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Abstract

In this paper, a new methodology is presented for real-time detection and characterization of freeway incidents. The

proposed technology is capable of detecting freeway incidents in real time as well as characterizing incidents in terms of

time-varying lane-changing fractions and queue lengths in blocked lanes, the lanes blocked due to incidents, and du-

ration of incident, etc. The architecture of the proposed incident detection approach consists of three sequential pro-

cedures: (1) symptom identification for identification of anomalous changes in traffic characteristics probably caused by

incidents, (2) signal processing for stochastic estimation of incident-related lane traffic characteristics, and (3) pattern

recognition for incident detection. Lane traffic count and occupancy are two major types of input data, which can be

readily collected from point detectors. The primary techniques utilized to develop the proposed method include: (1)

discrete-time, nonlinear, stochastic system modeling used in the signal processing procedure, and (2) modified se-

quential probability ratio tests employed in the pattern recognition procedure. Off-line tests were conducted to sub-

stantiate the performance of the proposed incident detection algorithm based on simulated data generated employing

the calibrated INTRAS simulation model and on real incident data collected on the I-880 freeway in Oakland, Cali-

fornia. The test results indicate the feasibility of achieving real-time incident detection and characterization utilizing the

proposed method.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Real-time freeway incident detection and char-

acterization is an important function for freeway

traffic management in urban areas. Studies have

shown that 60% of the urban freeway delay may be
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caused by freeway incidents (Lindley, 1987). This

may increase approximately to 70% by year 2005.
Incidents on freeways interrupt traffic flows unex-

pectedly, and thus, they can be the major cause of

such unusual events as bottlenecks and secondary

accidents. It has been suggested that the risk of

secondary accidents can be significantly reduced by

earlier detection and warning (Busch, 1991).

Clearly, earlier detection and warning are two

important factors in decreasing the impact of
ed.

mail to: jbsheu@mail.nctu.edu.tw


472 J.-B. Sheu / European Journal of Operational Research 157 (2004) 471–485
incidents on freeways. Therefore, functions of real-
time automatic incident detection (AID) and inci-

dent characterization should be taken into account

simultaneously in developing advanced techniques

for freeway incident traffic management.

Studies dealing specifically with freeway inci-

dent detection started in the mid-1960s in the

USA. The principles of published AID methods

can be broadly grouped into four categories: (1)
direct comparison (West, 1969; Payne, 1976;

Payne and Knobel, 1976; Tignor and Payne, 1977;

Payne and Tignor, 1978), (2) pattern recognition

(Levin and Krause, 1978; Tsai and Case, 1979;

Madanat and Cassidy, 1996), (3) data processing

(Persaud and Hall, 1989; Stephanedes and Chas-

siakos, 1993; Cheu and Ritchie, 1995; Abdulhai

and Ritchie, 1997), and (4) temporal/spatial fore-
cast (Ahmed and Cook, 1982; Willsky et al., 1980;

Cremer, 1981; Balke et al., 1996).

Early AID algorithms on freeways were devel-

oped primarily on the basis of simple comparison

approaches using inductive loop data as input.

California algorithms, freeway AID techniques

developed for the use of real-time surveillance

systems in Los Angeles, are best known (Payne,
1976; Payne and Knobel, 1976; Tignor and Payne,

1977; Payne and Tignor, 1978). A common prob-

lem with comparison approaches is the determi-

nation of thresholds employed for identification of

incident occurrence. The determination of proper

threshold values requires a large amount of data

which limits the practical utility of comparison

technologies.
Pattern recognition is another typical technique

used in developing freeway AID algorithms. Levin

and Krause (1978) proposed the use of Bayesian

techniques for incident detection. A feature of

their algorithm is that conditional probabilities of

incident occurrence given various incident-occur-

rence signals are allowed to be computed in ad-

vance based on field data. These conditional
probabilities are then provided to operators to

reduce the false alarm rate. To improve false-

alarm rate, Tsai and Case (1979) attempted to

utilize Bayes� optimum decision rule in developing

a freeway lane-blocking incident detection algo-

rithm. Madanat and Cassidy (1996) developed a

freeway incident response decision-making system
employing the technique of sequential probability
ratio tests (SPRT). In their algorithm, the decision

making for freeway incident detection is conducted

under a condition of minimum decision cost which

is determined by a dynamic cost function. Since

the techniques above are probabilistic approaches,

the issue associated with the determination of

probability density functions in these algorithms is

critical.
Recently, researchers interested in freeway in-

cident detection have focused greater attention on

techniques related to raw data processing than to

AID methods. Some researchers, for example,

have proposed new approaches using pre-pro-

cessed data for freeway incident detection rather

than raw data used in early methods. According to

a study by Persaud and Hall (1989), freeway inci-
dents could be inferred from specific patterns ex-

hibited by 30-second data sets on a catastrophe

theory surface. However, some critical issues, such

as incident detection during congestion, noisy data

patterns on shoulder lanes, model testing under

conditions complicated by weather or geometry,

were not addressed in Persaud�s study. They

therefore suggested that the catastrophe-theory-
based method be used in parallel with other exist-

ing AID algorithms. Because short-term random

fluctuations which may hamper incident detection,

exist in traffic measurements, Stephanedes and

Chassiakos (1993) proposed a filtering approach to

smooth traffic occupancy data used in freeway

incident detection. Their test results indicated that

smoothing data can substantially reduce the false-
alarm risk. The advantage of utilizing the data

trained by artificial neural network technologies

for freeway incident detection has also been sug-

gested in several studies (Cheu and Ritchie, 1995;

Abdulhai and Ritchie, 1997). However, the model

retraining problem which requires a large amount

of incident data for model transferability re-

mains in any artificial neural networks based al-
gorithms.

