ
and
gðxÞ ¼

0
a24x23
0

a42x1x3

2
664

3
775; gðyÞ ¼

0
a24y23
0

a42y1y3

2
664

3
775 ð3:2:10Þ
then
gðxÞ � gðyÞ ¼

0

a24ðx23 � y23Þ
0

a42ðx1x3 � y1y3Þ

2
664

3
775 ¼

0

a24ðx3 þ y3Þe3
0

a42½ð2x3 � y3Þe1 þ x1e3�

2
664

3
775 ¼ Mx;ye

¼

0 0 0 0

0 0 a24ðx3 þ y3Þ 0

0 0 0 0

a42ð2x3 � y3Þ 0 a42x1 0

2
664

3
775

e1
e2
e3
e4

2
664

3
775; ð3:2:11Þ

Mx;~x ¼

0 0 0 0

0 0 a24ðx3 þ y3Þ 0

0 0 0 0

a42ð2x3 � y3Þ 0 a42x1 0

2
664

3
775: ð3:2:12Þ
The error dynamics is
_e1 ¼ e2 � k1e1;

_e2 ¼ �a21e1 � a22e2 þ a23e3 þ a24ðx23 � y23Þ � k2e2;

_e3 ¼ e4 � k3e3;

_e4 ¼ a41e1 þ a42ðx1x3 � y1y3Þ � a43e3 � a44e4 � k4e4;

ð3:2:13Þ
where
e1 ¼ x1 � y1; e2 ¼ x2 � y2; e3 ¼ x3 � y3; e4 ¼ x4 � y4:
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It follows from Eqs. (3.2.8) and (3.2.10) that
ðAþMx;yÞ þ ðAþMx;yÞT ¼

0 1� a21 0 a41 þ a42ð2x3 � y3Þ
1� a21 �2a22 a23 þ a24ðx3 þ y3Þ 0

0 a23 þ a24ðx3 þ y3Þ 0 1� a43 þ a42x1
a41 þ a42ð2x3 � y3Þ 0 1� a43 þ a42x1 �2a44

2
664

3
775:

ð3:2:14Þ
In terms of Eq. (3.2.7), we can obtain the inequalities as
k1 P 1
2
j1ð � a21j þ ja41 þ a42ðe3 þ x3Þj � lÞ;

k2 P 1
2
j1ð � a21j � 2a22 þ ja23 þ a24ðx3 þ y3Þj � lÞ;

k3 P 1
2
ja23ð þ a24ðx3 þ y3Þj þ j1� a43 þ a42x1j � lÞ;

k4 P 1
2
ja41ð þ a42ðe3 þ x3Þj þ j1� a43 þ a42x1j � 2a44 � lÞ:

ð3:2:15Þ
By choosing l ¼ �0:7, we can obtain the coupling strengths as k1 ¼ 1:1, k2 ¼ 2, k3 ¼ 2:8, k4 ¼ 1:3. The eigenvalues
of ðA� K þMx;yÞ þ ðA� K þMx;yÞT are )0.7, )1.6, )4.3, )8.3. The selection of l value is to satisfy with ki 6 l < 0. The

results are shown in Figs. 12–15, and the synchronization is accomplished.
Fig. 12. Time history of error for e1.

Fig. 13. Time history of error for e2.



Fig. 14. Time history of error for e3.

Fig. 15. Time history of error for e4.
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4. Parameter identification by adaptive control

In this paper, both parameter identification and synchronization of chaos are proposed. Two methods are presented

to achieve parameter identification: the adaptive control method [7] and the random optimization [8]. In addition, we

also keep on discussing identical two-degrees-of-freedom loudspeaker systems in this part.

4.1. Parameters identification by adaptive control

In this section, both parameters identification and synchronization of chaos are proposed by adaptive control

method. Two parameters are uncertain in the response system.

The drive system is described by Eq. (2.1).
_x1 ¼ x2;
_x2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
s;

_x3 ¼ x4;
_x4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4:

8>><
>>:

ð4:1:1Þ
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The response system is described as
_y1 ¼ y2;
_y2 ¼ �a21y1 � a22ðtÞy2 þ a23y3 þ a24y23 þ a25 sin x

X

� �
s;

_y3 ¼ y4;
_y4 ¼ a41y1 þ a42y1y3 � a43y3 � a44ðtÞy4;

8>><
>>:

ð4:1:2Þ
where a22 and a44 are two parameters of uncertainty. The initial conditions of the drive and the response systems are

ðx1ð0Þ; x2ð0Þ; x3ð0Þ; x4ð0ÞÞ ¼ ð1; 0; 1; 0Þ, ðy1ð0Þ; y2ð0Þ; y3ð0Þ; y4ð0ÞÞ ¼ ð1:2; 0:2; 1:2; 0:2Þ, respectively.
The drive and the response systems can be written as
_x ¼ f ðxÞ þ ðF1ðxÞa22 þ F2ðxÞa44Þ;
_y ¼ f ðyÞ þ ðF1ðyÞa22 þ F2ðyÞa44Þ;

