
International Journal of Bifurcation and Chaos, Vol. 14, No. 9 (2004) 3179–3204
c© World Scientific Publishing Company

BIFURCATIONS AND CHAOS IN TWO-CELL
CELLULAR NEURAL NETWORKS

WITH PERIODIC INPUTS

SONG-SUN LIN∗
Department of Applied Mathematics, National Chiao-Tung University,

Hsin-Chu 30050, Taiwan

WEN-WEI LIN†
Department of Mathematics, National Tsing-Hua University,

Hsin-Chu 30050, Taiwan

TING-HUI YANG∗
Department of Applied Mathematics, National Chiao-Tung University,

Hsin-Chu 30050, Taiwan

Received May 30, 2003; Revised September 8, 2003

This study investigates bifurcations and chaos in two-cell Cellular Neural Networks (CNN)
with periodic inputs. Without the inputs, the time periodic solutions are obtained for template
A = [r, p, s] with p > 1, r > p − 1 and −s > p − 1. The number of periodic solutions can
be proven to be no more than two in exterior regions. The input is b sin 2πt/T with period
T > 0 and amplitude b > 0. The typical trajectories Γ(b, T, A) and their ω-limit set ω(b, T, A)
vary with b, T and A are also considered. The asymptotic limit cycles Λ∞(T, A) with period
T of Γ(b, T, A) are obtained as b → ∞. When T0 ≤ T ∗

0 (given in (67)), Λ∞ and −Λ∞ can
be separated. The onset of chaos can be induced by crises of ω(b, T, A) and −ω(b, T, A) for
suitable T and b. The ratio A(b) = |aT (b)|/|a1(b)|, of largest amplitude a1(b) except for T -mode
and amplitude of the T -mode of the Fast Fourier Transform (FFT) of Γ(b, T, A), can be used to
compare the strength of sustained periodic cycle Λ0(A) and the inputs. When A(b)� 1, Λ0(A)
dominates and the attractor ω(b, T, A) is either a quasi-periodic or a periodic. Moreover, the
range b of the window of periodic cycles constitutes a devil’s staircase. When A(b) ∼ 1, finitely
many chaotic regions and window regions exist and interweave with each other. In each window,
the basic periodic cycle can be identified. A sequence of period-doubling is observed to the left
of the basic periodic cycle and a quasi-periodic region is observed to the right of it. For large b,
the input dominates, ω(b, T, A) becomes simpler, from quasi-periodic to periodic as b increases.
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3180 S.-S. Lin et al.

1. Introduction

Following the introduction by Chua and Yang
[1988a, 1988b], Cellular Neural Networks (CNN)
have been extensively studied, see [Chua, 1998;
Manganaro et al., 1999; Chua & Roska, 2002] and
references therein. Two of their applications are
in image processing and pattern recognition. An
important class related to applications are steady-
state solutions including mosaic solutions and defec-
tion solutions [Chua, 1998; Manganaro et al., 1999;
Hsu et al., 2000; Juang & Lin, 1997, 2000]. The
complexity of steady-state solutions have recently
been extensively studied [Ban et al., 2001a; Ban
et al., 2002; Ban et al., 2001b; Hsu et al., 2000;
Hsu & Lin, 2001; Hsu & Yang, 2002; Juang & Lin,
2000; Juang & Lin, 1997; Lin & Shih, 1999; Lin &
Yang, 2000; Lin & Yang, 2002]. Furthermore, with-
out the input terms, the theory of complete stabil-
ity for CNN with symmetric feedback template have
been proven in [Lin & Shih, 1999; Shih, 2001; Wu &
Chua, 1997]. However, when the feedback template
is antisymmetric, the time dependent periodic solu-
tions have been obtained by Thiran [1997].

Zou and Nossek [1991] discovered a chaotic
attractor in a two-cell CNN with an antisymmetric
feedback template and a periodic input. Motivated
by [Zou & Nossek, 1991], this study addresses the
bifurcations and chaos of a two-cell CNN with
periodic inputs in a general situation. Indeed,{

ẋ1 = −x1 + py1 + sy2 + bu(t) ,

ẋ2 = −x2 + ry1 + py2 ,
(1)

is studied with the output function

y = f(x) =
1
2
(|x+ 1| − |x− 1|) , (2)

where the feedback template A = [r, p, s], satisfies

p > 1, p− 1 < r and p− 1 < −s . (3)

The input function (or forcing function), as in [Zou
& Nossek, 1991], is

u(t) = sin
2π
T

t , (4)

with period T > 0 and amplitude b > 0.
The bifurcations of (1) involve five parameters:

r, p, s, T and b. The strategy employed is to begin
with b = 0 and a template A = [r, p, s], which sat-
isfies (3). Without input, we are mainly concerned
with the existence and uniqueness of limit cycle Λ0.
Λ0 will interact with inputs bu(t) and may cause
complicated dynamics later. Then a suitable range

of T and b is identified to ensure that (1) have
chaotic attractors.

The template A governs the basic dynamics of
(1). When b = 0 and (3) holds, (semi-)stable limit
cycles always exist. Indeed, all trajectories, except
the origin, will tend to the limit cycles as t → ∞.
Our numerical experience indicates that a unique
limit cycle always applies. See Sec. 4 for details.

The impact of an input bu(t) on its period
T and amplitude b are studied. Consider (1) with
initial conditions

x1(0) = ξ1 and x2(0) = ξ2 . (5)

The solution of (1) and (5) is denoted by

(x1(t, ξ1, ξ2; b, T, A), x2(t, ξ1, ξ2; b, T, A)) . (6)

The ω-limit set of (6) is denoted by

ω(ξ1, ξ2; b, T, A) , (7)

and the nonwandering set of (1) is denoted by

Ω(b, T, A) =
⋃

(ξ1, ξ2)∈R2

ω(ξ1, ξ2; b, T, A) . (8)

Since the input is T -periodic, for a fixed parameter
A, T and b, a two-dimensional Poincaré map of (1)
can be defined as

F (ξ1, ξ2) = (x1(T, ξ1, ξ2), x2(T, ξ1, ξ2)) . (9)

Now, the study of the bifurcations problem of
(1) is equivalent to the study of how Ω(b, T, A)
changes when b, T and A vary. To simplify the prob-
lem, rather than studying Ω(b, T, A), this paper is
concerned mainly with how “typical” trajectories
vary with b, T and A. In particular, when b > 0,
the trajectory Γb ≡ Γ(b, T, A) of (6) and ω-limit
set ωb ≡ ω(b, T, A) of (7) with the initial condition
at the origin O = (0, 0) are considered. The ω-limit
set of the Poincaré map is denoted by ω̂(b, T, A). To
show Ω(b, T, A) is a chaotic attractor, the following
conditions must be proven to hold.

(i) Γ(b, T, A) has a positive Lyapunov exponent,
(ii) ω̂(b, T, A) is fractal,
(iii) FFT (Fast Fourier Transform) of Γ(b, T, A)

has a broad-band.

An effective approach of studying effects of the
input period T is to examine the asymptotic limit
cycle Λ∞(T, A) by letting b → ∞. When T ≤ T ∗

0

(defined in (67)) then Λ∞ and −Λ∞ can be sep-
arated. Therefore ω(b, T, A) and −ω(b, T, A) are
separated for large b but collide when b is small.
If b becomes even smaller, a chaotic attractor may
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Bifurcations and Chaos in Two-Cell Cellular Neural Networks with Periodic Inputs 3181

develop. Indeed, the onset of chaos induced by crises
of ω(b, T, A) and −ω(b, T, A) were observed for
suitable T and b. For details, please see Fig. 13 and
Sec. 6.