In terms of temporal and spatial forecast ap-

proaches, time series modeling (Ahmed and Cook,

1982) and dynamic traffic modeling (Willsky et al.,

1980; Cremer, 1981) are two typical types of

techniques respectively used in developing freeway

incident algorithms. The performance of the above
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techniques depends primarily on the validity of
traffic modeling. Furthermore, these dynamic

models are complicated. Any invalid traffic mod-

eling may lead to inaccuracy in incident detection

where either temporal or spatial forecast ap-

proaches are used.

This study aims to investigate a naval approach

to real-time AID and characterization on free-

ways. To accomplish the aforementioned goal, the
segment-wide inter-lane and intra-lane traffic dy-

namics are formulated as a discrete-time nonlinear

stochastic system. The time-varying system states

including lane-changing fractions and queue

lengths are then estimated in real-time, and are

used further for detecting incidents utilizing the

extended Kalman filtering and modified sequential

probability ratio test (MSPRT) techniques, re-
spectively. In contrast to conventional incident

detection methods, which may aim to detect inci-

dent occurrence (Busch, 1991), the new method

presented in this paper possesses several distinctive

characteristics:

(1) The proposed AID approach is capable of

both detecting freeway lane-blocking incidents

promptly and characterizing incidents in real time.
The characteristics of incidents that are identified

in the proposed approach include time-varying

lane-changing fractions either from blocked lanes

to adjacent lanes (upstream to incident sites) or

from adjacent lanes to blocked lanes (downstream

to incident sites), queue lengths in blocked lanes,

the number of vehicles in each adjacent lane, the

lanes blocked due to incidents, and incident du-
ration. These incident characteristics are estimated

in real time using a discrete-time nonlinear sto-

chastic model embedded in the proposed real-time

AID algorithm.

(2) Compared to most existing AID algorithms

which primarily use raw traffic data, e.g., traffic

counts and occupancies, as the direct input of

algorithms, the proposed method utilizes time-
varying lane-changing fractions and queue lengths

both which are estimated in real time in the pro-

posed algorithm using collected raw traffic data for

real-time incident detection. According to our

previous research experiences (Sheu and Ritchie,

2001), the time-varying mandatory lane-changing

fractions from blocked lanes to adjacent lanes and
the changes of queue lengths in blocked lanes
can be conceptually treated as two major indica-

tors to promptly discriminate between incident

and incident-free cases regardless of the effect of

shock waves on the measures of raw traffic data

collected upstream to the incident site. Therefore,

they are used as the major decision variables for

real-time incident detection in the proposed

method.
(3) The maximum time to detection is control-

lable using the proposed AID algorithm. Accord-

ing to the principles of MSPRT, the threshold

values of final decision-making vary with the col-

lected data samples and are convergent to the same

value under the condition that the input data

samples reach to the pre-determined maximum

sample size. Utilizing the aforementioned attrib-
ute, the proposed AID algorithm controls the

maximum detection time by means of restricting

the maximum sample size of the estimated lane-

changing fractions.

(4) The probabilities of a miss and a false alarm

in the final decision-making process can be pre-set

to determine the minimum decision-making cost

which dominates the performance of real-time in-
cident detection.
2. Prerequisite setting

In this study, we utilized raw lane traffic data

collected from pairs of point detectors installed on

the mainline segments of freeways as the input of
the proposed AID algorithm. Conveniently, only

lane traffic counts and occupancies are needed in

our approach. To collect the raw lane traffic data,

the upstream and downstream detector stations

are specified as shown in Fig. 1, where the area

between the upstream and downstream detector

stations is defined as the detection zone corre-

sponding to the ‘‘scene window’’ in image-pro-
cessing systems. Note that the definition of

‘‘detection zone’’ aforementioned is also applica-

ble to cases of sequential detectors on freeways in

which the sequential detection zones can be de-

fined by pairs of sequential detectors. Based on the

above detector configurations, lane-by-lane traffic

data are readily obtained in each time step.
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Fig. 1. Detector configurations for AID on freeways.
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In any given detection zone, only one of the

following two hypotheses may hold true anytime:

an incident has occurred and no incident occurs.

Thus, real-time incident detection can be concep-
tually regarded as prompt decision making to

identify the true hypothesis between these two in

the given detection zone using real-time traffic data

samples.

Nevertheless, raw traffic data which can be

readily collected from point detectors may not be

sufficient for real-time identification of incident

occurrence for the following reasons. The speed of
shock waves remains as a critical factor in deter-

mining the time to detection in the case of direct

utilization of raw traffic data. It is perceptible that

the shock wave speed also depends on traffic vol-

ume conditions and detector spacing, and thus,

may lead to a variety of detection performance

under diverse lane-blocking incident conditions. In

addition, the possibility that such events as the
errors of data collection and recurrent traffic jams

cause similar patterns of raw traffic data to those

caused by incidents does exist in any stochastic

systems, which may contribute to the difficulty in

distinguishing incident-induced traffic patterns

from incident-free traffic patterns based merely on

collected raw traffic data.

By contrast, the alternative of utilizing lane-
changing fractions and queue lengths for real-time

AID is proposed in this study. Incident occurrence

may immediately alter inter-lane and intra-lane

traffic maneuvers such as lane changing and

queuing regardless of the shock wave effect men-

tioned above. Accordingly, employing their dis-

tinct patterns changing in the temporal domain,

time-varying lane-changing fractions from blocked
lanes to adjacent lanes and the changes of queue

lengths in blocked lanes are treated as two types of
significant indicators to discriminate between in-
cident and incident-free cases in this paper. Once

an incident has occurred, either lane changing

fractions or queue lengths in blocked lanes may

unusually increase during the incident. Thus, the

technology of pattern recognition can be used to

execute real-time incident detection according to

the recognition of changing patterns of lane-

changing fractions and queue lengths.
In addition, two assumptions are postulated to

facilitate model formulation in the following sec-

tions. They are summarized as follows:

1. Each vehicle in a given blocked lane has the

same lane-changing probability in a given time

step. This assumption helps to deduce the un-

measured lane-changing probabilities from the
measured lane-changing fractions in blocked

lanes for the use of real-time incident detection

in the proposed AID algorithm.

