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Abstract 

Curve fitting with piecewise splines for rapidly varying data has been a difficult 
problem. Often, the curve exhibits unwanted “wiggles” around those data points whose 
locations change rapidly in comparison to their neighboring data points. Many methods 
were proposed to solve this problem using non-homogeneous tension spline or fairing 
process. In this paper, a new approach using the concept of virtual knots is presented. 
Since the occurrence of the problem is due to the inconsistency between the parametric 
spans of the knots and the geometric spans of the data points, a number of virtual knots 
are inserted into the original knot sequence such that the parametric spans are made 
more consistent with the geometric spans of the data. With this parametric adjustment, 
a regularization process is used to find the desired curve. Experimental results show 
that this technique is efficient to adjust the fairness of the desired curve. This technique 
can be applied to different spline spaces. In this paper, the usages of this technique in 
linear B-spline and cubic B-spline spaces are demonstrated. 

Key words: Curve fitting; Fairness; Virtual knot technique; Computer-aided design; 
Interpolation; Regularization; Non-uniform parameterization 

1. Introduction 

Curve fitting has extensive applications in science and engineering such as 
computer-aided geometric design (Wu et al., 1977; Forrest, 1980; Hartley and 
Judd, 1980; Cohen and Lyche, 1980), computer graphics, image processing, 
computer vision (Medioni and Yasumoto, 1987; Namane and Sid-Ahmed, 
1990; Lane and Riesenfeld, 1980), computer-aided animation (Yang et al., 
1986), data analysis (Prenter and Westwater, 1986; Hou and Andrews, 1978; 
Keys, 198 1; Carlson and Fritsch, 1985) and so on. 
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Hence, various efficient methods have been proposed in the literature and 
excellent results have been shown. However, for data points with non-uniform 
span, the fairness (Farin et al., 1987) of the curve is difficult to control due 
to the inconsistency between the parametric spans and the geometric spans of 
data points. Therefore, many methods were proposed to solve this problem 
(Nielson, 1974; Salkauskas, 1974; Foley, 1987). In this paper, a new technique 
which can be applied to various spline spaces to obtain fairer curve is proposed. 

The interpolant of uniform parameterization and homogeneous tension are 
not effective if used to fit a sequence of data that changes rapidly. Some 
unwanted “wiggles” are often generated around those data points whose loca- 
tions change rapidly in comparison with their neighboring data points. This 
gives the curve an unpleasant look. To overcome this problem, many meth- 
ods using non-homogeneous interpolant by changing the tension, such as the 
weighted spline (Lancaster and Salkauskas, 1986, Ch. 4; Salkauskas, 1974; Fo- 
ley, 1987), v-splines (Nielson, 1974), tensioned splines (Cohen, 1987; Foley 
and Ely, 1989), P-splines and splines with shape parameters (DeRose and 
Barsky, 1988), have been proposed. In our approach, instead of changing the 
tension of the splines, we change the parameterization by inserting additional 
virtual knots. (For convenience, the “knot” is used to indicate the data points 
in this paper.) The virtual knots are pseudo-knots added to the original knot 
sequence to alter the parametric distance between the actual knots. They are 
inserted between actual knots to adjust the parametric spans. By this, the 
parameter spans are made more consistent with the geometric spans such that 
interpolant with uniform parameterization and homogeneous tension can be 
useful to tit rapidly varying data. 

This method is general in that it can be applied to various spline spaces. 
In the formulation, the desired curve is expressed as the weighted sum of a 
set of spline bases. In conventional methods, one spline basis is assigned for 
each data point. In the proposed method, in addition to the actual data points, 
spline bases are also assigned for the virtual knots. This makes the system 
under-determined. Thus, a regularization process (Lee and Pavlidis, 1988; 
Terzopoulos, 1986; Groetsch, 1984) is then used to constrain the formulation. 
The objective of the regularization is to confine the solution to be unique 
and to determine the corresponding weighting variables for all the splines 
bases. In our method, smoothness is used as the constraint in designing the 
regularization operator. An objective function is introduced to measure the 
smoothness of the desired curve. This desired curve is solved by minimizing 
this objective function. With this approach, a fair (or pleasant) curve that tits 
the rapidly varying data can be obtained. 

