
s has
s. To
ectly
ed in
zeros
uency

guar-
void-
re, a
osed

stur-
. Fur-
em-
ining
d by

Downloaded F
Syh-Shiuh Yeh

Pau-Lo Hsu1

e-mail: plhsu@cc.nctu.edu.tw

Department of Electrical and Control
Engineering,

National Chiao Tung University,
Hsinchu, 300 Taiwan

Perfectly Matched Feedback
Control and Its Integrated Design
for Multiaxis Motion Systems
For motion systems with multiple axes, the approach of matched direct current gain
been generally adopted to improve contouring accuracy under low-speed operation
achieve high-speed and high-precision motion in modern manufacturing, a perf
matched feedback control (PMFBC) design for multiaxis motion systems is propos
this paper. By applying stable pole-zero cancellation and including complementary
for uncancelled zeros for all axes, matched dynamic responses across the whole freq
range for all axes are achieved. Thus, contouring accuracy for multiaxis systems is
anteed for the basic feedback loops. In real applications, the modeling error is una
able and the degradation and limitations of the model-based PMFBC exist. Therefo
newly designed digital disturbance observer is proposed to be included in the prop
PMFBC structure for each axis to compensate for undesirable nonlinearity and di
bances to maintain the matched dynamics among all axes for the PMFBC design
thermore, the feedforward control loops zero phase error tracking controller are
ployed to reduce tracking errors. Experimental results on a three-axis CNC mach
center indicate that both contouring accuracy and tracking accuracy are achieve
applying the present PMFBC design.@DOI: 10.1115/1.1789970#
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1 Introduction
Generally, the performance of motion systems is dominated

both tracking and contouring accuracy, with appropriate feedb
and feedforward control design for each axis. Poo et al. started
work of analyzing relations between feedback controllers and c
touring errors@1#. Later, feedforward control loops were discuss
in motion systems because they efficiently reduce the servo
and passively decrease the contouring error@2–5#. In addition to
well-designed feedback and feedforward control loops, the cr
coupled control~CCC! structure, which considers the mutual d
namic effects among all axes, was developed to reduce the
touring error by Koren@6#. Various improved CCC designs wer
then proposed@7–10#. Moreover, Lo proposed the transformatio
of the coordinates to obtain the moving basis to form a feedb
controller for three-axis motion systems@10#. Chiu and Tomizuka
@11# proposed a task-coordinated approach by considering all
as first-order loops to obtain the feedback and the feedforw
control loops. Cheng et al.@12# incorporated a zero phase err
tracking controller~ZPETC! and a time-delay disturbance estim
tion scheme to cancel disturbances and potential nonlineari
and to improve the overall system bandwidth for a single a
system. Yeh and Hsu@5,13# proposed the integrated control stru
ture including the feedback, feedforward, and CCC to achieve
best tracking and contouring precision for multiaxis systems.

Although many advanced control algorithms and structu
have been developed, the feedback controller design is still
most fundamental and crucial factor in obtaining desirable mo
accuracy. To improve contouring accuracy in general multia
motion systems, feedback controllers should be designed
achieve matched dynamic characteristics among all axes.
though the design with direct current~dc! gains matched betwee
two axes has been applied to systems under low-speed opera
such a design is not applicable to complex plants with usu
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higher-order models and under high-speed operations. In fa
matched position control design in the whole frequency rang
urgently needed for modern high-speed-high-precision manu
turing.

In this paper, the perfectly matched feedback control~PMFBC!
is developed to achieve identical frequency responses for diffe
axes by applying stable pole-zero cancellation and complemen
zeros for uncancelled zeros among axes. Moreover, the pre
model-based design of PMFBC is sensitive to external disturba
and model uncertainty in real applications. Therefore, to ens
perfectly matched dynamic characteristics among all axes of m
tiaxis motion systems, the disturbance observer~DOB! was devel-
oped to reduce effects of the undesirable influence@14–16#. How-
ever, since problems of digital implementation based on
continuous-time DOB design exist, the digital disturbance o
server~DDOB! structure is thus preferred. Since the discrete-ti
plant models may be nonminimum phase@17,18#, a new design
approach of DDOB is proposed in this paper for digital design a
implementation. The filterQ, which contains three parts to dea
with nonminimum phase nominal plants, includes: the stable p
zero cancellations, all-pass filter, and a general low-pass filte
the DDOB design.