After an interesting range of T is identified,
the effect of b can be examined. Intuitively, the
unperturbed limit cycle will dominate when b is
small. Indeed, FFT of Γ(b, T, A) is considered when
b > 0 and is relatively small. Let Tb be the
period with the largest amplitude a1(b) of FFT on
x1(t, 0, 0; b, T, A) except for T -mode, and aT =
aT (b, T, A) be the amplitude of the period T mode.
The ratio

A(b) ≡
∣∣∣∣aT (b)
a1(b)

∣∣∣∣ (10)

represents the relative strength of the T -mode with
respect to the Tb-mode as b varies. Equation (1) is
called Tb dominant if A(b)� 1, the Tb and T modes
are comparable if A(b) 
 1 but T is dominant if
A(b)� 1.

When Tb is dominant, ωb is found to be either
quasi-periodic or periodic. The periodic windows
typically form a devil’s staircase when b ∈ (b∗, b∗0),
where 0 < b∗ < b∗0 depends on A and T . For exam-
ple, Figs. 3 and 11 present the ZN-case in [Zou &
Nossek, 1991], that is A = [1.2, 2, −1.2] and T = 4.

When Tb and T modes are comparable, the
Lyapunov exponents of Γ(b, T, A) and ω-limit set
ω̂(b, T, A) of Poincaré map are computed. In many
interesting cases, including the ZN-case, finitely
many chaotic and window regions interweave with
each other. In chaotic regions, the largest Lyapunov
exponent is positive and ω̂(b, T, A) is fractal, as in
Fig. 15. ω̂(b, T, A) looks like a lady’s shoe as in
the ZN-case and contains a horseshoe as in asym-
metric templates case, as shown in Figs. 20 and
23. In each window, the basic periodic cycle can
be identified, i.e. the periodic cycle with the mini-
mum period. In the window, a sequence of period-
doubling is observed to the left of the basic periodic
cycle. A quasi-periodic region is to the right of the
basic periodic cycle.

For b large, the T -mode dominates, the attrac-
tors ω(b, T, A) gets simpler, from quasi-periodic to
periodic as b increases. See Sec. 6.

The rest of this paper is organized as follows.
Section 2 introduces some properties of solutions of
(1) which will be useful later. Section 3 introduces a
program for studying bifurcations and chaos since
many parameters are involved. The limit cycle of
(1) is first studied without input. Then, methods

are developed to identify possible ranges of T and b
to ensure the occurrence of interesting bifurcation
and the existence of chaotic attractors. Section 4
addresses the existence and uniqueness of the limit
cycle of (1) when b = 0 and (3) holds. Section 5
uses the FFT of Γ(b, T, A) to study the bifurca-
tions when b is relative small, i.e. when Tb domi-
nates. Section 6 studies the asymptotic limit cycle
when b→∞. Section 7 studies chaos when Tb and T
modes are comparable. Section 8 introduces our nu-
merical methods. Section 9 briefly discusses results
and offers suggestions for future study.

2. Preliminaries

This section provides some preliminary results of
(1). Given an initial condition

(x1(0), x2(0)) = (ξ1, ξ2) , (11)

the solution of (1) with (11) is denoted by
(x1(t; ξ1, ξ2), x2(t; ξ1, ξ2)). We first state some
symmetric properties of the solutions of (1).

Theorem 2.1.

(i) If (x1(t), x2(t)) is a solution of (1), then(
−x1

(
t+

T

2

)
, −x2

(
t+

T

2

))
(12)

is also a solution of (1). In particular, if b = 0,
then (−x1(t), −x2(t)) is also a solution.

(ii) If b = 0 and (x1(t), x2(t)) is a periodic so-
lution of (1), then its period is mT for some
positive integer m.

(iii) When b = 0 and A is antisymmetric, i.e. s =
−r, if (x1(t), x2(t)) is a solution of (1), then

(x2(t), −x1(t)) (13)

is also a solution.

Proof

(i) Since

f(−x) = −f(x) and u

(
t+

T

2

)
= −u(t) ,

(14)

the function given in (12) is clearly also a
solution.

(ii) Assume that (x1(t), x2(t)) is a periodic solu-
tion with period T̃ > 0; then x1(t+ T̃ ) = x1(t)
and x2(t+T̃ ) = x2(t) imply sin(2π/T )(t+T̃ ) =
sin(2π/T )t for all t. Hence, T̃ = mT for some
positive integer m.
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3182 S.-S. Lin et al.

(iii) When b = 0 and s = −r, let (v1(t), v2(t)) =
(x2(t), −x1(t)). Then, (v1, v2) satisfies v̇1 =
−v1 + pw1 + sw2 and v̇2 = −v2 + rw1 + pw2,
where wj = f(vj) and j = 1, 2. Hence, (13) is
also a solution. The proof is complete.

�

A set S ⊆ R
2 is called symmetric with respect

to O = (0, 0), if

−S = S , (15)

where −S = {(−x1, −x2) ∈ R
2|(x1, x2) ∈ S}.

Otherwise, S is called asymmetric. In partic-
ular, a trajectory (x1(t; ξ1, ξ2), x2(t; ξ2, ξ2)) of
(1) is called symmetric if the set Γ(ξ1, ξ2) =
{(x1(t), x2(t))|t ∈ R

1 and (x1(0), x2(0)) = (ξ1, ξ2)}
is symmetric.

The isoclines are useful in studying (1). The
x2-isocline ẋ2 = 0 is independent of time, i.e.

h(x1, x2) ≡ −x2 + ry1 + py2 = 0 . (16)

The x1-isoclines are time periodic with period T if
b > 0, i.e.

g(x1, x2) ≡ −x1 + py1 + sy2 = −b sin
2π
T

t , (17)

See Figs. 1 and 2.
Moving isoclines are first used to discuss the

possible trajectories of (1). When (3) holds and b =
0, the origin O = (0, 0) can be easily verified to be
the only steady-state solution of (1). Furthermore,
O is an unstable spiral with eigenvalues λ = (p −
1) ± i

√
−rs. Figure 1 presents vector fields of (1)

when b = 0. In this case, apart from O, all trajec-
tories move counterclockwise around O and tend to
a limit cycle. See Theorem 4.1 for details. However,
when b > 0, the periodically moving x1-isocline
g(x1, x2) = −bu(t) oscillates horizontally. At a
given instant t̄, g(x1, x2) = −bu(t̄) may inter-
sect h(x1, x2) = 0 at point (x̄1, x̄2). In that case,
(x̄1, x̄2) can be regarded as a “temporary or instan-
taneous steady-state”. The trajectories which are
near (x̄1, x̄2) at time t̄ may circle around (x̄1, x̄2)
thereafter. This basic mechanism can generate com-
plicated trajectories as easily observed from the
numerical simulations. See Figs. 2 and 13(d). The
following sections will describe global trajectories.

With reference to a dynamical system of (1),
the asymptotic behavior of trajectories as t tends
to infinite is of most interest. Therefore, the ω-limit

x2

x1

x2 = 1

x2 = −1

x1 = 1x1 = −1

C+

C−

O

h(x1, x2) = 0

g(x1, x2) = 0

Fig. 1. Isoclines and vector fields of system (1) when b = 0.

set for each trajectory must be studied. The ω-limit
set of (1) and (11) is defined by

ω(ξ1, ξ2) = {(x̄1, x̄2) ∈ R
2|

∃tk →∞ such that xi(tk; ξ1, ξ2)
→ x̄i, i = 1, 2} . (18)

The nonwandering set Ω of (1) is defined by

Ω =
⋃

(ξ1, ξ2)∈R2

ω(ξ1, ξ2) . (19)

Note that ω and Ω depend on the template A, T
and b. To simplify the notation, the dependency is
omitted if it does not cause confusion. However,
ωb(ξ1, ξ2) or ω(ξ1, ξ2; b) and Ωb may be used to
emphasize the dependency on b.

The main goal of this paper is to analyze
ωb(ξ1, ξ2) and Ωb, and to study their bifurcations
as parameters A, T and b vary. The following re-
sults can be derived from these isoclines and their
associated vector fields in phase-plane as shown in
Figs. 1 and 2.

Theorem 2.2. Assume (3) and b ≥ 0. The non-
wandering set Ωb ⊆ [−b− p+ s, b+ p− s]× [−(p+
r), p+r]. Furthermore Ωb is symmetric and attracts
all trajectories as t→∞.