In the following section, we give a curve generated from a set of rapidly 
varying data by conventional cubic B-splines to illustrate the need for fairness 
adjustment. Several popular methods that were proposed to solve this problem 
are also briefly reviewed. Then, the idea of virtual knot insertion is introduced 
and the curve generated by this proposed method is shown for comparison. 
In Section 3, the derivation of the proposed method and the process of 
regularization is discussed in details. Also, the insertion schemes of the virtual 
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knot are introduced. In Section 4, applications of this technique with cubic 
and linear B-spline interpolants are presented and several experimental results 
are shown. Finally, a conclusion is given in Section 5. 

2. The fitting of rapidly varying data 

The need to fair a curve in fitting a set of rapidly varying data is discussed 
in this section. The fairing process is to modify a curve such that the new one 
is fairer than the old one (Farin et al., 1987; Lee, 1990). Then the idea of 
virtual knot insertion for generating fairer curve is introduced. 

2.1. An example 

Let an n-dimensional curve fitting problem be stated as follows. 

Given a set of data {pi 1 i = 0, l,...,K- l}, to find a curve f(s) 
such that f (Si ) passes through pi for i = 0, I,. . . , K - 1. 

where Pi = bil,Pi2, . . . ,pin] is an n-dimensional vector and f(s) = [fi (s), 

h(s),...,h(s)l is an n-dimensional curve function. In planar curve fitting, 
the dimension is two. Throughout this paper, these known data points pi 
are referred to as actual knots. The parameter s is a scalar parameter along 
the curve. In curve fitting, parametric representation is widely used. If the 
parameter s is chosen to be uniformly distributed along knots (i.e. Si+ 1 - Si = 
constant), it is called uniform parameterization and the knots are said to 
uniformly span over the parameter space of s. 

It is found that uniform parameterization may render undesirable fluctuation 
(Foley, 1987) when the parameterization is not consistent with the geometric 
spans. This makes the resulted curve look “unpleasant”. The following exam- 
ple, which fits a set of rapidly varying data, demonstrates this phenomenon 
(Salkauskas, 1974; Foley, 1987). 

Find a curve f(s) to fit the data set {pO = (O,O), p1 = (1, O), 

~2 = (LO), ~3 = (3,0), ~4 = (4,(J), PS = (5,4), ~6 = (6,4), 
~7 = (7,4), ~8 = (8,4), ~9 = (9,411. 

When the data are fitted by the uniform cubic B-spline (Ballard and Brown, 
1982, Section 8.2.6) with the second derivative of f(s) outside the two end 
points set to zero as the end conditions, fluctuations happen. The curve is 
plotted as dashed line in Fig. 1 (a). The dashed curve exhibits fluctuation (or 
wiggle) around the points where the geometric spans between knots change 
abruptly (between knot 4 and 5). Here, the geometric span is defined as the 
Euclidean distance between two adjacent knots. 

In (Lee, 1990), it has been pointed out that the parametric smoothness does 
not imply geometric smoothness. Although the cubic B-spline is smooth in 
parametric space, it does not always offer geometric smoothness. Therefore, 
parametric smoothness does not guarantee a fair or pleasant curve. A curve is 
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Fig. 1. An example of curve fitting. Circles indicate the actual knots and crosses indicate the new 
knots after virtual knot insertion. (top) The curve fitted with the classical cubic B-spline method 
is plotted in dash line. The curve fitted with the virtual knot technique using cubic B-spline basis 

is plotted in solid line. (bottom) The corresponding curvature plots of both curves. 

considered to be “fair” if its curvature is nearly piecewise linear and continuous. 
In (Farin et al., 1987), the curvature plot is used to examine the fairness of 
curves successfully. For comparison, the curvature plot of the above curve is 
plotted in Fig. 1 (b). It can be found that the curvature is far from smooth. The 
problem of fitting rapidly changing data (Salkauskas, 1974; Foley, 1987) or 
extraneous inflection data (Barsky, 1984) was addressed by many researchers 
(Salkauskas, 1974; Barsky, 1984; Foley, 1987). In the following subsection, we 
will briefly review some of useful methods which had been proposed to fit this 
kind of data. 

2.2. Reviews 

For fitting rapidly varying data, various methods had been proposed. In 
(Salkauskas, 1974), a weighted spline is used to interpolate rapidly varying 
data. Foley (1987) extended the weighted spline to the so called “weighted 
bicubic spline” for three-dimensional data. By modifying the natural spline, 
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they used the cubic spline to minimize the functional 

(1) 

where f(s) is the desired curve and [a, b] is the range of the parameter s. 
The weighting w(s) is not all zero over the domain of interest and w(s) B 0 
for all s. With this design, the solution space would no longer be confined to 
class C2 [a, b 1. They used a piecewise cubic interpolant from class C’ [a, b 1. 
Though this weighted spline can attack the problem of oscillation, it lacks the 
continuity of the second derivative of the spline (Foley, 1987). 