By applying the DDOB to the present PMFBC, the syste
models thus become more reliable and robust. Moreover, feed
ward control for all axes is then included to further improve trac
ing accuracy. In the same time, the resultant contouring per
mance is significantly improved. Experimental results on a C
machining center show that the perfectly matched feedback c
trol achieves the desired matched dynamic properties amon
axes. Moreover, the DDOB which significantly reduces the ex
nal disturbance effect is concluded to be required for impleme
ing the PMFBC in practice.

2 PMFBC Design
To achieve matched dynamic responses in high frequency ra

for high-speed operations, theoretical derivation and design p
ciples of PMFBC is introduced here. Consider theN-axis motion
control system, as shown in Fig. 1. The corresponding nomen
ture is as follows:

02.
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r 5@r 1 r 2 ¯ r n#T, r i , i 51,̄ ,n: axial reference position com
mand

e5@e1 e2 ¯ en#T, ei , i 51,̄ ,n: axial position error
u5@u1 u2 ¯ un#T, ui , i 51,̄ ,n: axial driving signal
a5@a1 a2 ¯ an#T, ai , i 51,̄ ,n: actual axial position
Kp5diag$Kp1,Kp2,¯,Kpn%, Kpi , i 51,̄ ,n: position feedback

controller of each axis
P5diag$P1,P2,¯,Pn%, Pi , i 51,̄ ,n: controlled plant of each

axis
T5diag$T1,T2,¯,Tn%, Ti , i 51,̄ ,n: the position feedback

system transfer function of each axis
The ith controlled axisPi(z

21) of the position loop is parti-
tioned as follows:

Pi~z21!5Vi~z21!•
1

12z21
5

z21
•Bi

na~z21!•Bi
nu~z21!

Ai
n~z21!

•

1

12z21

where
Vi(z

21): the velocity loop
Ai

n(z21): polynomials of the velocity loop with all poles
Bi

na(z21): polynomials of the velocity loop with acceptab
stable zeros

Bi
nu(z21): polynomials of the velocity loop with unacceptab

zeros~unstable and nearly unstable zeros!
The position loop gainLi(z

21) of each axis is obtained as

Fig. 1 The position feedback control systems
r

i
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Li~z21!5Kpi~z21!•Pi~z21! (1)

As shown in Fig. 1 and Eq.~1!, matching frequency responses
the closed-loop position systemTi(z

21) implies that all the open-
loop gainsLi(z

21) are identical. To achieve matched frequen
responses among all axes, the feedback controllerKpi(z

21) cor-
responding to each axis is designed as

Kpi~z21!5a~z21!•
Ai

n~z21!

Bi
na~z21!

•)
j 51
j Þ i

n

Bj
nu~z21! (2)

Thus, the open-loop gainLi(z
21) becomes

Li~z21!5z21
•a~z21!•S )

j 51

n

Bj
nu~z21!D • 1

12z21
(3)

wherea(z21) is the controller with a design freedom embedd
in the position feedback controllerKpi(z

21) to achieve the desired

stability and performance of the systems.P j 51
j Þ i

n
Bj

nu(z21) is con-

volution of complementary zeros. By applying Eq.~3!, the posi-
tion feedback system transfer function of each axisTi(z

21) be-
comes

Ti~z21!5
Li~z21!

11Li~z21!
(4)

Equation~4! shows that the transfer functions of all axesTi(z
21),

i 51,̄ ,n are identical and thus the dynamic characterist
among all axes are perfectly matched. Although the matched
namic characteristics among all axes can be achieved by app
the present PMFBC as shown in Eq.~2!, the order of controllers is
unavoidably enlarged. In practice, it is preferable to reduce
order of controllers by adopting a lower-order model.