Proof. For each b ≥ 0, Ωb ⊆ [−b − p + s, b + p −
s]× [−(p+ r), p+ r] can be easily verified from the
associated vector fields in phase-plane. See Figs. 1
and 2. Clearly, Ωb attracts all trajectories as t→∞.
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By Theorem 2.1(i), Ωb is symmetric. The proof is
complete. �

Remark 2.3. b > 0 may have an asymmetric pe-
riodic orbit Λ. In that case, an other asymmetric
periodic orbit −Λ exists, and −Λ ∪ Λ ⊆ Ωb.

Since the inputs are periodic with period T ,
introducing a two-dimensional Poincaré map F :
R

2 → R
2 by

F (ξ1, ξ2) = (x1(T ; ξ1, ξ2), x2(T ; ξ1, ξ2)) (20)

is natural. Clearly the periodic orbits of (1) with
period mT are the periodic points of F with period
m, and vice-versa.

The ω-limit set ω̂b(ξ1, ξ2) and the nonwander-
ing set Ω̂b of Poincaré map F can also be studied.
Indeed,

ω̂b(ξ1, ξ2) = {(η1, η2) ∈ R
2|

∃nk →∞ such that Fnk(ξ1, ξ2)
→ (η1, η2) as nk →∞} , (21)

and

Ω̂b =
⋃

(ξ1, ξ2)∈R2

ω̂b(ξ1, ξ2) . (22)

Clearly, ω̂b(ξ1, ξ2) ⊂ ωb(ξ1, ξ2) and Ω̂b ⊆ Ωb.
Now, the Lyapunov exponents of (1) can be

studied using its Poincaré map F . Recall that the
Lyapunov exponents of a smooth map F on R

m →
R

m are defined as follows [Alligood et al., 1997,
pp. 194–195].

Definition 2.4. For a smooth map f on R
m, let

Jn = Dfn(v0), and for k = 1, . . . , m, let Rn
k be

the length of kth longest orthogonal axis of the
ellipsoid JnU for an orbit with initial point v0.
Then Rn

k measures the contraction or expansion
near the orbit of v0 during the first n iterations.
The kth Lyapunov exponent of v0 is defined by
αk = limn→∞ log((Rn

k )
1/n), if the limit exist.

In this paper, the system (1) is called chaotic if
the following conditions hold:

(i) the largest Lyapunov exponent of Ω̂b is
positive,

(ii) Ω̂b is fractal,
(iii) some typical trajectories of (1) have broad-

bands under FFT.

Proving that a typical trajectory, say Γb(0, 0)
satisfies (i) and (ii) suffices to verify conditions
(i) and (ii). The following sections present the rele-
vant details.

3. Programs for Studying
Bifurcations and Chaos

The rest of this paper addresses the bifurcations and
chaos of (1) as the parameters A = [r, p, s], T and
b vary. The following programs are applied to study
thoroughly a complex and interesting phenomenon
over a range of parameters, since the problems
involve five parameters.

g(x1, x2) = −bu(T
4
) g(x1, x2) = −bu(t̄) g(x1, x2) = −bu(3T

4
)

x2

x1

x2 = 1

x2 = −1

x1 = 1x1 = −1

C+

C−

O

Fig. 2. Isoclines and vector fields for b > 0.
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3184 S.-S. Lin et al.

Fig. 3. FFT of the largest 20 modes for the ZN-case: A = [1.2, 2, −1.2] and T = 4.

(I) Take b=0 and study how the sustained limit
cycles Λ0(A) vary with the template A =
[r, p, s]. In particular, examine how the pe-
riod T0(A) of Γ0(A) varies with A.

(II) Fix A. Find possible range of input periods
T such that (1) exhibit chaotic behavior for
suitable b > 0. In particular, try to find the
relation between T and T0(A) such that (1)
have complex trajectories for some b > 0.

(III) Fix A and T obtained in (I) and (II), try
to identify critical numbers of b, say, b∗0 <
b∗1 < · · · < b∗k, which represent various types
of trajectories of (1) and may cause distinct
bifurcations when b∗j is crossed.

With reference to program (I), Sec. 4 discusses
the existence and uniqueness of limit cycles. To ex-
plain how programs (II) and (III) are implemented,
a series of numerical experiments with varying b > 0
are presented, as follows.

For fixed A and T , denote by Γb the forward-
trajectory of (1) with the initial condition at the
origin O, and ωb the corresponding ω-limit set of
Γb. Λ0 is the (inner) limit cycle for b = 0 and is
obtained from Theorem 4.1. Apply FFT to the x1-
component of Γb, i.e. x1(t; 0, 0), t > 0. Pick up the
firstN frequencies of these data, i.e. let {ake

iωkt}Nk=1

satisfy

|a1| ≥ |a2| ≥ · · · ≥ |aN | ≥ aω| , (23)

for other frequency ω, where ak = ak(b) and ωk =
ωk(b), denote

τk(b) =
2π

ωk(b)
, (24)

the period of the kth mode. For simplicity, denote

Tb = τ1(b) , (25)

which corresponds to the largest amplitude except
for T -mode. It is not difficult to verify

lim
b→0+

Tb = T0 . (26)

The normalized curves

Rk(b) =
τk(b)
Tb

(27)

of τk(b), and 1 ≤ k ≤ N , are very useful for finding
periodic orbits. To be more specific, in the ZN-case,
Rk(b) with 1 ≤ k ≤ 20 and b ∈ [0, 4] are as in Fig. 3.

Figure 3 can be explained as follows.

(1) The amplitude of the T = 4 mode (represented
by a red thick line in Fig. 3) grows steadily as
b increases in (0, 3.826). It is comparable to Tb

when b is close to 4, near the onset of chaos.
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(a) b∗1 = 3.98 (b) b∗2 = 4.284

(c) b∗3 = 4.365 (d) b∗ = 4.2697

Fig. 4. Critical trajectories of b∗1, b∗2, b∗3 and b∗, when A = [1.2, 2, −1.2] and T = 4.

(2) Curve number ©2 decreases and curve number
©3 increases and merges into Tb/2, giving rise to
4T periodic cycles. The 4T cycle will survive for
quite a large range of parameters in (0.43, 0.66).
Curves merging is very common and induces a
period cycle.

(3) The Tb/3 mode maintains the largest parame-
ters in (0, 3.826) and gives rise to a 3T periodic
cycle in (1.2, 3.826).

(4) The dotted regions and window regions
(stepped regions) interweave with each other.
Stepped regions represent periodic cycles and
dotted regions represent quasi-periodic orbits.

Section 5 will analyze the bifurcations before the
onset of chaos.

In the ZN-case, when b ≥ 3.826, the strength of
the T -mode is comparable with or larger than the
strength of the Tb-mode. In the following, a heuris-
tic argument is used to derive relations among b, T
and T0 when Tb and T are comparable.

Let

γ(t) = Λ′
0(t+ t0) , (28)

Λ0(t) be the limit cycle of (1) with b = 0. The first
equation of (1) is modeled as

dx

dt
= γ(t) + bu(t) . (29)

Now, γ(t) is a periodic function with period T0 and
u(t) is a period function with period T . The two
time scales of the functions γ and u can be nor-
malized to a single time scale τ ∈ [0, 1] by setting
t = T0τ for γ and t = Tτ for u. Hence,

x(t) = x(0) + T0Γ(τ) + bTU(τ), τ ∈ [0, 1] , (30)

where

Γ(τ) =
∫ T0τ

0
γ(s)ds and U(τ) =

∫ Tτ

0
u(s)ds

are normalized periodic functions with period one.
From (30), x(t) can vary maximally if T0 and bT
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(a) b = 8.44 (b) b = 8.9

Fig. 5. Critical trajectories can circle around C+ or C− many times when A = [1.2, 2,−1.2] and T = 2.

have the same order of magnitudes and an appro-
priate time shift t0 occurs in (28). Therefore, for a
fixed template A = [r, p, s], let T0 = T0(A) be the
period of the sustained limit cycle Λ0(A) (without
input), define

b∗(T ) =
c0T0(A)

T
, (31)

where c0 ∼ 1 is a constant that depends on A
and T .

