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Abstract

A Vogan diagram is a Dynkin diagram with an involution, and the vertices fixed by the involution
may be painted. They represent real simple Lie algebras, and two diagrams are said to be equivalent
if they represent the same Lie algebra. In this article we classify the equivalence classes of all Vogan
diagrams. In doing so, we find that the underlying Dynkin diagrams have certain properties in graph
painting. We show that this combinatorial property provides an easy classification for most of the
simply-laced Dynkin diagrams.
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1. Introduction

A Vogan diagram [4] is a Dynkin diagram with two extra data: There is an automorp-
hismé on the diagram witi#2 = 1, and the vertices fixed Wymay be painted or unpainted.
Each Vogan diagram corresponds to a real simple Lie algebra. Two diagrams are said to be
equivalent if they represent the same Lie algebra. We are interested in equivalence classes
of the Vogan diagrams. In this respect, we can ignore once and for all the diagrams with no
painted vertex, as they represent Lie algebras without noncompact imaginary root and so
cannot be equivalent to any diagram with painted vertices. Then the Borel-de Siebenthal
theorem [3] says that every Vogan diagram is equivalent to one with a single painted vertex.
However, it does not give the explicit equivalence. We shall develop algorithms which
convert a diagram to an equivalent one with fewer painted vertices. As a result, not only we
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have reproved the Borel-de Siebenthal theorem, we give the equivalence classes explicitly.
We shall label the vertices of the underlying Dynkin diagram with 1, n. Then the Vogan
diagram with vertices, . . ., iy painted, whereé; < - -- < iy is denoted by(is, . .., ix). For
diagrams withp = 1, the equivalence classes are listed in Table 1.

The left column labels the vertices with 2, 3, ... and so on. The middle column lists
the diagrams with single painted vertex, for example, (2) corresponds to the diagram with
vertex 2 painted. The right column provides all the Vogan diagrams in their equivalence
classes. For example, if we considdr, 3,4) in As, then the formulaiz — io + i1 =
4 — 3+ 1=2 says that it is equivalent to the diagram with vertex 2 painted.

It turns out thatE,, are the most complicated ones. The following methods explain how
to use Table 1 for Vogan diagrams Bf :

(1) Diagrams in the following special cases:

(2,4),(1,3,4),(3,5), (2,4, %), (1,3,4,%), (3,5, %),

(3,4,6),(3,4,5,6),(3,4,6,%),(3,4,5,6,%) in EgandEy. (1.1
Table 1
Dynkin diagram Single paintegertex  Equivalent diagrams
Ay O— =0 V), (i1 i), Xy (“DEPip =N, n+1-N
I<KN<(n+1)/2
By = o0 (M), 1SN <n (i1, ik),zl;:l(fl)k_n”ipzN
(n) (TR i, n)
C, 0— -+ —O0=%0 ) o X k—p-
1 n-1n  (N), 1<N<n/2 i1, ..., ix), ix <n-—1, Zp:l(—l) ip=N,n—N

W), LSN<R/2  (igeesin), i <n—2, S (-1f iy =N.n—N
Dy, ?7 % (i1y..., ir,n—1n), Zl;:l(fl)k_pipszl, n—N-1
n (n) (n—=1, (i1,....ig,n=1), (i1, ... ik, n)

1) (5),(2,9), (1,3,4), (1, %), (2,%), (4,%), (5, %), (3,5, %)

(TR iy J1s - Jis8), L#1,

2—Tandl +sis odd

J= =4—1 and/ + s is even
1-1.

4+ 1 andl + s is odd
1+1.

Eg o—o—i—o—o () (2), (3), (4),(3,5), (3,%), (2,4,%), (1,3,4,%)

(TR iy J1o s Jis$)s L#1,
2— 1 andl +sis even
J= =4Iand1+s is odd
3-1.
4+ 1 andl + s is even
3+1.