2. All state variables in the stochastic system fol-

low homogeneous Gaussian–Markov processes.

This assumption favors the setup of the recur-

sive equations of the stochastic model proposed

for real-time estimation of lane-changing frac-
tions and queue lengths.
3. Methodology development

The entire architecture of the proposed meth-

odology includes three sequential procedures: (1)

symptom identification, (2) signal processing, and,
(3) pattern recognition. Fig. 2 graphically illus-

trates these procedures.

The following is the description of the three

procedures:

3.1. Symptom identification

This procedure aims to rapidly recognize inci-
dent symptoms with knowledge-based logical

rules. Herein, incident symptoms are defined as

anomalous changes of raw traffic data whose time-

varying change patterns are significantly different

from the patterns of incident-free cases. In this

procedure, raw traffic data collected in each lane,

including lane traffic counts and occupancies, are
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Fig. 2. Architecture of methodology.
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examined in each given time step via these logis-

tical rules. Once any pre-specified incident symp-
toms in a given lane are identified in a given time

step, the case of incident occurrence is hypothe-

sized, and the lane with incident symptoms is

coded as a blocked lane. Meanwhile, the next two

procedures, Signal processing and pattern recog-

nition, are triggered for further identification and

characterization.

Note that the aforementioned logical rules are
constructed primarily on the basis of direct com-

parison techniques as extensively used in classical

AID approaches. They are broadly classified into

three groups: (1) direct comparisons of current-

time-step raw traffic data to predetermined

thresholds, (2) spatial comparisons of raw traffic

data (e.g., comparison of upstream lane occupancy

to downstream lane occupancy in a given time
step), and (3) temporal comparisons of raw traffic

data (e.g., comparison of current-time-step raw

traffic data to previous-time-step raw traffic data at

a given detector station). To construct the logical

rules, the temporal and spatial relationships of

lane traffic data including traffic counts and oc-

cupancies were investigated and categorized based
on the nature of lane-blocking incidents on free-
ways. The thresholds associated with differing in-

cident symptoms were predetermined, and then

used in the logical rules for identification of inci-

dent symptoms.

3.2. Signal processing

The procedure of signal processing performs the
function of estimating time-varying lane traffic

states for the use in real-time incident detection

(conducted in the next procedure) and character-

ization. As mentioned previously, lane changing

and queuing are regarded as two significant traffic

characteristics for detecting and characterizing

incidents in the proposed AID method. For this

reason, a discrete-time, nonlinear stochastic model
and a recursive estimation algorithm are proposed

to estimate time-varying lane-changing fractions

and queue lengths in blocked lanes in real time.

The following describes the development of the

stochastic model and algorithm.

The system specified for modeling lane-chang-

ing behavior during freeway incidents can be

treated as an extended system of lane changing
during arterial incidents (Sheu and Ritchie, 2001).

The mainline segments on freeways, unaffected by

either merging or diverging movements, are similar

to arterials on surface streets. Without considering

the weaving areas of freeways, vehicular lane-

changing behavior during freeway incidents are

almost the same as arterial incidents except that

vehicles often return to blocked lanes from adja-
cent lanes after passing incident sites. When a lane-

blocking incident occurs at the upstream section of

the detection zone on a freeway, vehicles present in

the blocked lane upstream to the incident site need

to change lanes to avoid the incident. A portion of

these vehicles may change lanes back to the

blocked lane after passing the incident, all within

the detection zone. Such abnormal lane-changing
behavior, termed ‘‘return-lane-changing’’ in this

paper, makes the model previously developed for

lane-changing prediction on arterials (Sheu and

Ritchie, 2001) inappropriate for freeway incident

cases.

To appropriately formulate the aforementioned

lane-changing maneuvers, the system within the
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detection zone is divided into two subsystems:
Subsystem 1, which is upstream to an incident, and

Subsystem 2, which is downstream to the incident.

Fig. 3 illustrates these two subsystems. Note that

the above definition of subsystems also applies to

the case of sequential detector stations on a free-

way as mentioned in the previous section. When

an incident occurs in any detection zone on a

freeway, the potential lane-changing maneuvers
within the detection zone are depicted using the

state variables in the subsystems of the detection

zone. In addition, one postulation is set to simplify

the stochastic model: Drivers execute only one lane

change during a given time step. This means that

drivers attempting to maneuver around an obsta-

cle blocking their lane may change lanes during a

given time step, but may not return to their orig-
inal lane within the same time step.

Herein, six types of state variables are specified

to formulate the stochastic lane traffic system. The

following formally describes these state variables:

(1) pi;jðkÞ is the lane-changing fraction from

blocked lane i to adjacent lane j in Subsystem 1 in

time step k, and given by

pi;jðkÞ ¼
cijðkÞ

½aiðkÞ þ qiðkjk � 1Þ� ; ð1Þ

where aiðkÞ corresponds to the upstream traffic

count in blocked lane i in time step k; qiðkjk � 1Þ
Incident

Detector

Direction of Traffic Movement

Subsystem 1 Subsystem 2

The Detection Zone

Fig. 3. Illustration of subsystems for freeway incident detec-

tion.
represents the number of vehicles queuing in

blocked lane i in Subsystem 1 at the beginning of

time step k; cijðkÞ represents the number of lane-

changing vehicles moving from blocked lane i to
adjacent lane j in Subsystem 1 in time step k.