Another class of splines to remove oscillation is the tensioned spline with 
adjustable tension parameters. For example, Nielson developed the v-spline 
(Nielson, 1974) with the following objective functional: 

ir I a2.fw 2 K-l 2 

ds2 
ds+xtjy . 

i=o [ I 
a 

where parameter ti is the tension value on the ith knot. In (Barsky, 1984), 
the v-spline was juxtaposed with the exponential-based tensioned spline which 
minimizes 

(2) 

(3) 

where ti is the tension value of the ith curve segment over s = [si,si+r 1. 
Different from the v-spline, this formulation introduces tension parameter to 
each curve segment rather than to each knot. 

The common idea of these methods is to change the tension by introducing 
additional parameters into the spline. Based on this idea, many methods 
with generalized shape parameters have been proposed (Cohen, 1987; DeRose 
and Barsky, 1988; Foley and Ely, 1989; Schaback, 1989). Basically, in those 
methods, the spline is designed to be non-homogeneous. Thus, the solution is 
found in a non-homogeneous spline space characterized by shape parameters. 
Beside these, Farin et al. (1987) presented local fairing algorithms to fair a 
cubic B-spline curves. Also, the smoothing method proposed by Kjellander is 
useful to improve the fairness of a curve (Kjellander, 1983). 

2.3. Insertion of virtual knots 

Above we have briefly mentioned the use of non-homogeneous splines for 
fitting rapidly changing data. As indicated above, an unpleasant curve resulted 
when interpolant with uniform parameterization and homogeneous tension 
is used to fit data with non-uniform geometric spans. Instead of adjusting 
the tension of the interpolant, we propose a new approach by adjusting the 
parameterization of the interpolant. The parametric span is made consistent 
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inserting virtual knots 
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Fig. 2. An example of virtual knot insertion. 

with the geometric span of the given data. The parametric adjustment is 
achieved by inserting virtual knots into the actual knot sequence. With uniform 
parameterization along the new knot sequence (including virtual knots and 
actual knots), the parameterization along the actual knot sequence is made 
non-uniform. Note that the actual knot refers to the knot of the original 
data and the virtual knot refers to the additional knot inserted. Since the 
parameterization is kept uniform in the new knot sequence, the simplicity 
of those methods with uniform parameterization is preserved. Moreover, the 
approach only adds additional knots into the original knot sequence, so it can 
be applied to various interpolation spaces. 

To outline the idea of virtual knot, the above mentioned example is used 
again for illustration. Since the geometric span between actual knots 4 and 5 is 
large, virtual knots are inserted into this span. The Euclidean distance of this 
large span is approximately four times larger than that of other spans, so three 
virtual knots are inserted into this span. Fig. 2 gives a graphic illustration of 
the insertion of virtual knots. 

Let {ii = (fi (ii), f2 (ii) )} denote the new knot sequence after the insertion 
of virtual knots. For the above example, pi = pi for i = 0, 1,2,3,4 and 
pi+3 = pi for i = 5,6,7,8,9, Ijs to p^T are inserted virtual knots, If cubic 
B-spline is used to interpolate these knots, the solution curve can be written as 

where the !Pl(s) are cubic B-spline bases and the zlll and 2121 are the cor- 
responding weighting coefficients. After substituting the bases, the following 
equations (Ballard and Brown, 1982, Sec. 8.2.6) 

i [vk,i- I + 4vk,i + uk,i+ 11 = fk (Si ) 

for i = 1,2,3,4,8,9,10,11 and k = 1,2 can be obtained. With zero curvature 
as the end conditions, the following two equations result. 

vk,O = fk (SO 1, vk,12 = fkh2) 
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for k = 1,2. In total, there are 10 equations with 13 unknowns. These extra 
unknowns are due to the bases associated with the virtual knots. The locations 
of virtual knots are left unspecified first and are to be determined by constraints 
to ensure the fairness of the resultant curve. 