(continued on next paye
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Table 1 ¢€ontinued

Dynkin diagram Single paintedertex Equivalent diagrams
(1) (2), (3), (5),(3,5), (3,4,6), (3,4,5,6), (4, %), (6,%), (2,4, %),
(1,3,4, %)

(1 eeviks J1o-oos JisS), L#L
J— 1-1,3-1, andl +sis odd
“|2-1,4—1, andI +sis even

(i1, ik» J1,9)s

. _J1+1,24+1,3+1,5+1, and] +5is even
=14+ 1and/ +5is odd

E7 (lD—O—i—O—O—O (6) (2,4), (1,3,4), (1, %), (2,%), (5 %), (3,5,%), (3,4, 6, %),

(3,4,5,6, %)

Qs evesily J1oooos J158)s L# L
J= 1-17andl +sis even
" |2—1andl +sis odd
(i1y -0k, j1,8), j1=1+1, 2+ 1, 5+ 1, andI + s is odd
() (4), 3%

1o siks J1oeeos i S)s L #1L,
J— 3— 1 andl +s is even
“|4—1andl +sis odd

(i1, ik» J1,9)s
. )3+ TIandl +sisodd
J1= 144 1andl +sis even

@) (2, 3),(6), (L, %), (2,%), (5,%), (6,%)

(1 eeviks J1o-oos JisS), L #L
1-1,5—1, and/ +sis even
J:{3Iand1+sisodd
2—1,6-1.

(1,5 ik, J1,8),
1+1,5+1, andl +sisodd
j1= (3+I andl + s is even
2+1,6+1.

E 1), (4), (5).(3. %), (4, %), (7.
87 2 3 2 5 6 7 ) (1), (4), (5),(3, %), (4, %), (7,%)

(1 eeesiles J1o oo J158), T # L,
1-1,5—1, andI +sis odd
J={3—land1+siseven
4—1.

(1, .- ik, J1,8),
1+1,5+1, andI + s is even
j1= {34—1 and/ + s is odd
441.

(continued on next pagye
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Table 1 ¢€ontinued

Dynkin diagram Single paintedertex Equivalent diagrams

Fa ?_g:;%_a ) (1:1 ----- l:k), {1:1 ----- l:k}ﬂ{lv 2} #£0
4 (i1, ---, i), {its-..» iK)N{1,2=9

Ga T 9 &) 2.1.2)

Obviously we disregard the second row of (1.1)Ag because there is no vertex 6.
Their equivalence classes can be found directly in Table 1.

(2) Diagrams notin (1.1):
Write it in the form

1y e e lks Ay vy JI,S), 1.2

where 1<ip <<y <3< j1<--- < ji <n—1, ands is eitherx or empty
depending on whetheris painted or not. In this case, let

k
I= Z(—l)k_”ip (I =0ifnoi appears
p=1

1
J=>(=1"?j, (J=0ifno appears (1.3)
p=1

In computing the sign of + s, we make the convention that= x is odd ands = @ is
even. Then find the equivalence class in Table 1.

Note that method (2) cannot be used againstdiagrams in (1.1), because that would
lead to the wrong equivalence classes. The significance of (1.1) will be explained in
Proposition 3.2.

For example, considéd, 2, 3,5, ) in E7, which is notin (1.1). We see that 1,

I=iz—ip+i1=3-2+1=2 and J=j1=5=3+1.

Heres =%, and/ + s = 2+ x is odd. By Table 1(1, 2, 3,5, %) ~ (%) in E7.

We shall prove Table 1, for the classical diagrams in Section 2, and the exceptional
diagrams in Section 3. We shall only protee equivalence of each grouping in Table 1.
We need not prove inequivalence of different groupings, since this is done in [4]. For
instance [4, p. 355] says that iy, (1) issu(1, 4), and (2) issu(2, 3), so (1) and (2) are not
equivalent.

Next we consider the Vogan diagrams with nontrivial involutiénglere6 imposes a
symmetry requirement on the underlying Dynkin diagrams, and the only vertices fixed by
6 may be painted. Therefore, such Vogan diagrams are limited. They are listed in Table 2,
together with their equivalence classes, whese'indicates the two-element-orbits 6f
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Table 2
Dynkin diagram Single paintedertex Equivalent diagrams
n
A e
"ot ] ) (n+1)/2
n odd D
1
n—1
I G1,..., ix), ik <n—2,
D, O— - N), N<(n—1)/2
"1 n—2 ) =D/ Z’;Zl(—l)k—l’ip =N, n—-N-1
n
4 5
g o—a | ] *) @. 3%
2 1

Once again, we ignore the ones without painted vertex, which are obviously not equivalent
to any other diagram.

We shall prove Table 2 in Section 4. Tab 1 and 2 confirm the Borel-de Siebenthal
theorem. Their proofs use some algorithimig] (see (2.1)) which reduce the number of
painted vertices to one. In Section 5, we show that these algorithms lead to a necessary
condition for a graph to be Dynkin (Corofla5.2). We shall see that this necessary
condition is almost sufficient, thereby providing a very easy classification for almost all
simply-laced Dynkin diagrams.