(2) rjðkÞ represents the proportion of the vehi-

cles present in adjacent lane j of Subsystem 1

which can arrive at Subsystem 2 in time step k, and
is given by

rjðkÞ ¼
ajjðkÞ

ðajðkÞ þ qjðkjk � 1ÞÞ ; ð2Þ

where ajjðkÞ represents the traffic arrivals from

adjacent lane j of Subsystem 1 to adjacent lane j
of Subsystem 2 in time step k (exclusive of lane-

changing vehicles from blocked lane i to adjacent

lane j in time step k); the denominator on the

right-hand side of Eq. (2) represents the number
of vehicles in adjacent lane j of Subsystem 1 in

time step k, including: (1) ajðkÞ which corre-

sponds to the upstream traffic count in adjacent

lane j in time step k, and (2) qjðkjk � 1Þ which

represents the number of vehicles present in ad-

jacent lane j of Subsystem 1 at the beginning of

time step k.
(3) ri;jðkÞ is the proportion of the vehicles con-

ducting lane-changing maneuvers from blocked

lane i to adjacent lane j in Subsystem 1 in time step

k which can arrive at Subsystem 2 in time step k:

ri;jðkÞ ¼
aijðkÞ
cijðkÞ

; ð3Þ

where aijðkÞ is a proportion of cijðkÞ, and corre-

sponds to the number of those lane-changing ve-

hicles which can arrive in Subsystem 2 in time step

k.
(4) pj;iðkÞ is the return-lane-changing fraction

from adjacent lane j to blocked lane i in Subsystem

2 in time step k, and is given by

pj;iðkÞ ¼
ajiðkÞ

½ajjðkÞ þ qjjðkjk � 1Þ� ; ð4Þ

where qjjðkjk � 1Þ represents the number of vehi-

cles present in adjacent lane j of Subsystem 2 at

the beginning of time step k; ajiðkÞ represents
the number of return-lane-changing vehicles of
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Subsystem 2 from adjacent lane j to blocked lane i
in time step k.

(5) rj;jðkÞ is the proportion of the vehicles pre-

sent in adjacent lane j of Subsystem 2 which can

pass the downstream detector in adjacent lane j in
time step k, and given by

rj;jðkÞ¼
DjðkÞ

½aijðkÞþðajjðkÞþqjjðkjk�1ÞÞð1�pj;iðkÞÞ�
;

ð5Þ
where DjðkÞ represents the traffic count collected

from the downstream detector in adjacent lane j in
time step k; the denominator on the right-hand

side of Eq. (5) represents the total number of ve-

hicles in adjacent lane j within Subsystem 2 in time
step k.

(6) rj;iðkÞ represents the proportion of the ve-

hicles in adjacent lane j of Subsystem 2 which pass

the downstream detector in blocked lane i in time

step k, and is given by

rj;iðkÞ ¼
DiðkÞ

½ajjðkÞ þ qjjðkjk � 1Þ�pj;iðkÞ þ qiiðkjk � 1Þ ;

ð6Þ

where the denominator of Eq. (6) represents the

sum of the return-lane-changing vehicles from

adjacent lane j to blocked lane i in Subsystem 2 in

time step k and the number of vehicles present in

blocked lane i in Subsystem 2 at the beginning of

time step k (qiiðkjk � 1Þ); the numerator, DiðkÞ,
represents the number of downstream traffic count

in blocked lane i in time step k.
It is noted that among the variables shown in

Eqs. (1)–(6), only the upstream traffic counts (aiðkÞ
and ajðkÞ) and the downstream traffic counts

(DiðkÞ and DjðkÞ) are measurable directly from

point detectors; the other variables should be

derived in the estimation algorithm which is de-
scribed later in this section.

Using the state variables defined above, a dis-

crete-time nonlinear stochastic model is formu-

lated to characterize the time-varying relationships

of state variables and raw traffic data exhibited

under freeway lane-blocking incident conditions.

The following presents the generalized form of

the proposed model, which is composed of (1) re-
cursive equations (Eq. (7)), (2) measurement
equations (Eq. (8)), and (3) boundary constraints
(Eq. (9)).

Xðk þ 1Þ ¼ f½xðkÞ; k� þ L½xðkÞ; k�wðkÞ; ð7Þ

Zðk þ 1Þ ¼ h½xðk þ 1Þ; k þ 1� þ vðk þ 1Þ; ð8Þ

06 8xðk þ 1Þ6 1: ð9Þ

Eq. (7) represents a group of recursive equations

indicating the relationships between the next-time-

step and current-time-step state variables in the

stochastic model. Each recursive equation involves

a deterministic vector f½xðkÞ; k� and a noise term
which is decomposed into two elements as shown

in matrices L½xðkÞ; k� and wðkÞ. In Eq. (7), the de-

terministic vector f½xðkÞ; k� is constructed on the

basis of the second assumption described in the

previous section. If the noise term does not exist in

the model, the state variables will follow Markov

property only, and thus, the next-step state vari-

ables will depend only on the current-step state
variables. This special case mimics incident-free

lane-changing conditions since the model with-

out noise terms may generate the homogeneous

lane-changing fractions which are similar to the

constant transitional probabilities in Worr-

all�s lane-changing model (Worrall et al., 1970) for

freeway lane-changing prediction. However, in

case of incidents, the state variables are unstable
and affected sharply by traffic characteristics, and

thus, the noise terms of the recursive equations are

developed to clarify the traffic effects in the pre-

diction of the state variables. Herein, Xðk þ 1Þ,
f½xðkÞ; k�, L½xðkÞ; k� and wðkÞ can be further ex-

pressed respectively as

Xðk þ 1Þ ¼

pi;jðk þ 1Þ
rjðk þ 1Þ
ri;jðk þ 1Þ
pj;iðk þ 1Þ
rj;jðk þ 1Þ
rj;iðk þ 1Þ

..