ð4:1:3Þ
where
F1ðxÞT ¼ 0 x2 0 0ð Þ; F2ðxÞT ¼ 0 0 0 x4ð Þ:
For synchronizing two identical two-degrees-of-freedom loudspeaker systems, we add four controllers, u1, u2, u3, u4
on the first, second, third, fourth equations of Eq. (4.1.2), respectively.
_y1 ¼ y2 þ u1;

_y2 ¼ �a21y1 � a22ðtÞy2 þ a23y3 þ a24y23 þ a25 sin x
X

� �
sþ u2;

_y3 ¼ y4 þ u3;

_y4 ¼ a41y1 þ a42y1y3 � a43y3 � a44ðtÞy4 þ u4:

8>>><
>>>:

ð4:1:4Þ
We have some work to do first before solving our problem. To consider the special case when the drive and the

response systems have the same parameters which are time-invariant. In other words, a22 and a44 are rewritten as a22
and a44 in Eq. (4.1.4). Subtracting it from Eq. (4.1.1), we can obtain the error dynamics:
_e1 ¼ e2 þ u1;

_e2 ¼ �a21e1 � a22e2 þ a23e3 þ a24ðy23 � x23Þ þ u2;

_e3 ¼ e4 þ u3;

_e4 ¼ a41e1 þ a42ðy1y3 � x1x3Þ � a43e3 � a44e4 þ u4;

ð4:1:5Þ
where
e1 ¼ y1 � x1; e2 ¼ y2 � x2; e3 ¼ y3 � x3; e4 ¼ y4 � x4:
The Lyapunov function is selected as
V ðeÞ ¼ 1
2
ðe21 þ e22 þ e23 þ e24Þ: ð4:1:6Þ
Then its derivative along the solution of Eq. (4.1.5) is
dV ðeÞ
dt

¼ e1 _e1 þ e2 _e2 þ e3 _e3 þ e4 _e4

¼ e1ðe2 þ u1Þ þ e2½�a21e1 � a22e2 þ a23e3 þ a24ðy23 � x23Þ þ u2� þ e3ðe4 þ u3Þ þ e4½a41e1 þ a42ðy1y3 � x1x3Þ

� a43e3 � a44e4 þ u4�: ð4:1:7Þ
The controllers are chosen as
u1 ¼ �e1 � e2;

u2 ¼ a21e1 þ a22e2 � a23e3 � a24 y23
�

� x23
�
� e2;

u3 ¼ �e3 � e4;

u4 ¼ �a41e1 � a42ðy1y3 � x1x3Þ þ a43e3 þ a44e4 � e4:

ð4:1:8Þ



1242 Z.-M. Ge, W.-Y. Leu / Chaos, Solitons and Fractals 21 (2004) 1231–1247
Then, Eq. (4.1.7) can be rewritten as
dV
dt

¼ �e21 � e22 � e23 � e24 < 0: ð4:1:9Þ
This means that synchronization of the drive–response system.

Here, we use the results of this special case to solve our problem. The drive system is described as Eq. (4.1.1). The

response system is described as Eq. (4.1.4). Let
_a22ðtÞ ¼ �F T
1 ðxÞðgradV ðeÞÞ

T ¼ x2e2;

_a44ðtÞ ¼ �F T
2 ðxÞðgradV ðeÞÞ

T ¼ x4e4:
ð4:1:10Þ
The controllers are chosen as
u1 ¼ �e1 � e2;

u2 ¼ a21e1 þ a22ðtÞe2 � a23e3 � a24 y23
�

� x23
�
� e2;

u3 ¼ �e3 � e4;

u4 ¼ �a41e1 � a42ðy1y3 � x1x3Þ þ a43e3 þ a44e4 � e4:

ð4:1:11Þ
According to the drive system Eq. (4.1.1) and the controlled response system Eq. (4.1.4), we have the following error

dynamical system:
_e ¼ f ðyÞ � f ðxÞ þ F ðyÞa� F ðxÞaþ U ; ð4:1:12Þ
where
UT ¼ u1 u2 u3 u4½ �:
The Lyapunov function is selected as
V ðe; aÞ ¼ V ðeÞ þ 1
2
ða� aÞTða� aÞ: ð4:1:13Þ
Its derivative along the solution of system Eq. (6.1.11) satisfies [7]
dV
dt

¼ ðgradV ðeÞ; f ðyÞ � f ðxÞ þ F ðyÞa� F ðxÞaþ UÞ þ _aTða� aÞ

¼ ðgradV ðeÞ; f ðyÞ � f ðxÞ þ F ðyÞa� F ðxÞaþ UÞ þ ½gradV ðeÞF ðxÞða� aÞ� þ _aTða� aÞ
¼ �e21 � e22 � e23 � e24 < 0: ð4:1:14Þ
This means that synchronization of the drive–response system. The results are shown in Figs. 16–21, parameters

identification and synchronization of chaos are accomplished.
Fig. 16. Graph of the parameter identification result.