From our experience, for a given A and T ,
c0 = 1 in (31) is a good estimate for the position at
which to start the search for interesting ranges of
b. c0(A, T ) may decrease as T increases. In the ZN-
case and many other templates, (31) worked very
well. See Figs. 4, 15 and 19.

The program (II) will be supported in Sec. 6,
where asymptotic limit cycles Λ∞ are studied as
b→∞.

When the largest Lyapunov exponent of the
Poincaré-map is close to zero and then becomes pos-
itive, (1) enters a chaotic region. In the ZN-case,
eight chaotic regions Ck, 1 ≤ k ≤ 8 can be iden-
tified, followed by successive window regions Wk,
1 ≤ k ≤ 8. See Fig. 15. Bifurcations, typically back-
ward period-doubling in window regions were dis-
covered. See Fig. 16. Section 7 provides details. In
the chaotic regions, three critical trajectories at b∗1,
b∗2, and b∗3 can be identified which are important to
implement program (III). See Figs. 4(a)–4(c). The
parameter b∗1 is related to the onset of chaos while
b∗2 and b∗3 are related to fully-developed chaos. They
occur when T is near four in the ZN-case, but b∗2 and
b∗3 may change considerably when T is relatively
small, say T ≤ 2. In that case, b∗2 and b∗3 do not

exist. Instead, the trajectories may circle around
C+ and C− many times. See Fig. 5 and Sec. 7 for
details.

When b is relatively large, in the ZN-case b ≥
4.432, the T -mode dominates, i.e. the sum of the
strength of all other modes is less than a few per-
cents of T -mode. The chaotic regions disappear and
are followed by quasi-periodic regions and then,
eventually, a periodic region. Now, Λb is either a
symmetric or an asymmetric periodic cycle depend-
ing on T. Section 6 settles this issue by considering
the asymptotic limit cycle Λ∞ as b→∞.

4. Limit Cycles

This section addresses the existence and multiplic-
ity of limit cycles of (1) when b = 0 and (3)
holds.

The existence of limit cycles can be easily
proven.

Theorem 4.1. Assume (3) and b = 0, limit cycles
exist. Moreover, apart from O = (0, 0), all trajecto-
ries will tend to one of the limit cycles as t→∞.

Proof. Under the assumptions (3), the origin O =
(0, 0) can be easily verified to be the only steady
state of (1); moreover, O is an unstable spiral.
Indeed, the associated eigenvalues at O are given
by

λ± = p− 1± i
√
−rs .

By Theorem 2.2 and the Poincaré–Bendixson
Theorem, a limit cycle exists. Apart from the ori-
gins, all trajectories will tend to one of the limit
cycles as t→∞. The proof is complete. �
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I

M1M2

M3 M4

T1

T2

T3

T4

x2 = 1

x2 = −1

x1 = 1x1 = −1

(α,-1)

(α1,1)

(1,β2)

(-1,β3)

(α4,1)

Fig. 6. A typical orbit of (1) with initial condition (α, −1),
and 1 ≤ α ≤ p − s.

Since the nonlinear output function is piecewise
linear in (2), the phase-plane can be divided into
nine regions which are the mosaic (saturated) re-
gionMj , the transitional (partial saturated) region
Tj and the interior (not saturated) region I, j = 1,
2, 3, 4. See Fig. 6.

It is easy to see that the periodic orbit does not
lie entirely in the interior region I. Therefore, peri-
odic orbits have to intersect the exterior region E ,
here

E = R
2 − I =

4⋃
k=1

(Tk ∪Mk) . (32)

A periodic orbit Λ is called an exterior periodic
cycle (exterior cycle) if Λ ⊆ E , otherwise Λ is called
a nonexterior periodic cycle, i.e. Λ

⋂
I = ∅.

Now, the multiplicity of the exterior periodic
cycles can be proven as follows.

Theorem 4.2. Assume (3) and b = 0. No more
than two limit cycles are present in the exterior
region E.

Proof. Periodic solutions as in [Thiran, 1997] are
constructed to show that no more than two peri-
odic orbits exist in exterior region E .

Now starting at the point (α, −1) at t = 0,
where 1 ≤ α ≤ p − s, the trajectory Γα in T1 is
followed; it intersects x2 = 1 at the point (α1, 1) on
t = t1, 1 < α1, entersM1; then intersects x1 = 1 at
(1, β2) on t = t2, enters T2; then intersects x1 = −1

at the point (−1, β3) on t = t3, and finally enters
M2 and intersects x2 = 1 at the point (α4, 1) on
t = t4, i.e.

(x1(0), x2(0)) = (α, −1) ,
(x1(t1), x2(t1)) = (α1, 1) ,

(x1(t2), x2(t2)) = (1, β2) ,

(x1(t3), x2(t3)) = (−1, β3) ,

(x1(t4), x2(t4)) = (α4, 1) .

(33)

See Fig. 6. Since b = 0, (1) is an autonomous
equation. The periodic orbit cannot intersect it-
self. Therefore, by Theorem 2.1(i), Γα is a periodic
(closed) orbit if and only if

α4 = −α . (34)

α1, β2, β3, α4 and t1, t2, t3, t4 must be com-
puted in terms of α. The following expressions
can be straight-forwardly obtained. The details are
omitted here. Denote by

ξ = r + 1− p, η = r + p− 1 ,

γ = 1− s− p, δ = p− s− 1 ,

and q = 1/(p − 1) .

(35)

Then,

α1 = p+
s(1− r)

p
+

(
α− p+

s(r + 1)
p

)(
ξ

η

)q

,

(36)

β2 = p+ r − ηγ

α1 − p− s
, (37)

β3 = p− r(s+ 1)
p

+
(
β2 − p− r(1− s)

p

) (γ
δ

)q
,

(38)

α4 =
δξ

β3 + r − p
+ s− p . (39)

α4 is written as a function of α to show that (34) has
at most two solutions for α ∈ [1, p − s]. Indeed, in
the following, ki, i = 1, . . . , 17, are constants that
depend on p, r, s, but are independent of α,

α1 = k1α+ k2 ,

β2 =
k4

k1α+ k3
+ k5 ,

β3 = k6β2 + k7 ,

α4 =
k9

β3 + k8
+ k10 ,
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and

α4 =
k9α+ k13

k11α+ k12
+ k14 . (40)

Substituting (40) into (34) yields, a quadratic
equation for α, i.e.

k15α
2 + k16α+ k17 = 0 . (41)

Therefore, (34) has at most two solutions in
[1, p− s]. The proof is complete. �

The uniqueness of limit cycle in the exte-
rior region E can be proven by making further
assumptions:

Theorem 4.3. Assume (3) and b = 0. If 1 < p ≤ 2
then (1) has at most one limit cycle in the exterior
region E.

Proof. Note that
∂

∂x1
(−x1 + py1 + sy2) +

∂

∂x2
(−x2 + ry1 + py2)

=
{
p− 2 if (x1, x2) ∈ Ti ,

−2 if (x1, x2) ∈Mi ,

1 ≤ i ≤ 4. The sign is nonpositive if p ≤ 2. The
Dulac criteria rule out the second closed orbit in E .
The proof is complete. �

The existence and nonexistence of periodic
cycles in the exterior region E can also be proven
by making additional assumptions.

Theorem 4.4. Assume (3) and b = 0. Let ξ, η, γ,
δ and q be given by (35).

(i) There is a periodic cycle in the exterior region
E if the following conditions are satisfied.