2. Classical diagrams

In this section we consider Vogan diagrams of typesB, C, D in Table 1, with
6 = 1. We label their vertices with,1..,n as in Table 1. A Vogan diagram with painted
verticesiy, ..., ig, where 1< iy < --- < iy < n, is denoted by(iy, ..., ix). Suppose that
i €{i1,..., i}, SO thati is a painted vertex. We introduce an operatiji] on the Vogan
diagram as follows. Lef[i] act on the root system by reflection corresponding to the
noncompact simple roét As a result, it leads an equivalent Vogan diagram. The effect of
Fi] on the Vogan diagram is as follows (developed in [1], see also [2, p. 89]):

e The colors ofi and all vertices not adjacenti@emain unchanged.
o If j is joined toi by a double edge anglis long, the color ofj
Flil: remains unchanged. (2.1)
e Apart from the above exceptions, exge the colors of all vertices
adjacentta.

For instance, if we apply*[4] to (1, 3,4, 7), then we reverse the colors of 8and get
(1,4,5,7). Thus(1, 3,4, 7) is equivalenttql, 4,5, 7).

Using the operatiorF[i], the next lemma shows that a pair of painted vertices can be
shifted leftward or rightward.
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Lemma?2.l. Leti; <--- < ig.

@) (1,...,0) ~ 1,0y ip—1,0r —C,lrt1— C,iry2,...,0k) Whenever,_1 <i, —c.
(b) G1,..-sig) ~ (i1, ey ip—1,ip+C,ipp1+Cyiry2, ..., i) Whenevel, 1+ c < ipy2. We
requirei,+1+c<n—1in C, andi,11+c<n—2in D,.

Proof. We now prove (a). Suppose we want to mayei, 1 leftward ¢ steps, where
i,—1 < i, —c. It is equivalent to moving them 1 step fortimes, namely it suffices to
show that

(ils "'1ik) N(l‘lv"'si}"*lv ir - 11 ir+l_ 11 ir+2: "'1ik)' (22)

By applying F[i, + 1], F[ir + 2], ..., Fli;+1 — 1] consecutively to(iy, ..., i), we
get (2.2), and (a) follows.

The proof of (b) is similar. The restrictions @, D, are added becauggn — 1] does
not change the color of in C,,, andF[n — 2] changes the colors af— 1,nin D,. O

For example, in(1, 5, 7,9), we can move the pair 5, 7 leftward three steps and get
(1,5,7,9) ~ (1,2,4,9). The following lemma provides a way to reduce the number of
painted vertices.

Lemma2.2.In A, B, (i1, ...,ix) ~ (i2 —i1,i3,...,ir). Ifio <n — 1, thisis true inC,,.
If io <n—2,thisis trueinD,.

Proof. We divide the arguments fdr1, . .., ix) into two cases.

Casel: i1=1.Ifip=2thenF[1](1,2,i3,...,ix) = (1,i3,...,ix) and we are done.
So suppose thaty > 2. Apply F[1], F[2],..., Fli2 — 1] to (1,i,...,ix), we get
(L, ip, ..., ix) ~(@{2—1,i3,...,ir). This solves Case 1.

Case2: i1 > 1. By Lemma 2.1(@)(i1,...,ix) ~ (1,i2 — i1 + 1,i3,...,ix). This is
reduced to case 1, so we géti> — i1+ 1,i3,...,i) ~ (i2 — i1,13,...,ix). This solves
Case 2.

The extra conditions are imposed to deal with the special caségof 1] in C, and
Fln —2], F[n — 1], F[n] in D,, as explained in Lemma 2.1. This proves the lemma.
Proposition 2.3.1n A, and By, (i1, ..., ix) ~ (Z’I‘,:l(—l)kfl’ip).

Proof. Consider(y,...,ix) in A, or B,,. By Lemma 2.2,

(i1, ..., ix) ~ (2 —i1,0i3,...,ix) ~ (I3 —i2—i1,i4,...,0k)
k
~~ (Z(—l)k_pip). (2.3)
p=1

This proves the proposition.OO
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Obviously (N) ~ (n + 1 — N) in A,, by symmetry of the diagram. Therefore, by
Proposition 2.3, we have verified the equivalence classes of diagrams ofAyped B
in Table 1. The next proposition considers the typdiagrams of Table 1. The argument
is similar unless the vertexis painted.