Therefore, the control of the fairness of the curve is dependent upon the 
design of this constraint. A reasonable choice is to maximize the smoothness of 
the solution curve. The solution can be defined to be the one that minimizes 
a quantity S inversely proportional to the smoothness. By minimizing the 
quantity S, three additional equations can be obtained by the Euler equations: 

as 0 -= 
auki 

(4) 

for i = 5,6,7 and k = 1,2. Totally, these equations are used to determine all 
the weighting coefficients. Subsequently, the locations of the inserted virtual 
knots can then be determined. The curve obtained by this criterion is shown 
in Fig. 1 (a) (the solid curve). The knots are marked with an “x” (including 
the original knots and the virtual knots), For comparison, the curvature plot 
of the curve obtained by this proposed approach is also shown in Fig. 1 (b). 
One can find that it is much smoother than that of the previous curve. 

3. The virtual knot technique 

The above example illustrates the basic idea of the virtual knot technique. 
The general formulation of this technique will be discussed in this section. 

3.1. Regularization 

For interpolation with a set of actual knots {pi 1 i = 0, 1, . . . , K - l}, assume 
that N - K virtual knots are to be added into the actual knot sequence. Let 
the new sequence of knots be denoted as {ji 1 i = 0, 1, . . . , N - 1). To indicate 
whether a knot is an actual knot or a virtual knot, a corresponding mark vector 
m = [mO,ml,..., m N- 1 ] ’ is defined. 

mk f 
1, jk is an actual knot, 

0, bk is a VirtUal knot. 
(5) 

In conventional interpolation, the degree of freedom of the solution space is 
determined by the number of data points. After inserting the virtual knots, the 
degree of freedom of the solution space is increased. Therefore, the problem be- 
comes under-determined or ill-posed. Thus, an additional constraint is needed 
in order to obtain a unique curve. The purpose of the regularization is to 
form such additional constraint (Terzopoulos, 1986; Lee and Pavlidis, 1988) 
in order to transform this ill-posed problem into a well-posed one. By intro- 
ducing an energy functional into the under-determined problem, the solution 
is defined to be the one that minimizes the value of the energy functional. 
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The energy functional is defined as the following (Terzopoulos, 1986; Lee 
and Pavlidis, 1988). 

E(f) = S(f) + bC<f,g> (6) 

where f is the desired function and g is the known data. The stabilizing 
functional S( f ) is a measure of the properties of f such as smoothness or 
curvature and C (f , g ) is a cost functional describing the discrepancy between 
f and g. The parameter /I is a weighting factor for balance. 

For our purpose, the insertion of the virtual knots is for the fairness of the 
curve. Therefore, the stabilizing functional is used as an mechanism to model 
the curvature of the desired curve. The cost functional is used to control the 
closeness between the curve and the given data. 

For this, we define the stabilizing functional as 

(7) 

where D is the domain of interest and s is a parameter along the curve f (s). 
Note that S will become the integral of the curvature if f is a two-dimensional 
curve and s is the displacement along the curve. 

For the cost functional, a weighted square sum of the distance from the knots 
to the desired curve is used. That is, 

N-l 

C(f 1 = c mk[(f 6%) -Pd12 (8) 
k=O 

where Sk is the parameter value corresponding to the knot Pk. One may notice 
that the location of the virtual knot ik is unknown until the curve is solved. 
Therefore, the corresponding mk of the virtual knot is zero. That is, the 
distances from those virtual knots to the curve are not taken into account in 
this formulation. 

To minimize the energy functional, the smoothness of the curve and the 
closeness between the curve and data points are both emphasized. The weight- 
ing factor /3 can be used to control the balance. When p approaches infinity, 
the curve exactly interpolates the data points. In such a situation, the cost func- 
tional should be considered separately and the minimization problem becomes 
a constrained minimization one (see Appendix A). The advantage to consider 
both smoothness and closeness together in the energy functional is that a more 
general system equation can be derived. For interpolation, /? is chosen large 
to constrain the curve to pass through the data points. For approximation, p 
can be adjusted for desired solution when the data are corrupted with noise. 

For a bivariate curve f (3) = (X(S),y(S)) with knots ik = (j&j&), the 
energy functional can be expressed as 

E(f)=J[(y)‘+(cgq2]ds 
Q 
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N-l 

+E m/c t (x(a) - &A* + (Y(Q) -J&)*1 

k=O 

= &x(x) + fy(Y) 

where 

79 

(9) 

(10) 

(11) 

The functionals EX and &,, are called the x-component and the y-component 
of the energy functional, respectively. Since both of them are non-negative 
and independent, they can be minimized separately. Therefore, the following 
discussion will focus on the one-dimensional case (e.g. the minimization of EX ). 
Extension to multi-dimensional cases can be easily done. 