.

2
66666666664

3
77777777775
; ð10Þ

where Xðk þ 1Þ is a 6n� 1 state variable vector in

time step k þ 1; n is the number of the adjacent

lanes in the system.
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f½xðkÞ; k� ¼

pi;jðkÞ
rjðkÞ
ri;jðkÞ
pj;iðkÞ
rj;jðkÞ
rj;iðkÞ

..

.

6666666664

7777777775
; ð11Þ

where f½xðkÞ; k� is a 6n� 1 deterministic vector

which depends on system states.

L½xðkÞ;k�

¼

l11ðkÞ 0 0 0 0 0 � � �

0 l22ðkÞ 0 0 0 0 � � �

0 0 l33ðkÞ 0 0 0 � � �

0 0 0 l44ðkÞ 0 0 � � �

0 0 0 0 l55ðkÞ 0 � � �

0 0 0 0 0 l66ðkÞ � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.

2
6666666666666664

3
7777777777777775

;

ð12Þ

where L½xðkÞ; k� is a 6n� n noise matrix which also

depends on system states; in L½xðkÞ; k�,

l11ðkÞ ¼ 1

"
�
X
8j2J

pi;jðkÞ
#
ri;jðkÞ; ð13Þ

l22ðkÞ ¼ 1

"
�
X
8j2J

pi;jðkÞ
#
pi;jðkÞ þ ½1� rjðkÞ�; ð14Þ

l33ðkÞ ¼ 1

"
�
X
8j2J

pi;jðkÞ
#
pi;jðkÞ; ð15Þ

l44ðkÞ ¼ ½1� pj;iðkÞ�rj;iðkÞ; ð16Þ

l55ðkÞ ¼ ½1� pj;iðkÞ� þ ½1� rj;jðkÞ�; ð17Þ

l66ðkÞ ¼
X
8j2J

½1� pj;iðkÞ�pj;iðkÞ: ð18Þ

The other noise term (i.e., wðkÞ) in the recursive
equations is
wðkÞ ¼

wpi;jðkÞ
wrjðkÞ
wri;jðkÞ
wpj;iðkÞ
wrj;jðkÞ
wrj;iðkÞ

..

.

6666666666664

7777777777775
; ð19Þ

where wðkÞ is a 6n� 1 Gaussian noise vector which

is independent of system states.

The measurement equations (see Eq. (8)) indi-

cate the relationships among measurable traffic

counts and state variables. Vector Zðk þ 1Þ rep-

resents a group of the downstream lane traffic

counts measured at the end of time step k þ 1. For

each given lane, the downstream lane traffic count
is composed of (1) a proportion of the vehicles

present in the given lane, and (2) a proportion of

the lane-changing vehicles from the adjacent lane.

Accordingly, these relationships are specified in

the elements of vector h½xðk þ 1Þ; k þ 1�. In addi-

tion, a white noise vector vðk þ 1Þ is added in Eq.

(8) to take account of the errors of collected data

due to malfunction of detectors, or inaccuracy of
input data. Herein, Zðk þ 1Þ, h½xðk þ 1Þ; k þ 1�,
and vðk þ 1Þ are given as follows

Zðk þ 1Þ ¼

Diðk þ 1Þ
� � � � �
Djðk þ 1Þ

..

.

2
6664

3
7775; ð20Þ

where Zðk þ 1Þ is a ðnþ 1Þ � 1 measurement vec-

tor; Diðk þ 1Þ and Djðk þ 1Þ represent the down-

stream lane traffic counts in blocked lane i and
adjacent lane j in time step k þ 1, respectively.

h½xðk þ 1Þ; k þ 1� ¼

hiðk þ 1Þ
� � � � �
hjðk þ 1Þ

..

.

2
6664

3
7775; ð21Þ

where h½xðk þ 1Þ; k þ 1� is a ðnþ 1Þ � 1 determin-
istic vector which depends on state variables. In

vector h½xðk þ 1Þ; k þ 1�,
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of state estimation error
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k=k+1

Update queue lengths in 
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Fig. 4. Computational loop of the state estimation algorithm.
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hiðk þ 1Þ ¼
8j2J

ujðk
��

þ 1Þrjðk þ 1Þ

þ qj;jðk þ 1jkÞ
�
pj;iðk þ 1Þ

þ qi;iðk þ 1jkÞ
�
ri;iðk þ 1Þ; ð22Þ

hjðk þ 1Þ ¼ uiðk
�

þ 1Þpi;jðk þ 1Þri;jðk þ 1Þ
þ ujðk
�

þ 1Þrjðk þ 1Þ þ qj;jðk þ 1jkÞ
�

� 1
�

� pj;iðk þ 1Þ
��
rj;jðk þ 1Þ; ð23Þ

where hiðk þ 1Þ and hjðk þ 1Þ respectively repre-

sent the components of the downstream traffic

counts in blocked lane i and adjacent lane j in time

step k þ 1; uiðk þ 1Þ is the sum of the upstream

lane traffic count in blocked lane i in time step

k þ 1 ðaiðk þ 1ÞÞ and the queue length in blocked

lane i in Subsystem 1 ðqiðk þ 1jkÞÞ at the beginning
of time step k þ 1; ujðk þ 1Þ is the sum of the up-
stream lane traffic count in adjacent lane j in time

step k þ 1 ðajðk þ 1ÞÞ and the number of vehicles

present in adjacent lane j in Subsystem 1 at the

beginning of time step k þ 1 ðqjðk þ 1jkÞÞ.

vðk þ 1Þ ¼

viðk þ 1Þ
� � � � �
vjðk þ 1Þ

..