2.1 Design Example. To illustrate the proposed approac
for perfectly matched design, feedback controllers are designe
applying the following velocity plants of a CNC machining cent
modeled as
Vx~z21!5
20.0056z2110.0421z2210.1213z2310.0922z24

120.1087z2120.3286z2220.1708z2320.1256z2410.0228z25
(5)

Vy~z21!5
20.0015z2110.0445z2210.1251z2310.0586z24

120.236z2120.3909z2220.1736z2320.1012z2410.1616z25
(6)
rder

is-
re 3

to
. 4
Three feedback controllers are designed as follows:
Case ~i! mismatched design~mismatched!. The proportional

position controllers are designed to achieve a 0.707 damping
for each axis

Kpx50.07

Kpy50.1

Case~ii ! dc gain matched design~matched dc gain!. Feedback
controllers are designed so that the position feedback loops
matched in the lower frequency range

Kpx50.07

Kpy50.0694

Case~iii ! PMFBC. Feedback controllers are designed by apply
the proposed method

a52.231025
atio

are

ng

Kpx5

2.23102526.74231024z2121.38331023z22

13.74431024z2315.8831024z2413.32331024z25

11.66631024z2623.30131025z27

25.61231023

Kpy5

2.23102521.70231024z2124.4531024z22

21.88631024z2312.97631024z2412.44131024z25

18.42131025z2624.02131025z2725.84031025z28

21.4863102328.90431024z21

wherea is simply chosen here to assure a suitable numerical o
for the controlled axes. Frequency responses of cases~i!–~iii ! are
shown in Figs. 2–4, respectively. As shown in Fig. 2, the m
matched design yields the worst contouring performance. Figu
shows that the matched dc-gain design in case~ii ! achieves similar
dynamic properties in the low frequency range corresponding
the slow motion speed. Moreover, PMFBC as shown in Fig
Transactions of the ASME
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achieves identical frequency responses among all axes and
provides the best contouring accuracy in all speed operations

2.2 Model Reduction. Although motion precision can be
improved by applying the proposed PMFBC controllers, the p
posed design algorithms also generally lead to higher-order
trollers. In practice, model reduction methods can be applied
the redundant modes of controlled plants. In this paper, we

Fig. 2 Frequency responses of mismatched design, case „i…
„solid: X axis; dashed: Y axis …

Fig. 3 Frequency responses of matched dc-gain design, case
„ii … „solid: X axis; dashed: Y axis …

Fig. 4 Frequency responses of PMFBC, case „iii … „solid: X
axis; dashed: Y axis …
Journal of Dynamic Systems, Measurement, and Control
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balanced realization to remove the least observable and con
lable modes@19#. We thereby reduce the model of the veloci
plant from fifth order to third order

Vx~z21!5
20.00437948z2110.04225802z2210.09618655z23

120.88944678z2110.23980063z2220.19529895z23

(7)

Vy~z21!5
20.00141126z2110.04402946z2210.09340968z23

120.83356582z2120.04295967z2210.03239339z23

(8)

The perfectly matched feedback controllers are designed as
lows:

Case~iv! PMFBC with reduced-order plant model. Practic
feedback controllers are designed by applying the propo
method and the reduced order model

a52.231025

Kpx

5

2.23102527.059431024z2128.403831024z22

11.126231023z2322.151331024z2412.843831024z25

24.379431023

Kpy

5

2.23102522.306131024z2123.071831024z22

14.125931024z2311.388131025z2421.565231025z25

21.411231023

The frequency responses of the original and the reduced-o
plant in theX axis are shown in Fig. 5. Results indicate that t
approximation is satisfactory up to 1000 rad/s. Also, as shown
Fig. 6, the frequency responses of the biaxial system are virtu
matched up to the same frequency of around 1000 rad/s.