Fig. 17. Graph of the parameter identification result.

Fig. 18. Time history of error for e1.
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4.2. Parameter identification by random optimization

We investigate two identical loudspeaker systems in this section. Both systems have the same parameters, but a

parameter of the response system is unknown. Our work is to identify the unknown parameter. In this section,

parameter identification is proposed by random optimization.

The drive system is described as Eq. (2.1).
_x1 ¼ x2;
_x2 ¼ �a21x1 � a22x2 þ a23x3 þ a24x23 þ a25 sin x

X

� �
s;

_x3 ¼ x4;
_x4 ¼ a41x1 þ a42x1x3 � a43x3 � a44x4:

8>><
>>:

ð4:2:1Þ
The response system is described as
_y1 ¼ y2;
_y2 ¼ �a21y1 � a22y2 þ a23y3 þ a24y23 þ a25 sin x

X

� �
s;

_y3 ¼ y4;
_y4 ¼ a41y1 þ a42y1y3 � a43y3 � a44y4:

8>><
>>:

ð4:2:2Þ



Fig. 19. Time history of error for e2.

Fig. 20. Time history of error for e3.
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The parameter a22 is unknown in the response system. The initial conditions of the drive and the response systems

are ðx1ð0Þ; x2ð0Þ; x3ð0Þ; x4ð0ÞÞ ¼ ð1; 0; 1; 0Þ, ðy1ð0Þ; y2ð0Þ; y3ð0Þ; y4ð0ÞÞ ¼ ð1:2; 0:2; 1:2; 0:2Þ, respectively.
To synchronize two identical loudspeaker systems, we add one coupling term, kðx1 � y1Þ, on the first equation of Eq.

(4.2.2).
_y1 ¼ y2 þ kðx1 � y1Þ;
_y2 ¼ �a21y1 � a22y2 þ a23y3 þ a24y23 þ a25 sin x

X

� �
s;

_y3 ¼ y4;
_y4 ¼ a41y1 þ a42y1y3 � a43y3 � a44y4:

8>><
>>:

ð4:2:3Þ
Define the difference by
U ¼
Z T

0:9T
jx1 � y1j2 dt; ð4:2:4Þ
where T is the simulation time, chosen as 100 s.



Fig. 21. Time history of error for e4.

Fig. 22. Difference with respect to the parameter a22 for k ¼ 3.
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The difference U can be considered as a function of a22 and k. If k is sufficiently large and a22 is close to a22, the
difference U would tend to zero. In the other word, with sufficiently large value of k, if U is small, a22 would be close to

a22. The result is shown in Fig. 22.

To identify the unknown parameter of the response system, we use the random optimization method. The algorithm

is as follows.

First, choose a sufficiently large value of k. In our case, we choose k ¼ 3. By estimating initial value of a22, we can

calculate the difference U .

The parameter a22 is randomly modified as
a22m ¼ a22 þ r; ð4:2:5Þ
where r is a random number which obeys the Gaussian distribution with variance r ¼ 0:001.
Substituting the modified parameter a22m into Eq. (4.2.3), we can obtain y01. The difference between two

systems is



Fig. 23. Time evolution of a22 by random optimization process.
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U 0 ¼
Z T

0:9T
jx1 � y01j

2
dt: ð4:2:6Þ
If the difference U 0 is smaller than U , the parameter is changed from a22 to a22m . On the other hand, if the difference

U 0 is larger than U , the parameter set is unchanged and kept to be a22. The processes are repeated until the difference U
tends to zero.

The parameter identification can be achieved. The result is shown in Fig. 23.
5. Conclusions

In this paper, synchronization of a two-degrees-of-freedom loudspeaker system is studied. In Section 2, a two-

degrees-of-freedom loudspeaker system model and its states equations of motion are introduced. Next, the bifurca-

tion diagram and the Lyapunov exponent are expressed by numerical analysis. Then the chaos synchronization

of identical systems is achieved in Section 3. Two methods are presented to achieve the synchronization: the adap-

tive control and the Gerschgorin’s theorem. The values of state error approach zero, as display in the plots of time

history of error. In other words, synchronization of chaos is realized for identical two-degrees-of-freedom loudspeaker

systems.

Finally, we succeed to research the parameter identification for identical two-degrees-of-freedom loudspeaker sys-

tems by adaptive control and random optimization method. The results are demonstrated by applying various

numerical results.
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