.

2
6664

3
7775; ð24Þ

where vðk þ 1Þ is a ðnþ 1Þ � 1 Gaussian vector;

the elements viðk þ 1Þ and vjðk þ 1Þ correspond to

the noise terms associated respectively with the

downstream traffic counts measured in blocked

lane i and adjacent lane j in time step k þ 1.

The boundary constraints of state variables
(Eq. (9)) are used to restrict the state variables to

the range between lower and upper bounds. In the

proposed model, state variables such as lane-

changing fractions and proportion variables are

bounded within the range 0 and 1.

To dynamically estimate the state variables of

the model, a recursive estimation algorithm is

proposed. The primary computational steps in-
volved in the estimation algorithm include: (1) an

extended Kalman filter, (2) truncation and nor-

malization, and (3) queue-length prediction. The

following steps primarily summarize the proposed

recursive estimation logic, and the sequence of

major computational steps is shown in Fig. 4.
Step 0. Initialize state variables and the co-

variance matrix of the state estimation error. Note

that the covariance matrix of the state estimation

error is a significant element used to compute the

Kalman gain. Through Step 1, the prior estimate
of this matrix is then utilized in Step 2 for the

calculation of the Kalman gain.

Step 1. Compute prior estimates of lane traffic

state variables and the covariance matrix of the

state estimation error. The prior estimates of state

variables are herein predicted employing the re-

cursive equations shown in Eq. (7).

Step 2. Calculate the Kalman gain. According
to Kalman filtering theories, the Kalman gain is

the critical element in the procedure of updating

the state variables. In the proposed algorithm, the

Kalman gain is updated in each time step for the

real-time state estimation.

Step 3. Update the prior estimates of state

variables using the current-time-step raw traffic

data together with the Kalman gain calculated in
the previous step.

Step 4. Truncate and normalize the estimates

of state variables to meet the requirements of

boundary constraints.

Step 5. Update the covariance matrix of the

state estimation error.
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Step 6. Predict the number of vehicles in each
given adjacent lane and the queue length in the

blocked lane using the estimates of lane traffic

state variables.

Step 7. Input the next-time-step raw traffic data

and go back to Step 1 to continue the recursive

estimation procedure.

The signal processing procedure characterizes

incidents, and generates decision variables for use
in incident detection once incident symptoms are

identified in the previous procedure (symptom

identification). Among the estimates of state vari-

ables generated in the signal processing procedure,

the time-varying lane-changing fraction in blocked

lane i of Subsystem 1 ðpi;jðk þ 1ÞÞ and the queue

length in blocked lane i of Subsystem 1 ðqiðk þ 1ÞÞ
are used as decision variables in the next procedure
(pattern recognition) for real-time incident detec-

tion. In addition, other incident-related temporal

and spatial characteristics such as initialization and

termination of incidents, incident duration, and

the numbers of vehicles present either in blocked

lanes or in adjacent lanes are recorded in the signal

processing procedure for incident characterization.

The above incident characteristics are updated
every time step until incident symptoms do not

exist.
3.3. Pattern recognition

The pattern recognition procedure conducts the

decision-making process for real-time incident

detection based on the estimated lane-changing
fractions and queue lengths which are generated

dynamically from the previous procedure (signal

processing). In this procedure, we developed an

AID algorithm utilizing the technique of the

MSPRT which is extended from the technique of

the SPRT proposed by Wald (1973). The major

distinction between MSPRT and SPRT is that the

maximum sample size for terminal decision-mak-
ing is controllable in MSPRT and uncontrolla-

ble in SPRT. Therefore this distinct property of

MSPRT is employed to control the maximum

detection time in the AID algorithm. The follow-

ing presents the primary steps in the AID algo-

rithm:
Step 1: Initialize (if the iteration k ¼ 0)
• pre-specify the probabilities of a false alarm Pf ,

a miss Pm and a detection Pd such that

Pf ¼ a; Pm ¼ b; Pd ¼ 1� b; ð25Þ
where

0 < a; b < 1;

• pre-determine the maximum time to detection

N ;

• specify time-varying thresholds eg0ðkÞ and eg1ðkÞ

such that

g1ðkÞ ¼ a 1

�
� k
N

�r1

; a > logðg1Þ; ð26Þ

g0ðkÞ ¼ �b 1

�
� k
N

�r0

; b > � logðg0Þ; ð27Þ

where

g1 ¼
1� b
a

; g0 ¼
b

1� a
; ð28Þ

0 < r0; r1 6 1; a > 0; b > 0; ð29Þ
• set the hypotheses: H1 ¼ an incident has oc-

curred, and H0 ¼ no incident occurs;

• let Zk be a binary variable in a given time step k,
indicating whether or not vehicular lane-chang-

ing behavior occurring in the given time step k,
where Zk is equal to 1 if vehicular lane changing
occurs in time step k; otherwise, is set to be 0;

• set k ¼ 1.

Step 2: Estimate the current-time-step lane-

changing probability, PiðZk;H1Þ, and queue

length, qiðkÞ, in blocked lane i from the signal

processing procedure, where

PiðZk;H1Þ ¼
X
8j2J

pi;jðkÞ: ð30Þ

Step 3: Compute the likelihood function of

lane-changing probability, KiðZkÞ, as

KiðZkÞ ¼
PiðZk; Zk�1; . . . ; Z1jZ0;H1Þ
PiðZk; Zk�1; . . . ; Z1jZ0;H0Þ

¼
Yk
m¼1

PiðZmjZm�1;H1Þ
PiðZmjZm�1;H0Þ

: ð31Þ



N

to I-5 from SR-57

1.12 2.11 3.13 3.60 4.18 4.79 5.17 6.15 (mile)

Fig. 5. The study site for freeway incident simulation.
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Step 4: Make a decision for incident detection:

IF KiðZkÞ > eg1ðkÞ;

then say H1 is true; and stop the algorithm;

ð32Þ

ELSE IF KiðZkÞ < eg0ðkÞ;

then say H0 is true; and stop the algorithm;

ð33Þ

ELSE IF eg0ðkÞ 6KiðZkÞeg1ðkÞ : ð34Þ

IF qiðkÞ � qiðk � 1Þ > c, then say H1 is true

and stop the algorithm;

ELSE consider the estimates of the next-time-

step lane-changing probability and queue

length for incident detection;

where c is a predetermined threshold associated
with the change of queue length in a given time

step.