3.2. The system equation 

With regularization, the curve fitting problem can be converted into an 
optimization problem, i.e., to minimize an objective functional. Let the solution 
space be spanned by the set of bases {&(s) 1 i = 0, 1, . . . , L - 1); then, the 
function x (s ) can be expressed as 

L-l 

x(s) = ~w#m (12) 
I=0 

where VI is the weighting coefficient related to 41. 
When the number of bases of the solution space then the numbers of knots 

after insertion are equal (i.e., L = N). With (12), we get 

+8ymk[yui4i(sk)-ik] [Evj$j(sk)-ik] 

kc0 i=O j=O 

N-lN-1 _ 

= C CWiWj J 4:‘(S)47(S)dS 
i=O j=O D 

N-l N-l N-l 

c c vivj c mk4i(Sk)$j(Sk) 

i=O j=O k=O 

N-l N-l N-l -, 

- 2 c c vi+i(Sk)mk& + c h-‘&i; . 
i=O kc0 kc0 I 

(13) 
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To simplify the expression, we define the following quantities: 

Uki = 4i(Sk)- (15) 

The quantity tij is called the relation coefficient between variables Vi and vj 
and uki is called the couple coefficient of basis di at knot k. Also, we define 
the following vectors and matrices: 

v = [vo,v~,...,V&r]r, 

x = [X(),X 1,...,kv-IIT, 

too to1 

t10 t11 

T= 
t20 t21 

t30 t31 

_tN-1,O tN-1,l tN-1,2 “. tN-l,N-1 

Uoo UOl u02 *** 

UlO Ull 2412 ... 

U= 
U20 U21 u22 ... 

U30 U3l U32 ... 

. . 

.UN-1,0 UN-l,1 UN-l,2 “’ UN-l,N-1 

m00 o... 0 

Orn~O*.. 0 

ME 0 nz2”’ 0 . 

. . . . . . *. . : 

The matrix T is called relation matrix and U is called couple matrix. With 
these definitions, the energy EX can be expressed as 

EX = vTTv + /3 [vTUTMUv - 2vTUTMX^ + nTMx^]. (16) 

This is a quadratic form. To minimize the energy, the Euler-Lagrange condition 
must be satisfied, that is 

a&x o 
-= 

dVi 
(17) 

for i = 0, 1 , . . . , N - 1. This results in a system of linear equations: 

(T + /3tYTMU)v = pUTMi. (18) 
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This is the general system equation of curve fitting with virtual knots. Note 
that this is only a sufficient condition for the minimization of EX. However, in 
practice, when proper basis functions are chosen, it is usually a necessary and 
sufficient condition. That is, the solution of the above equation will not only 
be a local minimum but also the unique global minimum. 

As indicated above, exact interpolation can be obtained only when /3 is set 
to infinity. When p + cc and all mk = 1 (i.e., no virtual knots are added), 
the system equation will degenerate to the equation: 

uv = x, (19) 

which can be expanded to the following equations: 

N-l 

c $k (si )uk = xi, 

kc0 

(20) 

for i = 0, l,..., N - 1. This is the system equation for classical interpolation. 
When j3 + CO and not all mk = 1, the situation corresponds to exact inter- 
polation with virtual knots. The system equation for this case is shown in 
Appendix B. However, from the experimental results, it is found that when p 
is chosen to be large enough the resulted curve will be almost identical to that 
obtained by exact interpolation. Therefore, in this work, we choose to define 
the energy functional as (6 ), since it is more general. 

3.3. Insertion schemes 

Inserting virtual knots is equivalent to defining the mark vector. To obtain 
a fair curve, the virtual knots are usually inserted in such a way that the 
parametric span is made consistent with the geometric span. In the following, 
two insertion schemes are introduced and a quantity called relative insertion 
density is defined for the description of these schemes. The relative insertion 
density di is related to the geometric span between actual knots pi and P~+~. 
The higher the value of the relative insertion density, the more the number 
of the virtual knots are inserted into the corresponding span. The number of 
virtual knots inserted into span between actual knots pi and pi+ 1 is chosen to 
be 

ni = &Nr - 1. 
L 1 

(21) 

where 1.1 is the largest integer smaller than the value bracketed. N, is the 
desired total number of knots after insertion. Because of the truncation, the 
total knot number will be K + C ni which may not equal N,. 

The proposed two insertion schemes are 
1. distance ratio insertion (or distance insertion), 
2. arc length ratio insertion (or arc insertion). 