3 DDOB Design
Theoretically, the perfectly matched feedback control provid

contouring accuracy because of the matched dynamic prope
among all axes. In real applications, motion precision is ea
degraded by external disturbances and model uncertainty.
though DOB was developed to degrade the external disturba
effects, its implementation on computer-controlled processe
not direct and approximation is required. Moreover, availa
DDOB @14–16# cannot be directly applied to nonminimum pha

Fig. 5 Frequency responses of the original „solid … and the re-
duced order „dashed … plant
SEPTEMBER 2004, Vol. 126 Õ 549
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plant models which may exist in motion systems with discre
time models@17,18#. Therefore, a newly developed DDOB with
simple finite impulse response disturbance estimator which ca
applied to nonminimum phase motion systems is proposed in
paper, As the present PMFBC is implemented in real applicatio
the DDOB is required to compensate for the undesired nonlie
ties, model uncertainties, and disturbances to maintain
matched dynamic responses for all axes.

Consider the new DDOB system as shown in Fig. 7, where
u, e, n: reference input, driving force and velocity output

controlled plant, respectively
d, d̂: external disturbance and estimated disturbance, res

tively
d̂: feedback signal
jn : measured noise
N(z21), D(z21): numerator and denominator of plant, respe

tively
Nd(z21): structure of external disturbance
Nn(z21), Dn(z21): numerator and denominator of nomin

plant, respectively
Q(z21): a low-pass filter
The velocity response of the controlled plant is derived as

Fig. 6 Frequency responses of the PMFBC with the reduced-
order plants

Fig. 7 The structure of the newly developed DDOB
550 Õ Vol. 126, SEPTEMBER 2004
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n5
N

D~12NnQ!1NDnQ
u1

Nd~12NnQ!

D~12NnQ!1NDnQ
d

2
NQDn

D~12NnQ!1NDnQ
jn

5
N

D

1

~12NnQ!1
N

D
DnQ

u1
Nd

D

~12NnQ!

~12NnQ!1
N

D
DnQ

d

2
N

D

DnQ

~12NnQ!1
N

D
DnQ

jn (9)

If the filter Q is designed such thatNn(z21)Q(z21)51, Eq. ~9!
becomes

n5
Nn

Dn
u2jn

On the other hand, if the filterQ is designed such tha
Nn(z21)Q(z21)50, Eq. ~9! becomes

n5
N

D
u1

Nd

D
d

Therefore, the filterQ is designed as

H Nn~z21!Q~z21!51, in the lower frequency region

Nn~z21!Q~z21!50, in the higher frequency region
(10)

to degrade external disturbances and reject measurement n
The design of the filterQ depends greatly on the nominal numer
tor Nn(z21). It contains the following three steps:~1! stable pole-
zero cancellations,~2! an all-pass filter, and~3! an embedded low-
pass filter.

To obtain the stable pole-zero cancellation, the nominal
meratorNn(z21) is separated

Nn~z21!5Nn
a~z21!Nn

u~z21!

where
Nn

a(z21): an acceptable polynomial with stable roots.
Nn

u(z21): an unacceptable polynomial with unstable and nea
unstable roots.

Suppose the unacceptable polynomialNn
u(z21) is represented

as

Nn
u~z21!5b1z211b2z221¯bmz2m

5z2m~b1zm211b2zm221¯bm!5z2m
•N̂n

u~z!

Then, design of the filterQ is

Q~z21!5
1

Nn
a~z21!•@N̂n

u~z!#*
•LPF~z21! (11)

where@•#* denotes the complex conjugate operator and

@N̂n
u~z!#* 5~b1z2~m21!1b2z2~m22!1¯bm! (12)
Transactions of the ASME
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Equation~12! is stable and realizable, and$Nn
u(z21)/@N̂n

u(z)#* %
forms a stable all-pass filter. The low-pass filter LPF(z21) can be
designed such that

Q~z21!•Nn~z21!5
Nn

u~z21!

@N̂n
u~z!#*

•LPF~z21!

possesses the desired frequency response as given in Eq.~10!.
The stability of the DDOB, as shown in Fig. 7, can be prov

by the following lemma

3.1 Lemma. Define the equivalent plantR as

R5Dn•
N

D
2Nn

and the equivalent feedback systemS as shown in Fig. 8. Then
the DDOB as shown in Fig. 7 is internally stable if the equivale
feedback systemS is internally stable.