Step 5: Set k ¼ k þ 1, and go to the symptom

identification procedure.

It is noted that to address the issue of unknown

joint probability density functions remaining in

either SPRT or MSPRT, the use of time-varying
joint probability density functions of lane-chang-

ing probabilities (rather than the functions of lane-

changing fractions) is proposed in developing the

above MSPRT-based AID algorithm. According

to the first assumption postulated in the previous

section, the value of the estimated lane-changing

fraction in blocked lane i in a given time step

ð
P

8j2J pi;jðkÞÞ is consistent with the time-varying
lane-changing probability ðPiðZk;H1ÞÞ, which

makes Eq. (30) hold true. In addition, following

the Markov property (see the assumptions men-

tioned previously), PiðZk;H1Þ can be further ex-

pressed as

PiðZk;H1Þ ¼ PiðZkjZk�1; . . . ; Z0;H1Þ ð35Þ
¼ PiðZkjZk�1;H1Þ: ð36Þ

Therefore, Eq. (31) shown above is derived.

For the incident-free hypothesis, the incident-
free lane-changing probabilities can also be no-

tated by replacing H1 with H0 in Eqs. (35) and (36).

In the algorithm, these incident-free lane-changing
probabilities are assumed to be identical during a
given time period such as morning peak hours,

afternoon peak hours, and off-peak hours. The

incident-free lane-changing probabilities are pre-

determined according to observations from field

data. It is recommended that previous to model

tests, the incident-free lane-changing probabilities

associated with differing study sites should be

calibrated.
4. Off-line tests and results

In this paper, the off-line tests were focused on

testing the performance of the proposed method

for real-time incident detection. Two data sources

were utilized in the tests: (1) simulated data gen-
erated using INTRAS, a microscopic simulation

model, and (2) real I-880 data. Test results with

different data sources are described respectively in

the following.

In the tests using simulated data, the study site

was located at the westbound direction of SR-91

Riverside Freeway in Orange County, California,

between SR-57 and I-5 freeways. The average daily
volume at the study site is about 200,000 vehicles/

day. This study site is 5 miles in length, and di-

vided into seven sections by loop detector stations.

Detection zones range from 0.34 to 1.02 miles. Fig.

5 graphically depicts the geometry of the study

site.

Thirty-six simulated data sets generated from

INTRAS were used for testing the freeway AID
algorithm. Calibration of INTRAS is needed for

simulating lane-blocking incidents on freeways. In
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this paper, an input file with calibrated parameters
generated by Cheu et al. (1993) was directly used

for freeway incident simulation. Thirty-six lane-

blocking incidents associated with different inci-

dent durations, blocked lanes, and locations were

simulated at the study site.

Three performance measures, detection rate

(DR), false alarm rate (FAR), and time to detec-

tion (TTD) were used in these tests. In addition,
four different persistence tests were conducted

associated with each simulation, including (1)

none-interval persistence tests (i.e., an incident is

detected once the decision associated with inci-

dent-occurrence is made), (2) one-interval persis-

tence tests (i.e., an incident is not detected until

two consecutive decisions associated with incident-

occurrence are made), (3) two-interval persistence
tests, and (4) three-interval persistence tests. The

results using four persistence tests are summarized

in Table 1.

The results shown in Table 1 indicate that the

proposed sequential AID algorithm is suitable for

real-time incident detection on freeways. Using

change patterns of lane-changing probabilities and

queue lengths improves the AID performance in
terms of TTD very well when compared to con-

ventional methods. A similar study conducted

earlier by Cheu and Ritchie (1995) indicated that

the time to detect one-lane-blocking incidents on

freeways employing neural network approaches

takes 206 seconds using INTRAS simulated data

at the same study site. The average TTD associ-

ated with persistence 0 tests in Table 1 is only
20.83 seconds which shows significant improve-

ment using the proposed approach.

The following testing scenario describes the off-

line AID tests using I-880 real data sets. The I-880
Table 1

Results of off-line tests for AID on freeways (based on simu-

lated data)

Sequential AID algorithm

Persistence TTD (seconds) DR (%) FAR (%)

0 20.83 100 0

1 57.92 100 0

2 87.08 100 0

3 110.12 100 0
data were collected on a fully instrumented section
of the I-880 freeway (Nimitz Freeway) in Oakland,

California. The selected segment on the I-880

freeway used for data collection is 49,700 feet in

length, and is located between the Marina exit

ramp and Wipple exit ramp. There are a total of 18

inductive loop stations at this study site. Each

detector station covers all lanes on the freeway.

In this testing scenario, 32 incident data sets
were generated from the I-880 database. Out of the

32 incident data sets, 11 data sets were randomly

selected for the use in modification of the symptom

identification procedure of the AID algorithm.

Efforts in calibrating threshold values of the logic

rules used in the procedure of symptom identifi-

cation are necessary to identify the specific incident

symptoms on the I-880 freeway. The rest of data
sets were used in off-line tests. The following de-

scribes the off-line tests and results using I-880

data.