The difference between these two schemes is the methods used to calculate the 
relative insertion density. In the distance ratio insertion, the distance of two 
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LPi+lPi-lPi _ 

p,+Ipq-Ip# PrP,+1 L 

PTP,_, - LPsPs+,P*-1 

Fig. 3. The insertion density of arc length ratio insertion method are 
ratio of arc length. 

computed according to the 

consecutive knots is calculated first. Then, the virtual knots are inserted into 
each span according to the ratio of these distances. The larger the span, the 
more the virtual knots are inserted. The relative insertion density is defined as 

(& = II&+1 -Pill d,_ 

IPi-Pi-Ill t l 
(22) 

for i = 1,2,. . . , K with do = 1. 
The arc ratio insertion uses the arc length ratio to determine the insertion 

density. Let pi_ 1, pi and p i+ 1 be consecutive actual knots. There exists a circle 
that will pass through all the three points. The insertion density is calculated 

according to arc lengths of the arcs P-#~_~ and p> i+ 1 (see Fig. 3 1. That is 

where 

Lpipi+lpi_l = COSpl ( (Pi -Pi+11 ’ (Pi-l -Pi+11 

IlPi -Pi+111 HP-1 -Pi+111 ) ’ 

Lpi+lpi_$i = COSml ( (Pj+l -Pi-l) ’ (Pi-Pi-l) 

IlPi+l -Pi-l11 IFi-Pi-Ill > ’ 

(23) 

and do = 1. 
Note that when these three consecutive actual knots are collinear, the inser- 

tion density can be calculated using the distance ratio. In practice, if one of 
the angles Lpipi+ 1p i_l or lp i+ 1p i_ ,p i is less than a small threshold, the three 
knots are treated as “collinear”. 
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Fig. 4. (a) The basis function of the cubic B-spline. (b) The second derivatives of the cubic 
B-spline basis. 

4. Illustrations and experiments 

From the above discussion, one can see that a set of simultaneous equations 
should be solved for the curve fitting with the virtual knots. Since the system 
matrices are sparse and banded, to solve the equations is easy. With the 
conventional matrix methods, its computation complexity and the memory 
requirement is only in the order of 0 (N). This simplicity is due to the local 
support of the bases. For illustration, both the cubic B-spline and linear B-spline 
bases are used in the following discussion. 

4.1. Virtual knot technique in cubic B-spline space 

In the cubic B-spline space, the basis functions are expressed as 

( 

i[s- (i-2)13, i-2Gs<i-1, 

i[4-6(s-i)2-3(s-i)3], i-l <s<i, 
vi(s) & i[4-6(s-i)2+3(s-i)3], i<s<i+l, (24) 

i[(i-2) -s13, i+l<s<i+2, 

0 otherwise, 

as plotted in Fig. 4(a). 
To apply the virtual knot technique, the bases & in ( 12) are substituted by 

cubic B-spline bases. Then, the relation matrix and the couple matrix can be 
determined accordingly. 

When a closed curve is considered, the periodic end condition: 
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vi = VimodN 

is used and the couple matrix is 

(25) 

-4 1 0 0 . . . 0 1- 
14 10 0 . ..o 
0 1 4 10 . ..o 

CL; i *.. *.* i . 

0 . . . 014 10 
0 . . . 00141 

_I 0 . . . 00 14_ 

For an open curve, the following end conditions are used. 

(26) 

v-1 = 2ve - 211 and VN = 22)N-, - 2lN-2. (27) 

They are obtained by setting the second derivative at the ends to be zero. The 
resulted couple matrix is 

-6 0 0 0 0 . . . O- 
14 10 0 . ..o 
0 1 4 10 . ..o 

U=f i *.* *.* i . (28) 

0 . . . 014 10 
0 . . . 00141 

-0 . . . 000 06_ 

To find the relation matrix, the second derivatives of these bases are used. 
They are 

-2-3(s-ii), i-l <s<i, 

!Jqs) & 

L s 0, - (i - 2), otherwise, i-2<s<i-1, 

-2+3(s-ii), i<s<i+l, (29) 

(i-2)-s, i+l<s<i+2, 

as plotted in Fig. 4(b). With this, the relation coeffkients tij can be computed 
with ( 14). For the case of closed curve, the relation matrix is 