(E1) p− 1 +
s(1− r)

p

+
(
1− p+

s(r + 1)
p

)(
ξ

η

)q

≥ 0 , (42)

p− 1− r(1 + s)
p

+
(
1− p− r(1− s)

p

)(γ
δ

)q
≥ 0 . (43)

In particular, if A is antisymmetric, i.e. −s =
r, (E1) and (E2) are equivalent to

(E) p(p− 1) + r(r − 1)

− [p(p − 1) + r(r + 1)]
(
ξ

η

)q

≥ 0 .

(44)

(ii) There is no periodic orbit in the exterior region
E if one of the following conditions holds.

(N1) p− 1 +
s(1− r)

p
+

sξ

p

(
ξ

η

)q

< 0 , (45)

or

(N2) p− 1− r(1 + s)
p

− rγ

p

(γ

δ

)q
< 0 . (46)

In that case, all periodic cycles necessarily in-
tersect the interior region I.

Proof. The existence results are first proved.
It is easy to verify that if Λ is an exterior peri-

odic cycle then Λ
⋂
{(x1, −1)|x1 ∈ [1, p− s]} = ∅.

From (36) and (42),

α1(α) ≥ 1 for all α ∈ [1, p− s] . (47)

Similarly, from (38) and (43),

β3(β2) ≥ 1 for all β2 ∈ [1, p+ r] . (48)

Therefore, x1(α, 1) maps [1, p−s] into [−p+s, −1].
It implies −x1(α, 1) maps [1, p − s] into itself and
then has a fixed point in [1, p− s]. Hence, (34) has
at least one solution in [1, p − s]. This proves that
exterior periodic cycle exists.

Clearly, (E1) and (E2) is equivalent to (E) when
s = −r.

Finally, from (36) and (45),

α1(α) < 1 for all α ∈ [1, p− s] , (49)

and from (38) and (46),

β3(β2) < 1 for all β2 ∈ [1, p+ r] . (50)

Hence, there no exterior periodic cycle exists. The
proof is complete. �

Notably, (45) and (46) can be replaced by
stronger conditions that can be verified easily as
follows.

0 < p− 1 < r < 1 and − s ≥ p(p− 1)
1− r

, (51)

and

0 < p− 1 < −s < 1 and r ≥ p(p− 1)
1 + s

. (52)

Figure 7 shows some typical exterior periodic
cycles and nonexterior periodic cycles.

Although, the expressions (36)–(39) are ex-
plicit, analytically showing that (41) has a unique
solution in exterior region E remains quite difficult.
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(a) A = [1.2, 2, −1.2], b = 0 (b) A = [0.5, 1.2, −0.5], b = 0

(c) A = [0.5, 1.217, −1], b = 0 (d) A = [0.5, 1.217, −2], b = 0

Fig. 7. Typical limit cycles of (1) with b = 0, (a) exterior cycle, (b)–(d) nonexterior cycles.

However, numerical results indicate that a unique
limit cycle exists in the entire R

2 over a quite large
parameter range.

Numerical computation also reveals, the period
function T0(r, p, s) of the limit cycles for template
A = [r, p, s] that satisfies the condition (3) is de-
creasing with respect to r and −s, and increasing
with respect to p. See Figs. 8 and 9. An analytic
study of this monotonicity has some progress.

5. Bifurcations Precede Chaos

This section considers the bifurcations before chaos
when the amplitude b of the input is relatively
small. Section 3 explains the methods used.

Given a template A which satisfies (3), assume
that (1) has a unique limit cycle Λ0(A) with period
T0 = T0(A). For each T ∈ (0, T0) and b > 0, let
Tb = T (b, T, A) be the period of the largest am-
plitude a1(b, T, A) of the FFT except for T -mode
applied to x1(t, 0, 0; b, T, A) and let aT (b, T, A) be

the amplitude of T -mode. Let b∗0 > 0 such that

|a1(b, T, A)| > |aT (b, T, A)| (53)

holds in (0, b∗0), b∗0 can be assumed to be the least
upper bound of b̃ such that (53) holds in (0, b̃).

Consider the firstN highest modes and plot the
curves

Rk(b) ≡
τk(b)
Tb

(54)

for b ∈ (0, b∗0) and k = 1, . . . , N , where τk(b) is the
period of the kth-largest amplitude of the FFT and
Tb = τ1(b). See Fig. 3. The Rk(b) curve is well de-
fined locally in the window regions and can merge
with its neighbor curves. After they merge, they are
considered to be one curve. See curves ©2 and ©3 in
Fig. 3.

When a periodic window appears on the open
interval B ⊂ (0, b∗0), the curve Rk(b) will be
a horizontal line, or approximately one, on B.
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Fig. 8. The period function T0(r, p, −r) with b = 0.

Fig. 9. The period function T0(r, 2, s) with b = 0.

Furthermore, on B

Tb =
m

n
T (55)

for some positive integers m and n and (m, n) = 1,
i.e. m and n are relative prime. Therefore,

Bm,n =
{
b ∈ (0, b∗0)|Tb =

m

n
T

}
(56)

is defined. Denote by

[T0/T ] = m∗ , (57)

where [x] is the largest integer which is equal to or
smaller than x.

The solutions of (1) can be written explicitly
on each of the nine regions Mj, Tj and I. There-
fore, the exact solutions of periodic orbits in Bm,n

can be rigorously checked using a computer pro-
vided n is not too large. The periodic cycles in Bm,n

are of period mT and circle around the origin O
n-times (n-copies). This explanation partially
proves the following results.

Conjecture 5.1. Assume (53) holds.
Then

(i) Bm∗,1 = ∅, i.e. a stable m∗T periodic cycle of
(1) exists.

(ii) If (1) has another stable limit cycle with m∗T
period in Bm∗,n∗ ⊂ (0, b∗0) and m∗/n∗ < m∗,
then ∪m∗/n∗≤m/n≤m∗Bm,n is open and dense
in (b̂1, b̂2), where b̂1 = inf Bm∗,1 and b̂2 =
supBm∗,n∗ , i.e. Tb is a function of b is a devil’s
staircase in b. See Fig. 10.

(a) T = 4 (b) T = 2

Fig. 10. Devil’s staircase like period function Tb, A = [1.2, 2, −1.2], (a) T = 4 and (b) T = 2.
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Figure 11 plots the typical periodic orbits in
Bm,n in the ZN-case and Fig. 12 plots the typical
quasi-periodic orbits in the ZN-case.

6. Asymptotic Limit Cycles for
Large Inputs

This section addresses asymptotic periodic cycles
for various T when b is large. Whether the ω-limit
sets ωb and −ωb can be separated from each other

by the x1-axis such that one lies in the upper half
of phase-plane and the other lies in the lower half of
phase-plane is the main concern. The answer is affir-
mative when T is relatively small. See Theorem 6.1.
In any case, the system can always support a limit-
ing cycle even for large T .

For a given template A = [r, p, s],

w1 =
x1

b
(58)

(a) b = 0.5, Tb = 4T (b) b = 0.78, Tb = 15
4 T

(c) b = 0.9, Tb = 11
3 T (d) b = 1, Tb = 7

2T

(e) b = 1.1, Tb = 10
3 T (f) b = 1.2, Tb = 3T

Fig. 11. Some typical orbits in Bm,n prior to chaotic regions, A = [1.2, 2, −1.2] and T = 4.
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(a) b = 0.37 (b) b = 0.37

(c) b = 1.14 (d) b = 1.14

Fig. 12. Some typical quasi-periodic orbit (a) and (c) and their ω-limit set ω̂ of the Poincaré map (b) and (d), A =
[1.2, 2, −1.2] and T = 4.

is written as b → ∞, and the limiting equation for
w1 is

dw1

dt
= −w1 + u . (59)

The solutions of (59) are

w1(t) = ce−t +
1

1 + Ω2
(sinΩt− ΩcosΩt) , (60)

where

Ω = Ω(T ) =
2π
T

and c is a constant. Consequently,

x1(t, ξ1, ξ2; b) ∼
b

1 + Ω2
(sinΩt− ΩcosΩt) (61)

for large b and t. Notably,

−p− r < x2(t, ξ1, ξ2; b) < p+ r (62)

always holds for large t. Now, (1) is assumed to
have a asymptotic limit cycle Λ∞ with period T as

b→∞. From (61), Λ∞ will always almost be in the
region |x1| ≥ 1. In the limit, denoted by w2(t) for
x2(t; b), w2 satisfies

dw2

dt
= −w2 + p+ r if w2 ≥ 1 , (63)

dw2

dt
= (p− 1)w2 + r if |w2| ≤ 1 , (64)

dw2

dt
= −w2 + r − p if w2 ≤ −1 . (65)

for a total time of T/2 in the region w1 ≥ 0. Similar
equations hold in region w1 ≤ 0 for another T/2
time. The separation theorem is stated as follows.