Proof:
Since
~1! systemS is internally stable implies thatQ(z21), R(z21),

and @1/11Q(z21)R(z21)# are all stable, and
~2! all subsystems of DDOB,$Nd ,N,1/D,Nn ,Dn ,Q%, are all

stable, the DDOB is thus internally stable.
According to the lemma, system stability directly depends

the filterQ and thus the low-pass filter LPF(z21) in filter Q must
be designed to achieve both desired stability and frequency
sponses. However, as shown in Eq.~9!, if

Nn~z21!5N~z21! and Dn~z21!5D~z21!,

the velocity response is

n5
N

D
u1

Nd

D

~12NQ!

1
d2

NQ

1
jn ,

and the stability is dominated by the denominatorD(z21) and the
filter Q(z21). It implies that the design of the filterQ(z21) does
not affect the stability of the DDOB if the filterQ(z21) is stable.
Furthermore, the equivalent plantR in Fig. 8 also shows that the
design of filter Q may be invalid when the nominal plant mod
Nn /Dn is significantly different from the real plantN/D.

3.2 Design Example. The nominal plantNn /Dn is chosen
to be the reduced-order model of the velocity loop as shown
Eqs.~7!–~8!. Therefore, the DDOB is designed as

Case ~v! perfectly matched feedback control design w
DDOB ~PMFBC1DDOB!. To achieve stable system he filterQ is
designed as

Qx~z21!5

0.0049719410.024859747z21

10.04971949z2210.04971949z23

10.02485974z2410.00497194z25

122.94719898z2113.23989221z22

21.20983151z2320.4541163z2410.52748002z25

20.14373367z2610.00883831z27

Fig. 8 The equivalent feedback loop system
Journal of Dynamic Systems, Measurement, and Control
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Qy~z21!5

0.0051197510.02559877z2110.05119755z22

10.05119755z2310.02559877z2410.00511975z25

122.91517429z2113.16186245z2221.1599981z23

20.41974012z2410.46329684z25

20.11089379z2610.00293275z27

Figure 9 shows the frequency response ofQ(z21)Nn(z21) for the
X axis with a bandwidth of 500 rad/s which is suitable for t
velocity loop around 100 Hz bandwidth.

4 The Feedforward Control Design
Although perfectly matched dynamic characteristics among

axes can be achieved by applying the PMFBC and the exte
disturbance can be significantly reduced by applying the DDOB
achieve improved the contouring accuracy, the servo lag ef
should be minimized to improve the tracking accuracy of mu
axis motion systems. Therefore, the common feedforward con
ler for motion systems, the ZPETC proposed by Tomizuka can
suitably employed@2#. Consider the control systems with two de
grees of freedom as shown in Fig. 10. The corresponding nom
clature is listed later

r f5@r f 1 r f 2 ¯ r f n#T, r f i , i 51,̄ ,n: the filtered axial refer-
ence position command

F5diag$F1,F2,¯,Fn%, Fi , i 51,̄ ,n: the ZPETC designed
feedforward control for each axis

Suppose the position feedback loop transfer functionTi(z
21) is

represented as

Ti~z21!5
ai~z21!

r f i~z21!
5

z2diBi~z21!

Ai~z21!
5

z2diBa
i ~z21!Bu

i ~z21!

Ai~z21!
(13)

where
z2di:di delay of ith axis position feedback loop
Ai(z

21): denominator ofith axis position feedback loop
Bi(z

21): numerator ofith axis position feedback loop

Fig. 9 The designed frequency response of Q„zÀ1
…Nn„z

À1
…

Fig. 10 The two degrees-of-freedom control system
SEPTEMBER 2004, Vol. 126 Õ 551
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Ba
i (z21): polynomials with acceptable zeros

Bu
i (z21): polynomials with unacceptable zeros

Note that the optimal ZPETC@5# further improves tracking per
formance. The designed feedforward controllerFi is in the fol-
lowing form:

Fi~z21!5S (
k50

N2P

ak•~zk1z2k!D •S Bu
i ~z!