‘16 -9 0 1 0 . . . 0 1 0 -9- 
-9 16 -Y 0 1 0 . . . 0 1 0 
0 -9 16 -9 0 1 . . . 0 0 1 

T=; 1 . 0 -9 16 -9 0 . . . 0 0 0 
(30) *. *. *. . * 

; 0 0 . . . 1 0 -9 16 -9 0 
0 1 0 . . . 0 1 4 -9 16 -9 

_-9 0 1 0 . . . 0 1 0 -9 16_ 



H.-C. Hsieh, W.-T. Chang / Computer Aided Geometric Design II (1994) 71-95 85 

For the case of an open curve, the end conditions are obtained by setting the 
second derivative beyond the domain of interest to be zero. It implies 

x-3 = 2x-2 -x-1 = 4x0 - 3x1, 
x-2 = 2x-l -x0 = 3x0 - 2x1, 
X-l = 2X0-X1, 

XN = 2XN-1 - XN-2, 
(31) 

XN+l = 2xN - XN-1 = 3&v_1 - 2x&2, 

XN+2 = 2xN+, - xN = 4xN-i - 3XN_2. 

(32) 

With these, the relation matrix can be computed as follows. 

- 2 -3 0 1 0 . . . 0 0 0 0 - 
-6 14 -9 0 1 0 . . . 0 0 0 
2 -10 16 -9 0 1 . . . 0 0 0 

T=f 1 . 0 -9 *. 16 -9 *. 0 . . . *. 0 0 0 . . 

0 0 o... 1 0 -9 16 -10 2 
0 0 0 . . . 0 1 0 -9 14 -6 
0 0 _ 0 0 . . . 0 1 0 -3 2 _ 

With these matrices, the curve can be easily solved with ( 18 ). 

4.2. Virtual knot technique in linear B-spline space 

Likewise, the virtual knot technique can be applied to the linear B-spline 
space. These basis functions, called tent functions, are defined as 

{ 

s-i+ 1, i-l <s<i, 

q!(s) i i+ l-s, i<s<i+ 1, 

0 otherwise. 

as plotted in Fig. 5 (a). 

(33) 

To apply the virtual knot technique to the linear B-spline space, the sta- 
bilizing functional must be generalized, since the derivatives of tent function 
are not well defined. To generalize the stabilizing functional, an alternative 
operator Q is used to replace the differential operator d/as. The operator DS 
is defined as follows. 

When x (s ) is continuous but its derivative is not well-defined at si, define 

ax (si’- ) 

DSX = axT;) 
for s = si, 

dS 
otherwise. 

(34) 

When x has discontinuities, define 

Dsx = x(s + 1) -x(s - ;,. (35) 



86 H.-C. Hsieh. W.-T. Chang / Computer Aided Geometric Design I I (1994) 71-95 

i-2 i-l . 

(:, 

D*lP’i(S) 

1 

7&j-+ i-l i 

i+l i+2 

I 
I 

I + 
I 

i+l i+2 

-2 

w 
Fig. 5. (a) The basis function of the linear B-spline. (b) An approximated function of the “second 

derivative” of the linear B-spline basis. 

With this, the functions DzqJ (s) are expressed as 

(36) 

I 0, otherwise. 

as plotted in Fig. 5(b). The function @x(s) is a step function. It can be 
verified that the amplitude of V:x (S ) in interval [ i - i, i + $ ) is the difference 
between the slopes of x (s) in the two adjacent intervals [i - 1, i) and [i, i + 1). 
Therefore, the generalized stabilizing functional is still a meaningful measure 
of the variation of the linear B-spline curve. 

The relation coefficient tij can be computed by substituting DzqJ(s) for 47 
in ( 14). For the case of a closed curve, the relation matrix for the linear spline 
space is 

6 -4 ‘1 0 0 . . . 0 1 -4 

-4 6 -4 1 0 . . . 0 0 1 1 
1 -4 6 -4 1 . . . 0 0 0 

*. *. . . 

. . . 1 -4 6 -4 1 

(37) 

1 0 0 . . . 0 1 -4 6 -4 
-4 1 0 . . . 0 0 l-46 
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For the case of an open curve, the end conditions stated in (31) is applied 
again and the relation matrix is 

1 -2 1 0 0 . . . 0 0 0’ 
-2 5 -4 1 0 . . . 0 0 0 

1 -4 6 -4 1 . . . 0 0 0 

. . *. *. 

0 0 0 . . . 1 -4 6 -4 1 
0 0 0 . . . 0 1 -4 5 -2 
0 0 0 . . . 0 0 l-2 1, 

Moreover, because of the cardinal property 

y!(j) i 
i 

1, i=j, 

0, i # j, 

(38) 

(39) 

the couple matrix U is an identity matrix. With these, the system equation 
using linear B-spline basis is 

(T + /3M)U = j?MX. (40) 

Due to the cardinal property of the linear B-spline basis, this equation is 
simpler than that of the cubic B-spline. In the same way, this technique can 
be applied with quadratic B-spline bases. The application in the quadratic 
B-spline space is shown in the appendix. 