Theorem 6.1. The system (1) can support a
limiting limit cycle Λ∞ with period T provided

(i) in region w2 ≤ −1 if

T < T ∗
1 ≡ 2 log

2r
r + 1− p

, (66)

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

4.
14

:3
17

9-
32

04
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S021812740401134X&iName=master.img-100.jpg&w=180&h=144
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S021812740401134X&iName=master.img-101.jpg&w=183&h=145
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S021812740401134X&iName=master.img-102.jpg&w=180&h=144
http://wspc-prod.literatumonline.com/action/showImage?doi=10.1142/S021812740401134X&iName=master.img-103.jpg&w=181&h=144


Bifurcations and Chaos in Two-Cell Cellular Neural Networks with Periodic Inputs 3193

(a) b = 10 (b) b = 4.8

(c) b = 4.428 (d) b = 4.336

Fig. 13. Crises induced by ωb and −ωb when A = [1.2, 2, −1.2] and T = 4.

(ii) in region w2 ≤ 0 if

T < T ∗
0

≡ 2
(
log

2r
r + 1− p

+
1

p− 1
log

r

r + 1− p

)
.

(67)

Similarly, −Λ∞ lies in w2 ≥ 1 and w2 ≥ 0,
respectively.

Proof

(i) Assume that Λ∞ remains in the region w2 ≤ −1
for T/2 time. Then general solutions of (65)
are

w2(t) = ce−t + r − p . (68)

For 1 ≤ β ≤ α < p+ r, assume

w2(t0) = −α ,

and w2

(
t0 +

T

2

)
= −β .

(69)

Then (68) and (69) imply

T = 2 log
α+ r − p

β + r − p
. (70)

Since 1 ≤ β ≤ α < p+ r, (66) follows.
(ii) Assume that Λ∞ remains in the region w2 ≤ 0

for T/2 time. Let

0 ≤ β ≤ 1 ≤ α < p+ r ,

w2(t0) = −α ,

w2(t0 + T ′) = −1 ,

w2

(
t0 +

T

2

)
= −β ,

(71)

where 0 < T ′ < T/2. Then from (64) and
(65),

w2(t) = c1e
−t + r − p for t ∈ [t0, t0 + T ′] ,

(72)
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Fig. 14. ωb=−ωb when A = [1.2, 2, −1.2] and T = 10.

and

w2(t) = c2e
(p−1)t

− r

p− 1
for t ∈

[
t0 + T ′, t0 +

T

2

]
.

(73)

From (72),

T ′ = log
α+ r − p

1 + r − p
. (74)

Similarly, from (71) and (73),

T

2
− T ′ =

1
p− 1

log
r − β(p − 1)
r + 1− p

. (75)

From (74) and (75),

T = 2
{
log

α+ r − p

r + 1− p
+

1
p− 1

log
r − β(p− 1)
r + 1− p

}

which implies (67).

The proof is complete. �

Remark 6.2

(i) The perturbation method can be used to prove
that there exists a limit cycle Λb with period
T for large b. Λb lies in the region according to
Theorem 6.1. The details are omitted here. See
Fig. 13.

(ii) For large T , Λ∞ can be proven to exist with pe-
riod T . Furthermore, Λ∞ spends most of T/2
time near p+r. Therefore, for large T and large
b, Λb is a symmetric T -periodic cycle like a

rhombus, with two vertices close to (1, p + r)
and (−1, −p− r), respectively. See Fig. 14.

Remark 6.3. When T satisfies either (66) or (67),
Λ∞ and −Λ∞ are separated. Then Λb and −Λb are
also separated when b is large. For example, in the
ZN-case i.e. A = [1.2, 2, −1.2],

T ∗
1 = 4.9698 (76)

and

T ∗
0 = 8.5533 . (77)

Note that T = 4 < T ∗
1 has been used in [Zou

& Nossek, 1991], when b decreases to some criti-
cal number b∗∞, ωb and −ωb cross each other and
cause crises; chaos may occur when b decreases a
little further. See Figs. 13(a)–13(d). If T is too large,
chaos may not occur, for example, in the ZN-case
A = [1.2, 2, −1.2] and T = 10, in that case, ωb is
like rhombus. See Fig. 14.

7. Chaos

This section considers the chaotic phenomena that
occurs when the strengths of Γb and the input bu
are comparable. A specific model of the ZN-case is
studied first to elucidate the methods of the study
and the chaotic behavior. Section 7.1 addresses bi-
furcation to chaos by fixing the template A and
the input period T and varying the amplitude b.
Section 7.2 considers the effect of an input period
T by fixing the template A. The asymptotic limit
cycles Λ∞ studied in Sec. 6 will guide the approach
taken to solving the problem. Section 7.3 addresses
the fundamental role of the template A.

7.1. Effects of input amplitude

As stated in Sec. 3, ωb is a chaotic attractor if the
following three conditions are satisfied.

(i) Γ(b, T, A) has a positive Lyapunov exponent,
(ii) ω̂(b, T, A) is fractal,
(iii) Γ(b.T, A) has a broad-band in FFT.

The numerical methods for computing
Lyapunov exponents, Poincaré maps and FFTs
are standard and have been applied by many
researchers. Section 8 will detail these methods. In
all cases studied, the largest Lyapunov exponents
must exceed 0.02 to be considered to be positive.
When ω̂b appears as a partial lady’s shoe or as a
horseshoe, it is considered to be fractal. Quantita-
tive results concerning fractal dimensions can also
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Fig. 15. Lyapunov exponents diagram for the ZN-case with b in (30) and (37), b∗1 = 3.98, b∗2 = 4.284, b∗3 = 4.365 and
b∗ = 4.2697.

(a) Type I (b) Type II

Fig. 16. (a) Type I: the orbit Γb circles around all three points C+, O and C−. (b) Type II: the orbit Γb does not circle
around all of three points C+, O and C−.

be computed in these cases. Finally, the broad-band
of FFT is considered in the classical sense.

The ZN-case, with A = [1.2, 2, −1.2] and T =
4, is first considered as a model to help discuss the
bifurcations of chaotic phenomena. The Lyapunov
exponents were computed for a long b > 0.

Table 1.

Characteristics (1) (2) (3) (4) (5)

W0 (3.956, 3.96) 7 a T I
W1 (3.992, 4.008) 11 s Tb I
W2 (4.052, 4.068) 6 a T I
W3 (4.092, 4.104) 10 a T I
W4 (4.124, 4.168) 4 a Tb I
W5 (4.252, 4.260) 9 s T I
W6 (4.368, 4.412) 8 a T I
W7 (4.42, 4.431) 4 a T II
W8 (4.433, ∞) 2 a T I

The largest Lyapunov exponent that is close
to or above zero is recorded in b ∈ (3.8, 4.6). See
Fig. 15. It can be used to identify eight regions
Ck, 1 ≤ k ≤ 8, which are chaotic since they have
positive Lyapunov exponents. Notably, C4 is the
region that has been studied by Zou and Nossek
[1991]. Each chaotic region Ck is followed by a
window region Wk and 1 ≤ k ≤ 8. The window
W0 precedes C1.

In each Wk and 0 ≤ k ≤ 8, the basic peri-
odic cycle — the periodic solutions with the small-
est period — can be identified. These windows are
first compared in terms of the following character-
istics of the basic periodic cycle in each Wk.