Bu
i ~1!2D •S zdiAi~z21!

Ba
i ~z21!

D
(14)

Design Example. The hybrid structure which combines~a!
perfectly matched feedback control,~b! the optimal ZPETC, and
~c! the DDOB, is designed to improve both tracking and conto
ing accuracy in multi-axis motion systems. Because of model
certainty in the higher frequency region, the bandwidth is cho
around 500 rad/s in design.

Case~vi! hybrid structure~hybrid!. The feedforward controller
is designed with optimal ZPETC@5# given as

F~z21!5

0.99518942z726.40810113z6118.04061216z5

23.28244714z4211.2545723z311.29958907z2

11.11190473z110.2991902410.27312898z21

20.07579595z2220.00750972z2310.00980315z24

20.00101341z2510.00002189z26

1

Figure 11 shows the frequency response of feedforward c
trolled system. The figure indicates that unity-gain region fa
within @0, 785 rad/s#. The hybrid control is obtained by adding th
feedforward controllerF to the PMFBC1DDOB. Because the
DDOB is designed under the frequency condition as shown in
~10!, the design of the optimal ZPETC depends heavily on
bandwidth ofQ(z21)Nn(z21). With the decrease in uncertaint
obtained by applying the feedback control, the optimal ZPE
can be designed to make the unity gain region cover the ba
width of Q(z21)Nn(z21) as shown in Figs. 9 and 11.

Basically, the proposed design by integrating PMFBC, DDO
and ZPETC are independent. The feedback loop of PMFBC fo
axes should be designed in the first step. Then, the DDOB
designed for each axis so that the matched dynamic respons
PMFBC can be well maintained. Finally, the feedforward cont
ZPETC is directly included. Thus, not only both contouring a

Fig. 11 The frequency response of the feedforward controlled
system
552 Õ Vol. 126, SEPTEMBER 2004
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tracking accuracy can be improved by applying PMFBC a
ZPETC, respectively, the proposed hybrid control structure is a
robust because of the inclusion of DDOB.

5 Experimental Results

5.1 Experimental Setup. The experimental setup of th
DYNA 1007 CNC machining center is the same as in Ref.@20#. A
PC-486 generated the main control commands and recorded
principle signals including: the input command calculation for d
ferent contours, the implementation of controller, and the con

Fig. 12 Experimental results for design with mismatched
gains case „i…

Fig. 13 Experimental results for matched dc-gain „case „ii …,
dashed … and PMFBC „case „iii …, solid …
Transactions of the ASME
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Fig. 14 Experimental results for PMFBC „case „iv …, solid … and
PMFBC¿DDOB „case „v…, dashed …
Table 1 Experimental results

Journal of Dynamic Systems, Measurement, and Control
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Fig. 15 Experimental results for PMFBC ¿DDOB¿ZPETC
„case „vi …, solid …
with a high-speed circular com
Table 2 Experimental results with a low-speed circular com
SEPTEMBER 2004, Vol. 126 Õ 553
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inputs to the velocity loop. The machine feed system is driven
scanning electron microscopy alternating current servo mot
The PC-486 interface utilized an AD/DA card to send and rece
the control inputs and position outputs respectively at a samp
period of 1 ms.

A circular contour command with a radius of 30 mm and
linear contour command with a 45 deg incline angle were app
with a high speed of 5 m/min and a low speed of 600 mm/m
Note that 5 m/min is the highest speed of the DYNA CNC m
chining center, and that speeds of around 600 mm/min are c
mon for fine machining process.