Proposition 2.4. Consider(iy, . . ., ix) in Cy.

(@) If ix <n, then(iy, ....ix) ~ (Xh_ (—D¥Pip).
(b) If iy =n, then(iy, ..., ix) ~ (n).

Proof. If iy < n, we can repeat the argument as in (2.3) and get the desired result. We now
consider the casg = n, namely(i1, ...,ix—1,n). Letc=n —1—i;_1. Then

(i1, ..., 0k—1,n) ~(i1,...,ig-3,ix—2+c,n—1,n) by Lemma 2.1(b)
~ (i1, ... ik=3,ik—2+n—1—ix_1,n) by F[n]. (2.4)

Thus the number of entries has gone framto k — 1. Repeat the applications of
Lemma 2.1(b) and’[n] as in (2.4), we end up wittr). O

Most of C,, in Table 1 follow from Proposition 2.4t remains only to check that if
(i1, ..., ix) With iy <n satisfieszl;zl(—l)k*l’ip =n— N, then(i1,...,ix) ~ (N). This
can be done by modifying (2.3) t@1, ..., ix) ~ (i1,...,ik—2,n — (ix — ig—1)) ~ -+~
(n— Z’;zl(—l)"*l’ip) and proceed with similar arguments, or by observing (hgtand
(n — N) correspond to the Lie algebrap(N,n — N) =sp(n — N, N) [4, p. 355]. This
proves Table 1 fo€,,.

For D,, the following proposition considers the various situations based on the colors
of n — 1 andn.

Proposition 2.5.In D,:

(@) Ifig <n—2,then(ia. ..., ix) ~ (Ch_y (=1 Pip).

(b) (i1,...,ig,n—21,n)~ 1+ Zl;zl(_]_)k—pip)_
() (1,...,ix,n—1~m—1).

Proof. The argument for (a) is similar ta,,;; we simply move pairs of painted vertices to
the left by Lemma 2.1(a). We perform this operation in (b), and get

k
(i1, ...,ikg,n—1,n)~ (Z(—l)k_pip,n—l,n).

p=1

By F[n — 1] followed by F[n — 2], we get

k k
(Z(—l)kpip,n - 1,n) ~ (Z(—l)kpip,n —3,n— 2).

p=1 p=1
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This reduces to (a), and simple operations show that the last expression is equivalent to
(1+ X4 _1(=1)*=7i,). This proves (b).

Now consideniy, ..., i, n — 1) in (c). The firstk painted vertices can be dealt with as
before, leavingis, ..., ix,n—1) ~ (I,n—1), wherel = Z’;zl(—l)"—l’i,,. By performing
Fln—11,Fln—2),....,FlI+11to(I,n —1),wegetd,n—1) ~T +1n)~U+1,

n — 1). Repeating this method givé$,n — 1)~ (I +1,n—-1) ~---~m—2,n—1).
ThenF[n—1](n —2,n — 1) = (n — 1) and we are done.O

Most equivalence classes of tyg@ein Table 1 are covered by Proposition 2.5. The
remaining cases follow from two simple observations. Firgtly) ~ (n — N) because
they correspondto Lie algebraq(2N, 2n — 2N) = so(2n — 2N, 2N). Secondly, if exactly
one ofn — 1, n is painted, obviously it does not matter which of them is painted due to
symmetry of the diagram.

We have checked the equivalence classes of Vogan diagrams ofaype<”, D given
in Table 1. The next section considers the diagrams of typds, G.

3. Exceptional diagrams

In this section, we consider the Vogan diagrams of tyBeg', G in Table 1 with6 = 1.
We first treat the diagrams @f,,. Label the vertices as follows:

Lemma 3.1.

(@) Forg >4andp =2,3,wegetp,q)~ (p—1,q—1 x)and(p,q,* ~ (p—1,q—-1).
(b) Forg >4, (1,9)~ (¢ — 1) and(1,q,*) ~ (g — D).

Proof. For(p,q) or(p,q,*), whereq > 4, applyF[pl], ..., Flg — 1] to it and we get the
desired results. O

The next proposition simplifies a Vogan diagram to one of the famnor («, ).
However, it excludes the special cases inbdcause they are not valid in argument (3.7)
below. We will deal with them separatdly Proposition 3.5. Although argument (3.7) also
cannot be applied to (1.1) dfg, Propositions 3.3 and 3.5 show that they all happen to be
equivalent to (7) inEg, which coincides with the formuain Proposition 3.2. Therefore,
we need not exclude (1.1) @fg in Proposition 3.2.