(1) Range of parameters in window,
(2) Period in T units,
(3) Symmetry: “s” for symmetric and “a” for

asymmetric cycles,
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Fig. 17. Bifurcations diagram for ZN-case with b in window
W4 = (4.124, 4.172).

(4) Dominating mode in FFT: Tb for superiority of
Tb and T for input,

(5) Type of attractor: “I” for type I, “II” for type
II. See Figs. 16(a) and 16(b).

Considering Wk carefully, for example, in W4,
reveals that at the middle point of (4.124, 4.168) the
4T basic periodic cycle is asymmetric. To its left, a
sequence of periodic-doubling occurs; to its right is
a quasi-periodic region. See Fig. 17. Similarly, W5

includes a symmetric 9T basic periodic cycle, with
periodic-doubling to its left and a quasi-periodic
region to its right.

To analyze ωb in Ck, it is considered to be
a chaotic bifurcation from different types of win-
dows Wk−1 and Wk. ω̂b of the Poincaré map in Ck

will track the change of the basic periodic orbits
ω̂b in Wk−1 and Wk. See Figs. 18(a)–18(n) for the

(a) b = 3.976 ∈ C1 (b) b = 3.996 ∈ W1

(c) b = 4.04 ∈ C2 (d) b = 4.056 ∈ W2

Fig. 18. Typical Poincaré section in chaotic regions and basic periodic cycles in windows, A = [1.2, 2, −1.2] and T = 4.
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(e) b = 4.084 ∈ C3 (f) b = 4.104 ∈ W3

(g) b = 4.112 ∈ C4 (h) b = 4.144 ∈ W4

(i) b = 4.204 ∈ C5 (j) b = 4.256 ∈ W5

Fig. 18. (Continued )
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(k) b = 4.264 ∈ C6 (l) b = 4.412 ∈ W6

(m) b = 4.416 ∈ C7 (n) b = 4.42 ∈ W7

Fig. 18. (Continued )

transitions. Notably, the basic periodic cycles in
windows Wk like those in Fig. 18, which circle
around C+, O and C−, differ greatly from the pe-
riodic cycles in Bm,n as shown in Fig. 11.

Notably, in the chaotic regions, the time be-
tween a maximum point and a minimum of point
of x1(t, 0, 0, b) is approximately T/2. Tracing
the maximum and minimum points of the x1-
coordinates of ωb, yields an approximate Poincaré
T/2-map,

F̂ (ξ1, ξ2) ≡
(
x1

(
T

2
; ξ1, ξ2

)
, x2

(
T

2
; ξ1, ξ2

))
,

(78)

which is double the Poincaré T -map F given in (9).

7.2. Impacts of the input periods

This subsection briefly discusses the effects of the
input period. Section 6, for a given T , discusses
the types of asymptotic limit cycles Λ∞ that arise
as b → ∞. Two different types arise according to

separability. Λb and −Λb is separable if −Λb = Λb

and separated by x1-axis, which is ensured when T
is relatively small. See Theorem 6.1. Otherwise, Λb

and −Λb are inseparable.
The numerical evidence indicates that separa-

bility is importantly involved in the occurrence of
chaotic attractors. Apparently, separable Λb and
−Λb cause crises as b decreases to a particular
threshold, for example, near b∗3 in the ZN-case.

In the search for chaotic regions, Theorem 6.1
is first applied to T ≤ T ∗

0 as in (67). For those T ,
b near b∗(T ) = T0(A)/T is first tried. Computing
three critical trajectories at b∗1, b∗2 and b∗3 is im-
portant. Normally, b∗1, b∗2 and b∗3 near b∗(T ) when-
ever they exist. In the ZN-case, the graphs of b∗,
b∗1, b

∗
2 and b∗3 are drawn and compared with the re-

gions in which (1) has a positive Lyapunov exponent
(≥ 0.02). See Fig. 19. Notably, the chaotic regions
of (1) are marked by ◦ in Fig. 19. Since the chaotic
regions and windows regions interweave each other,
the marker ◦ in Fig. 19 is necessarily isolated for
each T .
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Fig. 19. Critical numbers b∗, b∗k, k = 1, 2, 3 for varying T ,
A = [1.2, 2, −1.2].

The computed results are stated as follows.

Theorem 7.1. Given a template A = [r, p, s]
that satisfies (3), (1) has a chaotic region on
[b∗1(T ), b∗3(T )] provided the input period T satisfies
(67) and b∗1(T ), b∗2(T ) and b∗3(T ) exist.

Notably, critical trajectories Γb(0, 0) that circle
around O 6-times, C+ m-times and C− n-times at
critical numbers b∗�,m,n can be induced. See Figs. 19
and 20 for T = 2 or T = 3. In that case, analogue
results similar to Theorem 7.1 can be stated. The
details are omitted here.

For T ∈ [3.5, 4.5], chaotic phenomena sim-
ilar to T = 4 were observed. For T ≥ 5, no
chaotic regions are found. For T ∈ [2, 3], chaotic
regions exist but ω̂b are not a lady’s shoe. See
Figs. 20(a)–20(h).

(a) T = 2 and b = 8.88 (b) T = 2 and b = 8.872

(c) T = 3 and b = 5.844 (d) T = 3 and b = 5.828

Fig. 20. Chaotic attractors and basic periodic cycles for A = [1.2, 2, −1.2] with varying T .
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(e) T = 3.5 and b = 4.94 (f) T = 3.5 and b = 4.901

(g) T = 4.5 and b = 3.86 (h) T = 4.5 and b = 3.822

Fig. 20. (Continued )

7.3. Varying templates

The role of template A = [r, p, s] is fundamental.
It governs the basic dynamics among the inputs. A
more complete study of the effects of the template
is required. Some preliminary results are presented
here; very interesting results can be obtained by
varying the templates.

Since the first criterion that determines
whether ωb is a chaotic attractor is that ωb must has
a positive Lyapunov exponent, let λ1(b, T, r, p, s)
be the largest Lyapunov exponent of ω(b, T, r, p, s)
and define

λ∗
1(r, p, s) = sup

b>0, T>0
λ1(b, T, r, p, s) . (79)

Then, the template A = [r, p, s] can introduce
a chaotic attractor with a suitable input bu(t) if
λ∗

1(r, p, s) > 0. Instead of considering all b > 0 and
T > 0 in (79), denote

λ∗(r, p, s) = max{λ1(b, T, r, p, s)| (80)

δT ∗
0 ≤ T ≤ T ∗

0 and δ1b
∗(T ) ≤ b ≤ δ2b

∗(T )} ,

where T ∗
0 is defined in (67) and b∗(T ) is defined

in (31), δ and δ1 are small positive numbers, for
example δ = δ1 = 0.1, and δ2 = 2. Numerical evi-
dence suggests that λ∗(r, p, s) closely approximates
to λ∗

1(r, p, s).
Antisymmetric A is first considered, i.e. s = −r,

and write

λ∗(r, p) = λ∗(r, p, −r) . (81)

Taking p = 2 in (81), the graph of λ∗(r, 2) is plot-
ted for r ∈ (1, 6). See Fig. 21. Notably, in the
ZN-case, i.e. r = 1.2 is not a maximum point for
λ∗(r, 2). Indeed, when most r are in [3, 4.5], a
higher Lyapunov exponent exists, and can induce
more complex chaotic behaviors. See Fig. 23(c).

Some preliminary results are also obtained for
asymmetric templates. See Fig. 23. For asymmet-
ric templates, λ∗(r, 2, s) are computed over some
ranges. See Fig. 22. The marker  indicates for
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1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

1.2

r

λ∗(r, 2)

Fig. 21. The maximum Lyapunov exponent function
λ∗(r, 2) for A = [r, 2, −r].

Fig. 22. The maximum Lyapunov exponent for λ∗(r, 2, s)
maker � for λ∗ > 0 and · for λ∗ < 0.