Based on the same performance measures used

above, four persistence tests were conducted using

the I-880 database, which involves 21 lane-block-

ing incident cases. Wherein, any secondary acci-

dents induced by a given incident are regarded as
the same case as the given incident. The test results

are summarized in Table 2, along with results from

an earlier study by Abdulhai and Ritchie (1997)

which developed AID algorithms using the Baye-

sian-based probabilistic neural network (PNN)

approaches. The first PNN shown in Table 2 is a

Bayesian-based PNN algorithm without a re-

training process. The second PNN is a calibrated
PNN algorithm with a retraining process using

45 I-880 data sets.

The test results shown in Table 2 suggest two

advantages of using the proposed AID algorithm.

First, the test performance of the proposed AID

algorithm demonstrates its competitiveness with

the advanced neural network incident detection

algorithm developed previously, namely the PNN
algorithm. Out of the 21 real incidents, only one

incident was missed in the persistence-3 test for the

reason that the symptoms of the incident were too

weak to identify. Second, in terms of TTD, the

overall performance is improved much using the

proposed algorithm. The TTD values associated

with the proposed AID algorithm are relatively



Table 2

Results of off-line tests for AID on freeways (based on I-880

data)

Approach Persistence TTD

(seconds)

DR

(%)

FAR

(%)

Sequential AID

algorithm

0 9 100 0

1 47 100 0

2 71 100 0

3 90 95 0

PNN (before pat-

terns update)

0 1080 33 0.4

1 1180 29 0.02

2 1218 29 0

3 902 24 0

PNN (after pat-

terns update)

0 15 100 0.5

1 79 95 0

2 112 95 0

3 142 95 0
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short, compared to either the calibrated PNN

algorithm or the uncalibrated one. In the off-line

tests, once the proposed AID algorithm identified

incident symptoms the optimum decisions for in-

cident detection could for the most part be made
within 20 seconds.

As a whole, our preliminary test results, based

either on simulated data or on field data, show the

feasibility of achieving real-time incident detection

and characterization on freeways using the pro-

posed methodology which is never found in early

studies. Another interesting finding in our off-line

testing is that incidents are detected primarily on
the basis of the change of queue-length in high-

volume cases. Conversely, in low-volume cases,

detection is primarily the result of lane-changing

behavior. This is understandable since vehicles

change lanes to pass by incidents in low-volume

cases more easily than in high-volume cases. More

importantly, this finding supports our insistence

on using the change of queue-length and lane-
changing probabilities as two decision variables

for real-time incident detection.
5. Conclusions and recommendations

Despite the early technologies which have been

proposed for incident detection on freeways, two

crucial issues remain: (1) real-time incident detec-

tion, and (2) automatic incident characterization.
Without a clear understanding of abnormal traffic
behavior, conventional methods are restricted to

incident identification using raw traffic data. The

result is that problems such as long detection time,

unsatisfying detection performance caused by the

errors of data collection, etc. continue to be a

source of frustration in incident management.

This paper has presents a new AID methodol-

ogy to address the above two issues. The proposed
method consists of three sequential procedures

including: (1) symptom identification, (2) signal

processing, and (3) pattern recognition. In view of

the disadvantages of directly using raw traffic data

for real-time incident detection, we suggested the

use of real-time lane-changing probabilities and

the change of queue-length as two decision vari-

ables which are estimated based on lane traffic
counts collected from point detectors. Time-vary-

ing lane-changing probabilities and queue lengths

are estimated in each time step in the signal pro-

cessing procedure which is conducted by the pro-

posed stochastic lane-changing model. The

estimated lane-changing probabilities and queue

lengths are then used as the decision variables in

the Pattern Recognition procedure which is con-
ducted by a MSPRT-based algorithm for real-time

incident detection as well as incident character-

ization.

The off-line tests for evaluating the performance

of the proposed real-time AID algorithm were

conducted on the basis of simulated and real in-

cident data. The results not only indicate the fea-

sibility of achieving real-time incident detection
using the proposed method but also support our

suggestion of utilizing lane-changing probabilities

and the change of queue-length as decision vari-

ables for incident detection.

In contrast to conventional incident detection

technologies, which may aim merely at identifica-

tion of incident occurrence, the proposed method

possesses several distinctive features summarized
below:

1. In addition to incident detection, the pro-

posed AID algorithm is capable of providing real-

time incident-related information including: (1) the

lanes blocked, (2) start and end time points of the

incidents, (3) lane-changing fractions and queue

lengths in blocked lanes, (4) the number of vehicles
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in each adjacent lane, and (5) the nature of inci-
dent symptoms in terms of the relationships

among volume and occupancy values. The above

information provided by the algorithm is impor-

tant to incident management because it may help

us better understand incident characteristics and

enhance the functionality of advanced incident-

responsive traffic control and management sys-

tems.
2. The sequential detection approach proposed

in this paper is applicable to both freeway and

surface street systems. The critical distinction be-

tween freeway and surface street incident detection

utilizing the proposed AID approach is the use of

different lane-changing estimation models since

traffic characteristics on freeways are apparently

different from that on surface streets. In addition,
modification of the logic rules in the symptom

identification procedure is suggested.

3. The threshold values of decision-making for

incident detection are time-varying and conver-

gent. This feature controls the maximum detection

time by means of restricting the sample size of

lane-changing fractions needed in the pattern rec-

ognition procedure. Note that the probabilities of
a miss and a false alarm for decision-making can

be predetermined in the proposed AID algorithm

to control the performance of real-time incident

detection.

We really hope the method proposed in this

paper has not only addressed the critical issues on

freeway incident detection but also provided the

link between incident detection and incident
management. The potential for developing inci-

dent-responsive traffic control and management

systems is promising. The use of more real data in

either on-line or off-line tests is also necessary in

our future studies.
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