Asin (1.2), the Vogan diagrams are denoteddy. . ., ix, j1, ..., ji, ), where 1< ip <
e<ip <3< j1<--- < jy<n—1ands is x or empty. Throughout this section, &t J
be defined as in (1.3), and let

a:{J_I if J>4, (3.1)

n—J—1 ifJ<4.

The next proposition simplifie§y, .. ., ik, j1, - .-, ji, $) t0 («, 1), wherer is x or empty.
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Proposition 3.2. Consider (i1, ..., ik, j1,..., j1) Or (i1,..., ik, j1,..., ji, *) other than
in (1.1). Then(i1, ..., i, j1,..., ji,s) ~ (o, 1), wheres =t if I is even, and # ¢ if I
is odd.

Proof. Forthe caséi1, j1) = (3,4), by F[3], F[2], F[1], we get(1, *). Now consider the
case(i1, ..., ik, j1,..., j1), We may regardis, ..., ix) and(j1, ..., j;) as painted diagrams
of Az andA, _4, respectively. By Proposition 2.3, we have

k
(i1y e e, ip) ~ (Z(—l)k_”ip) =(I) inAs and (3.2)
p=1
I
(s eees JD) ™~ (Z(_l)l_pjp> =(J) inA,_a. (3.3)
p=1

Notice thatJ > 4 if and only if/ = 1, this implies that there is a single painted vertex in
{j1,..., ji};and if J < 4, then the corresponding single painted vertekpisn — J. Let
B denote the single painted vertexf reduced from the painted verticgg, . .., ji}, then

and a=p8—-1. (3.4)

ﬂz{n—J if J <4,

J if J >4,

In reducing the diagrams (3.2) and (3.3), we did not use the oper&{idin So* does not
occur and

(1, s lbks J1, -5 J)) ~ W, B). (3.5)

Sincep > 4 and by Lemma 3.1(a), we see that

(I,,B)’\‘(I—l,ﬁ—l,*)

~(U-2,8-2)
@ B—1+1% ifI-1isodd, (3.6)
18-1+1 if I —1iseven. )
Hence we have
(i1 esibes J1o oo J ~ U, B) by (3.5)
@ p-1+1 if I —1iseven,
(Lp—I+1x ifI—1isodd, &6
~ | (B=1% ifI'sodd, by Lemma 3.1(b)

B-0 if Iis even,

| (@) if I'isodd,
(@)  if Iiseven, by (3.4). (3.7)
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The use of Lemma 3.1(b) in (3.7) requirgs- I + 1 > 4, which is not valid for the dia-
grams in (1.1). This is the reason whiexcludes them fim this proposition.

By (3.7), we solve the caggy, ..., ix, j1, ..., ji). The case ofiy, ..., ks J1se-es JI, *)
follows from similar argument. This completes the proofa

The above proposition shows how a Vogan diagram is equivalent to one of thédfprm
or («, *). The next two propositions deal witly, x) and(«), respectively.

Table 3

(o, ) Eg E7 Eg
(1, %) (5) (6) (7
(2, %) (5) (6) (7)
(3, %) (%) (%) (%)
(4, %) (1) (1) (1)
(5, %) (5) (6) (7
(6, %) - (1) (7)

(7, %) - - 1)

Proposition 3.3. The Vogan diagrams of the for(w, %) are equivalent to diagrams with
single painted vertex in Tab®

Proof. For (1, ), we applyF[1], F[2], ..., F[n — 1] consecutively and get

For (2, %), we apply F[x] to it and get(2, 3, %), then proceed as in (3.8). Clearly,
(3, %) ~ (3). For (4, %), we applyF[x], F[3], F[2], F[1] to it and get(4, x) ~ (1).

We next show thatb, x) ~ (2, %), so that we can proceed with, ) as above. ByF'[x],
F[3], F[4], we get(5, x) ~ (2,4). By Lemma 3.1(a)(2, 4) ~ (1, 3, x). Then applyF[1],
F[2]to (1, 3, %), we get(2, ). This solveg5, x).

We now considel6, x) in E7 and Eg. In E7, apply F[6], ..., F[1] consecutively to
(6, x) and we get (1). IrEg, by Lemma 3.1(b)(6, x) ~ (1, 7). Apply F[7], F[6], ..., F[2]
to (1, 7) and we get2, x). This solveg®, ).