(a) A = [1.2, 2, −1.3], b = 4.16, T = 4.3 (b) A = [1.5, 2, −1.7], b = 4.7, T = 2.62

(c) A = [4.5, 2, −4.5], b = 6.9883, T = 1.31 (d) A = [1.5, 2, −1.75], b = 4.28, T = 2.08

Fig. 23. Some typical chaotic attractors for general A = [r, 2, s].
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(e) A = [1.5, 2, −4], b = 9.06, T = 0.88 (f) A = [1.05, 2, −3.95], b = 2.72, T = 6.2

Fig. 23. (Continued )

those A = [r, 2, s] for which λ∗(r, 2, s) is positive
and · is nonpositive. Figure 23 plots some typi-
cal chaotic attractors for antisymmetric and gen-
eral asymmetric templates. Notably, most are not
lady’s shoes. The more detailed results concerning
bifurcations and chaos will be reported elsewhere.

8. Numerical Methods

This section describes the several numerical meth-
ods used herein, including the Poincaré map, the
FFT and the Lyapunov exponent.

The trajectory of the system (1) must first be
generated. Numerically, for a given set of parame-
ters, a template A = [r, p, s] that satisfies (3), an
amplitude b and period T , the system of differen-
tial equations is solved in FORTRAN 90 by call-
ing a subroutine, RKF45, using the Runge–Kutta–
Fehlberg (4, 5) methods described in [Fehlberg,
1968], with step size = 0.05, absolute error 1×10−10

and relative error 1× 10−8.
Since the ω-limit set ω(b, T, A) is of greatest

concern, 2 × 106 steps are taken in the RKF45 in-
tegration. The first 1× 106 steps were ignored, and
the following numerical methods applied to the re-
maining data; the last 1× 106 points were taken as
the ω-limit set ω(b, T, A).

The ω-limit set ω̂(b, T, A) of Poincaré T -map is
taken every T/stepsize points from ω(b, T,A). The
relative error of the Poincaré map can be easily com-
puted. For example, in the ZN-case T = 4 with a
step size 0.05, 80 steps must be integrated for each
point on the Poincarè map. Therefore, the relative
error 1× 10−8 × 80 = 8× 10−7 is obtained for each
successive point of the Poincaré map.

The Lyapunov exponents are obtained by av-
eraging eigenvalues of DF (ξ1, ξ2) on each point in
ω̂b. Here, a convergent condition is imposed that the
relative error is less than 1 × 10−4. Moreover, the
first 1 × 106 steps in the numerical integration are
ignored to accelerate the convergence.

9. Conclusions

Zou and Nossek [1991] discovered a chaotic at-
tractor in a two-cell CNN with template A =
[1.2, 2, −1.2] and input b sin(2π/T ) with T = 4 and
b ∼= 4.08. This work investigates bifurcations and
chaos for a broad range of templates A = [r, p, s],
input period T > 0 and input amplitude b > 0.

The bifurcations of (1) involve five parameters;
r, p, s, T and b. The strategy used herein is to begin
with b = 0 and A satisfying (3). Section 4 studied
the existence and multiplicity problems of periodic
cycle of (1). The existence of the limit cycle Λ0(A)
is proven when (3) holds. The existence and multi-
plicity of exterior periodic cycles are studied under
further assumptions. The uniqueness problem is still
open for general A that satisfies (3). The numerical
evidence suggests that the limit cycle is unique.

The bifurcation problem is studied by examin-
ing how “typical” trajectories vary with b, T and
A. In particular, the trajectory Γ(b, T, A) and its
ω-limit set ω(b, T, A) with initial conditions at the
origin O = (0, 0), are considered. The system (1) is
considered to be chaotic, if

(i) Γ(b, T, A) has a positive Lyapunov exponent,
(ii) The Poincaré T -map ω̂(b, T, A) of ω(b, T, A)

is fractal and
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(iii) FFT of Γ(b, T, A) has a broad-band.

Section 6 presented an approach to study the
effects of the input T by examining the asymptotic
limit cycle Λ∞(T, A) with period T of Γ(b, T, A) as
b→∞. When T ≤ T ∗

0 , as defined in (67), then Λ∞
and −Λ∞ can be separated. Therefore, ω(b, T, A)
and −ω(b, T, A) are separated for large b and may
collide when b is small. If b becomes even smaller
then a chaotic attractor may develop. The onset of
chaos induced by crises ω(b, T,A) and −ω(b, T, A)
was observed for suitable T and b. These cases in-
cludes the ZN-case, A = [1.2, 2, −1.2] and T = 4.
However, (67) alone does not cause chaos.

Section 3 presented a heuristic argument to de-
termine the range of b over which maximum varia-
tion of Γ(b, T,A) may occur. b∗(T ) = c0T0(A)/T is
introduced in (31) where c0 = c0(A, T ) and c0 = 1
is a good estimate for practical purposes. In most
cases, the chaotic regions occur with c0 ∈ [0.8, 1].

After a range of interest of T and b are iden-
tified, the effect of b can be studied. The primary
mean is to compare the relative strengths of sus-
tained limit cycle Λ0(A) (without input) and the
input bu(t).

The FFT of Γ(b, T, A) is now obtained and
the ratio A(b) ≡ |aT (b)|/|a1(b)|, given in (10) of
the largest amplitude a1(b) except for T -mode to
the amplitude aT (b) of the periodic T -mode is con-
sidered. Section 5 considers A(b) � 1, i.e. Λ0(A)
dominates. ω(b, T, A) is found to be either quasi-
periodic or periodic. Conjecture 5.1, which was par-
tially proven, stated that periodic windows form a
devil’s staircase when b ∈ (b∗, b∗0) where 0 < b∗ <
b∗0. The conjecture will be proven if some continu-
ity and transversality conditions are met for the
two-dimensional Poincaré map F (ξ1, ξ2) at periodic
points. A well-known example of the devil’s stair-
case is the bifurcations of one-dimensional logistic
map Fλ(x) = λx(1 − x), λ ∈ [1, 4], where periodic
windows form a devil’s staircase.

Section 7 examins the chaos by studying the
effects of b, T and A in three subsections. When
A(b) ∼ 1, i.e. b ∼ b∗(T, A), the Lyapunov exponents
of Γ(b, T, A) and ω̂(b, T, A) are computed. In many
interesting cases, finitely many chaotic regions and
window regions interweave with each other.

Section 7.1 studies in detail the ZN-case with
varying b. Figure 18 plots typical chaotic attrac-
tors and basic periodic cycles. Different character-
istics of ω(b, T, A) in windows are considered. In
each window, a sequence of periodic-doubling is ob-

served to the left of the basic periodic cycle. A quasi-
periodic region is to the right of the basic periodic
cycle. Several outstanding questions remain to be
answered. For example,

(i) Is any fine structure present in the quasi-
periodic region of the windows?

(ii) Can any ergodic measure exist in chaotic
regions? How do they change with regions?

(iii) Does any specific relationship exist between
the chaotic regions and their neighboring
window regions?

Section 7.2 considers the effect of input period
T . The chaotic attractors, including especially the
shape of ω̂(b, T, A), depend strongly on T . In the
ZN-case, A = [1.2, 2, −1.2], ω̂(b, T, A) look like
a lady’s shoe for T ∈ [3.5, 4.5]. However, for T
smaller, say T ≤ 3, the shape changes. See Fig. 20.
Apparently, the horseshoe or the partial horseshoe
is visible in all cases. A detailed study of the effect
of input period T is being conducted.

Section 7.3 considers the fundamental role of
the template A. Figures 22 and 23 present some
preliminary and interesting results obtained by
varying templates in the antisymmetric and asym-
metric regions. Considering p = 2, the regions in
(r, −s) parameter space were investigated to locate
where chaos can occur. The chaotic parameters and
nonchaotic parameters are spread out. Chaotic pa-
rameters cluster in some specific places which are
easily identified, for example, along the antisym-
metric line, i.e. r = −s. It is of great interest to
study these chaotic bifurcations.
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