5.2 Results and Discussions.Experimental results for the
different control structures under different speed operations as
554 Õ Vol. 126, SEPTEMBER 2004
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command 5 and 0.6 m/min are shown in Figs. 12–15 and s
marized in Tables 1 and 2, respectively. For linear commands w
different speeds, tracking errors are shown in Fig. 16 and Tabl
and 4. All experimental results indicate that both the match
dc-gains design and PMFBC design significantly reduces cont
ing error compared with the mismatched design as shown in F
12 and 13. Furthermore, results for PMFBC and its integrat
with the DDOB and the ZPETC are normalized to the results
the matched dc-gains design as summarized in Figs. 17 and
The merits of the proposed control structure by integrating P
FBC, DDOB, and ZPETC can be clearly indicated as in Tab
1–4 as follows:

1. The proposed PMFBC design results in matched dyna
Fig. 16 Experimental results with linear commands „a… high speed, „b… low
speed „solid: PMFBC, dashed: matched dc-gain, dashdot: PMFBC ¿DDOB
¿ZPETC…

Table 3 Experimental results with a high-speed linear com

Table 4 Experimental results with a low-speed linear com
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a

a

s
t

atly
the

es

or-
the

er
responses for all axes within a higher frequency range comp
to matched dc-gain control. Therefore, experimental results
PMFBC also lead to meaningful reduction of contouring accur
in linear motion especially in the case of high-speed operation
in Tables 3 and 4~case iv!.

2. Note that the application of PMFBC~case iv! does not ren-
der satisfactory improvement in circular contouring as in Table
and 2. Figure 13 shows that the nonlinear slip-stick phenome
is still significant, because PMFBC is mainly a linear model-ba
control design. By introducing the DDOB to compensate for
undesirable properties, results as shown in Tables 1 and 2~case v!
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and Fig. 14 indicate that the contouring accuracy is then gre
improved, especially in the case of low-speed operation where
friction becomes more dominant.

3. Matched dc-gain control and PMFBC generally improv
the contouring accuracy as in Tables 1–4~case ii!. However, their
tracking accuracy is merely improved. By including the feedf
ward control ZPETC in the proposed PMFBC structure, both
tracking error and contouring error are thus further reduced~case
vi!. Note that applications of the ZPETC only does not rend
improvement in contouring accuracy@13#.
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6 Conclusion
In practice, mismatched frequency responses among axes

ously degrade contouring performance, especially under h
speed operations. The proposed PMFBC design leads to perf
matched frequency responses among all axes and thereby ach
highly accurate contouring. Moreover, because the model-ba
PMFBC design is sensitive to nonlinearity, external disturbanc
and plant uncertainty, a new DDOB was developed in this pa
for nonminimum phase discrete-time systems. Furthermore,
have shown that the feedforward controller ZPETC can be
rectly applied to further reduce the tracking error. The feasibi
PTEMBER 2004

stems.asmedigitalcollection.asme.org/ on 04/27/201
seri-
gh-
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ieves
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ity

of the present design has also been proven by using a redu
order model. Experimental results on a CNC machining cen
show that the proposed control structure significantly impro
both contouring and tracking performance for precise multi-a
motion systems under high-speed operations.

Acknowledgment
This work was supported by the National Science Council, R

public of China, under Contract No. NSC 89-2212-E-009-018
Transactions of the ASME

4 Terms of Use: http://asme.org/terms



i

t

i

o

e
J.

ith
nt,’’

ted
ol.,

n-
C,

or

for-
s.

ys-

s,’’

ith

tor
cs,

Downloaded F
References
@1# Poo, A., Bollinger, J. G., and Younkin, W., 1972, ‘‘Dynamic Error in Typ

Contouring Systems,’’ IEEE Trans. Ind. Appl.,8~4!, pp. 477–484.
@2# Tomizuka, M., 1987, ‘‘Zero Phase Error Tracking Algorithm for Digital Con

trol,’’ ASME J. Dyn. Syst., Meas., Control,109„1…, pp. 65–68.
@3# Tsao, T. C., and Tomizuka, M., 1994, ‘‘Robust Adaptive and Repetitive Dig

Tracking Control and Application to A Hydraulic Servo for Noncircular Ma
chining,’’ ASME J. Dyn. Syst., Meas., Control,116~1!, pp. 24–32.

@4# Xia, J. Z., and Menq, C. H., 1995, ‘‘Precision Tracking Control of Nonmin
mum Phase Systems With Zero Phase Error,’’ Int. J. Control,61~4!, pp. 791–
807.