Finally, for (7, x) in Eg, we apply F[7],..., F[1] to it and get (1). This proves the
proposition. O

By Propositions 3.2 and 3.3, we have simplified all typeliagrams to single painted
vertex diagrams. We consider these single painted vertex diagrams in the following
proposition.

Proposition 3.4.

(a) Ee hastwo equivalence classe€l ~ (5) and(2) ~ (3) ~ (4) ~ (k).
(b) E7 has three equivalence class@s, (1) ~ (2) ~ (3) ~ (5), and(4) ~ (x).
(c) Eg hastwo equivalence class€d ~ (4) ~ (5) ~ (x) and(2) ~ (3) ~ (6) ~ (7).
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Proof. We only have to prove the equivalence claimed in this proposition. The inequiva-
lence of different groupings follows from [4]. For example, [4, pp. 533-534] says that (1)
and(x) in Eg are not equivalent.

We first claim that(x) ~ (4) in all E,,:

()~ (3,*%)  apply F[x]
~(2,5,*) by Proposition 3.2
~(4) apply F[3], F[4]. (3.9)

Hence(x) ~ (4) as claimed. In the following we consid€g, E7, Es separately.

In Eg, clearly (1) ~ (5) and (2) ~ (4) by symmetry of the diagram. So by (3.9) it
suffices to show that3) ~ (x). By applying F[3], F[4], F[5] to (3), we get(2, 5, %), and
by Proposition 3.2(2, 5, x) ~ (3, *). Clearly (3, x) ~ (x). This proves (a).

We next consideE?7 in (b):

(3)~(3,6,%) by Proposition 3.2
~ (4, %) apply F[6], F[5], F[4]
~ (1) by Proposition 3.3.

We conclude thag3) ~ (1). Next we claim that2) ~ (3):

@~@1,3)  applyF[2], F[1]
~(2,4,%) byLemma3.1(a)
~ @) apply F[x], F[3].

Hence(2) ~ (3) as claimed. We next prove th@) ~ (2):

(5~ (1,6,%) byProposition 3.2
~(2) apply F[6], F[5],..., F[2].

Together with (3.9), this proves (b).
Finally, we consideEg in (C):

(5 ~(2,7) by Proposition 3.2
~(3,%) applyF[7], F[6],..., F[3]
~ (%) apply F[x].

On the other hand,

(4)~(3,7,%) by Proposition 3.2
~ (4, %) apply F[7], F[6], ..., F[4]
~(1) by Proposition 3.3

Recall that(4) ~ (x) by (3.9), so we conclude th&t) ~ (4) ~ (5) ~ (x). We next check
the other equivalence clagg) ~ (3) ~ (6) ~ (7):
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(6)~(1,7,%) by Proposition 3.2

~(2) applyF[7], F[6],..., F[2]
~(1,4,%) applyF[2], F[3], F[*]
~ (3 by Proposition 3.2

~(3,6,*) by Proposition 3.2
~(6,%)  apply F[x]
~(7) by Proposition 3.3

That is,(6) ~ (2) ~ (3) ~ (7). This completes the proof.0

The next proposition deals with the Vogan diagrams in (1.1). They have been excluded
by Proposition 3.2.

Proposition 3.5. The equivalence classes of the Vogan diagramglith) are given in
Table4. In particular, each of them is equivalentte — 2, x) or (n — 2).

Proof. Inall E,,

(3,5, %)~(2,4) by Lemma 3.1(a)
~(1,3,% apply F[2], F[1]
~A,n—1) applyF[4l,...,Fln—1)
~(n—2,% byLemma3.1(h)

The equivalence class 6t — 2, x) is given by Proposition 3.3. By similar arguments, we
have(3,5) ~ (2,4, %) ~ (1, 3,4, ¥) ~ (n — 2). The equivalence class ¢f — 2) is given

by Proposition 3.4. And clearly, it7, (3,4,6) ~ (3,4,5,6) ~ (3,5) and (3,4, 6, x) ~
(3,4,5,6, x) ~ (3,5, x). This completes the proof.O

Table 4
Dynkin diagram Single paintegertex  Equivalent diagrams
* @ (5),(2,4),(1,3,%)
E (3,5,%), (0, %), =1,2,45
IS e ©) 2,3, 4, (@35
(3,%),(2,4,%),(1,3,4, %)
. (@) (2),3),(9),(3,5),(3,4,6),(3,4,5,6)
(2,4,%),(1,3,4,%), (¢, ), =4,6
E7 O—O—:—()—()—() (6) 2,4),(1,3,%
1 2 38 4 5 6 (3,5, %), (3,4,6,%), (3,4,5,6,%), (0, %), «=1,2,5
() 4, 3, %)
x (@) (2,3, (®
(a,%), «=12,56
Eg
1 2 3 4 5 6 7 () [(ARCONE)!

(a,%), «=3,4,7
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By Propositions 3.2—-3.5, we have completehacdcterized all the equivalence classes
of Vogan diagrams of typé&. We summarize these results in Table 4. Recall thé
defined in (3.1).

Table 4 summarizes the following method to determine the equivalence class of a Vogan
diagram ofE,:

(1) Diagrams belong to the special cases (1.1).
Use Proposition 3.5 to reduce it to the forlm — 2, %) or (n — 2), then use
Proposition 3.3 or 3.4 to find the equivalence class. The resultis in Table 4.

(2) Diagrams notin (1.1).
Write it as(ia, ..., ik, j1,..., ji,5), then use (1.3) and (3.1) to compute/, . Use
Proposition 3.2 to reduce it @, %) or (). The equivalence classes @f, x) and(«)
are given in Propositions 3.3 and 3.4, and are summarized in Table 4.

Methods (1) and (2) here correspond to methods (1) and (2) for Table 1. The methods for
Table 4 have been simplified to the various cases of Table 1.
For example, considéd, 2, 3,5, x) in E7. It does not belong to (1.1), so we compute

I=i3—ip+i1=3—-2+1=2 and J=j1=5>4,

hencea = J — I = 3. Sincel is even, by Proposition 3.2(1,2, 3,5, x) ~ (3, *).
By Proposition 3.3,(3,%) ~ (x). So Table 4 shows thatl, 2, 3,5, %) ~ (%) in E7.
Alternatively, fromj1 =3+ 1 andl +s =2+ x is odd, we find(1, 2, 3,5, *) ~ (x) in E7
of Table 1.

We next consider the Vogan diagramsHf We label the vertices as follows:

1 2 3 4
Proposition 3.6. In Fy, (i1, ...,ix) ~ (1) ifand only if {i1, ..., iz} N {1, 2} # 0.
Proof. Suppose thati, ..., i;) does not contain 1 or 2. That {8,4) ~ (4) or (3). It

follows either from [4, pp. 541-542] or Theorem 5.1 later &t (2) and(3) # (1). By
applying F[4], F[3] on (4), we get (3). Conversely,

DH~12 by F[1]
~ (2.3 by F[2]
~(2,3,4  byF[3]
~(2,4) by F[4]

~(1,2,3,4) by F[2]
~(1,2,3) by F[3]
~(2) by F[2]. (3.10)
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And clearly,
1234~134H~14H~(124 and (1,2,3)~(1,3). (3.11)

All cases offi, ..., ix} N {1, 2} # 0 are considered in (3.10) and (3.11), this completes the
proof. O

Proposition 3.6 shows that there are only two equivalence classes of Vogan diagrams
of F4 as listed in Table 1.

Itis clear that all paintings o062 (unless we keep all vertices unpainted) are equivalent
to one another. This can be checked by the performing vadtiis or by looking at its
painted root system.

4. Nontrivial involutions

In this section we study the equivalence classes of the Vogan diagrams with nontrivial
involutions, and prove the informations in Table 2.

The conditiord # 1 restricts the underlying Dynkin diagramsAg, D,,, and Es. We
also ignore the diagrams without painted vertex, since they cannot be equivalent to one with
painted vertices. So the possibilities fbg£ 1 and with painted vertices are limited 4,
(n 0dd), D,,, andEg. We may not paint vertices that are not fixedébgsince compactness
of roots makes sense only on the imaginary ones). We label the vertices as in Table 2. The
only way to paint4,, (n odd) is by painting the vertefu + 1)/2, so it is not equivalent to
any other diagram.

Next we consideD, with vertex N painted, whereV < n — 2. In the previous case
wheref = 1, we have shown in Proposition 2.5(a) that

k
(N)~ (i1,....ix) for N=> (=D} Pi, andir <n—2. (4.1)
p=1

This argument useg'[i] for i < n — 3. In general ,F[i] differs in the case$ =1 and
6 # 1 only if a vertex adjacent tbis not fixed byd. Therefore, sinca — 1 andn are the
only vertices not fixed by here, the arguments in Proposition 2.5(a) are still valid in our
present situation. Namely, we also have (4.1¢ef 1. Also, (N) ~ (n — N — 1) because
they represent the Lie algebrs&2N + 1, 2n — 2N — 1) =so(2n — 2N — 1, 2N + 1). This
provesD, in Table 2.