@5# Yeh, S. S., and Hsu, P. L., 1999, ‘‘An Optimal and Adaptive Design of
Feedforward Motion Controller,’’ IEEE/ASME Trans. Mechatronics,4~4!, pp.
428–439.

@6# Koren, Y., 1980, ‘‘Cross-Coupled Biaxial Computer for Manufacturing Sy
tems,’’ ASME J. Dyn. Syst., Meas., Control,102~4!, pp. 265–272.

@7# Kulkarni, P. K., and Srinivasan, K., 1990, ‘‘Cross-Coupled Control of Biax
Feed Drive Servomechaniasms,’’ ASME J. Dyn. Syst., Meas., Control,112~2!,
pp. 225–232.

@8# Chuang, H. Y., and Liu, C. H., 1991, ‘‘Cross-Coupled Adaptive Feedrate C
trol for Multiaxis Machine Tools,’’ASME Trans. J. Dyn. Syst., Meas., Contro
113~3!, pp. 451–457.

@9# Jee, S., and Koren, Y., 1995, ‘‘A Self-Organizing Fuzzy Logic Control f
Friction Compensation in Feed Drives,’’ Proceedings 1995 ACC, Seattle,
205–209.

@10# Lo, C. C., 1998, ‘‘Three-Axis Contouring Control Based on a Trajectory C
ordinate Basis,’’ JSME Int. J., Ser. C,41~2!, pp. 242–247.
Journal of Dynamic Systems, Measurement, and Control

rom: http://dynamicsystems.asmedigitalcollection.asme.org/ on 04/27/201
e

-

tal
-

i-

he

s-

al

on-
l,

r
pp.

o-

@11# Chiu, G. T. C., and Tomizuka, M., 1995, ‘‘Contouring Control of Machin
Tool Feed Drive Systems: A Task Coordinate Frame Approach,’’ ASME
Dyn. Syst., Meas., Control,117~1!, pp. 503–510.

@12# Cheng, C. C., Chen, C. Y., and Chiu, G. T. C., 2002, ‘‘Predictive Control W
Enhanced Robustness for Precision Positioning in Frictional Environme
IEEE/ASME Trans. Mechatronics,7~3!, pp. 385–392.

@13# Yeh, S. S., and Hsu, P. L., 1999, ‘‘Analysis and Design of the Integra
Controller for Precise Motion Systems,’’ IEEE Trans. Control Syst. Techn
7~6!, pp. 706–717.

@14# Endo, S., Tomizuka, M., and Hori, Y., 1993, ‘‘Robust Digital Tracking Co
troller Design for High-Speed Positioning Systems,’’ Proceedings 1993 AC
San Francisco, pp. 2494–2498.

@15# Lee, H. S., and Tomizuka, M., 1996, ‘‘Robust Motion Controller Design f
High-Accuracy Positioning Systems,’’ IEEE Trans. Ind. Electron.,43~1!, pp.
48–55.

@16# Kempf, C. J., and Kobayashi, S., 1999, ‘‘Disturbance Observer and Feed
ward Design for a High-Speed Direct-Drive Positioning Table,’’ IEEE Tran
Control Syst. Technol.,7~5!, pp. 513–526.

@17# Astrom, K. J., Hagander, P., and Sternby, J., 1984, ‘‘Zeros of Sampled S
tems,’’ Automatica,20~1!, pp. 31–38.

@18# Clarke, D. W., 1984, ‘‘Self Tuning Control of Nonminimum Phase System
Automatica,20~5!, pp. 501–517.

@19# Samar, R., Postlethwaite, I., and Gu, D. W., 1995, ‘‘Model Reduction W
Balanced Realization,’’ Int. J. Control,62~1!, pp. 33–64.

@20# Yeh, S. S., and Hsu, P. L., 1999, ‘‘Estimation of the Contouring Error Vec
for the Cross-Coupled Control Design,’’ IEEE/ASME Trans. Mechatroni
7~1!, pp. 44–51.
SEPTEMBER 2004, Vol. 126 Õ 557

4 Terms of Use: http://asme.org/terms