Finally in Ee, there is only one equivalence class witl: 1 and with some vertices
painted [4, pp. 532-535]. Therefore, all such cases are equivalent to one another. This
completely verifies Table 2.

5. Graph paintings

This section develops an idea in the opposite direction: The Vogan diagrams can
classify almost all the simp-laced Dynkin diagrams. Since we are interested in the
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underlying Dynkin diagrams, we may consider only the Vogan diagramsénthl in
this section.

Recall that the algorithn#'[i] in (2.1) is used to reduce the number of painted vertices
within an equivalence class of Vogan diagrams until we end up with a single painted vertex.
This is not so surprising, by the following theorem.

Theorem 5.1. Two Vogan diagrams with = 1 are equivalent if and only if one can be
transformed to the other by a sequence&df] operations.

Proof. The “if” part of the theorem is obvious, sinde{i] preserves equivalence classes.
The converse has been verified explicitly @&ach Dynkin diagram in Sections 2, 3 when

we check Table 1. We now give a more intrinsic argument which does not take into account
the shapes of the Dynkin diagrams. Recalt tha equivalent Vogan diagrams correspond

to the same Lie algebra under different choices of Weyl chambers. The Wey!| Bt @aps
transitively on the chambers, and so it acts transitively on each equivalence class of Vogan
diagrams. Sincé = 1, all roots are imaginary, and they are either compact or noncompact.
Let W, and W,, denote the subgroups generated by reflections about the compact and
noncompact simple roots, respectively. Clealy,is generated by, and W,,. Further,

since W, acts trivially on the Vogan diagrams, it follows th#f, acts transitively on

each equivalence class of Vogan diagrams. Sigé corresponds to reflection about the
noncompact simple root labellédthis proves the theorem.o

The proof of this theorem does not make use of knowledge on the shapes of the
Dynkin diagrams. Therefore, if we accept therBle-de Siebenthal theorem, then it gives a
necessary condition for a connected graph to be a Dynkin diagram.

Coroallary 5.2. If a connected graplt™ is a Dynkin diagram, then

(a) every painting on” can be simplified via a sequencefdffi] to a painting with single
painted vertex
(b) every connected subgraph Bfsatisfies propertya).

Proof. To prove (a), let” be a Dynkin diagram. Suppose thats a painting on". By the
Borel-de Siebenthal theoreid;, p) ~ (I', s), wheres paints just a single vertex df. By
Theorem 5.1(TI", p) can be transformed t@", s) with some sequence @f[i] operations.

This proves (a). Since connected subgraphs of a Dynkin diagram correspond to simple
subalgebras, condition (b) is trivial. The corollary followsa

The corollary provides an obstruction for a graph to be Dynkin via conditions (a)
and (b). We shall see that they come close to being sufficient conditions. The simply-
laced Dynkin diagrams are classified by wiing that they cannot contain the following
subgraphs:
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CX > L
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In the top row of (5.1), the first two diagrams say that a Dynkin diagram has no loop
and no node (branch point) with more than three edges. The third diagram says that there
is at most one node. In this case we can topologically think of the node as being joined to
three “lines”ly, I2, I3 whose lengths are defined in the obvious manner. The fourth diagram
of the top row says that one of tlie say!s, is of length 1. Then the remaining diagrams
put some restrictions based on the lengthk @ind/s.

Corollary 5.2(b) says that a connected subgraph of a Dynkin diagram is again Dynkin;
so it suffices to show that the six graphs in (5.1) are not Dynkin. We attempt to use
Corollary 5.2(a) to achieve this; namely, we find a painting which cannot be simplified
to a graph with single painted vertex via the algorithA{$]. Such attempt is successful
for all but one of them:

C o

For instance, in the loop in (5.2), no matter how we apply], we always end up with a
loop with two painted vertices. So we conclude that every Dynkin diagram cannot contain
any loop. Unfortunately, in the last graph of (5.1), any painting can be reduced to a diagram
with a single painted vertex. This “fakig” is the only structure which does not exist in
Dynkin diagrams but cannot be dismissed by the algorithifis.
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