4.3. Experiments 

To show the usefulness of the virtual knot technique in fairness control, 
several examples are shown in this section. In the first example, an “olive” 
shape (a closed curve) is fitted with ten actual knots. The curve fitted by 
the classical cubic B-spline method and its corresponding curvature plot are 
shown in Fig. 6. Wiggles near the two acute apexes are apparent. These 
wiggles correspond to the discontinuity in the curvature plot. When virtual 
knot technique is applied (with distance ratio insertion scheme and N, = 18). 
the resultant curve is seen to be fairer. (see Fig. 6 (a) ). The corresponding 
curvature plot is also made smoother. 

In the second example, a “half-circle” shape with ten actual knots is fitted. 
In this case, the arc ratio insertion scheme is used. The results are shown in 
Fig. 7. Again, unwanted wiggles can be seen in the curve generated by the 
classical cubic B-spline method. And a fairer curve is generated by inserting 
virtual knots. 

In the third example, virtual knot technique is applied to tit a “cat-ear” shape 
with nine actual knots. Three curves are shown in Fig. 8. They are generated 
by the classical cubic B-spline fitting, virtual knot technique with linear B- 
spline as basis with 10 and 30 virtual knots, respectively. The virtual knots 
are inserted by the arc insertion method. The curves constructed by the virtual 
knot technique look fairer than The curve constructed by the classical cubic 
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-3 
0 0.1 0.2 0.3 0.4 0.5 0.6 

normalized arc length 

0.7 0.8 0.9 1 

Fig. 6. An “olive” shape with ten actual knots (indicated by circles) is fitted. Circles indicate 
the actual knots and crosses indicate the new knots after virtual knot insertion. (top) The curve 
fitted by the classical cubic B-spline method is plotted as a dashed line and the curve fitted by 
the virtual knot technique using cubic B-spline basis with distance ratio insertion is plotted as a 
solid line. (bottom) The corresponding curvature plots of the curve fitted with the classical cubic 

B-spline method (dash) and the curve fitted with the virtual knot technique (solid). 

B-spline method. The curve interpolated by the linear B-spline is a linear piece- 
wise polygon. This linear piece-wise polygon can approach the desired curve as 
long as the dimension of the interpolation space is increased. In classical linear 
interpolation, the dimension is usually limited to the number of actual knots. 
With the virtual knot technique, the dimension of the interpolation space 
can be increased arbitrarily such that the piece-wise polygon can approach a 
smooth curve. 

In the last example, an open curve is fitted. The proposed method is com- 
pared with both the classical B-spline method and the Salkauskas-Foley method 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

normalized arc length 

Fig. 7. A “half-circle” shape with ten actual knots is fitted. Circles indicate the actual knots and 
crosses indicate the new knots after virtual knot insertion. (top) The curve fitted by the classical 
cubic B-spline method is plotted as a dashed line and the curve fitted by the virtual knot technique 
using cubic B-spline with arc ratio insertion is plotted in solid line. (bottom) The corresponding 

curvature plots of both curves. 

(Foley, 1987; Salkauskas, 1974). With fifteen data points, the resultant curves 
are shown in Fig. 9. The curve fitted by the classical cubic B-spline is shown 
in dashes. The curves fitted by the proposed method and the Salkauskas-Foley 
method are shown in solid and dash/dot, respectively. In this case, eight virtual 
knots are inserted and cubic B-spline bases are used in the proposed method. 
In the Salkauskas-Foley method, the weight control function w (s ) is chosen to 
be piecewise constant and is set to 5 for rapidly varying regions and 1 for the 
rest. It can be seen that the result generated by the our technique is compatible 
with that of the Salkauskas-Foley approach. However, the resulted curve rep- 
resentation of our method is simpler. No tension parameters is needed. When 
all weighting variables are solved, the representation of the resultant curve will 
be as simple as that of a classical spline curve. This simple representation is 
useful in many applications. 

5. Conclusion 

Fitting of rapidly varying data has long been a topic under active study. In 
this paper, we have studied how the insertion of virtual knots can be used to 
adjust the parametric spans of the actual knots such that they can be made 
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Fig. 8. A “cat-ear” shape with nine actual knots is fitted. The curve fitted by the classical cubic 
B-spline method is plotted as a dashed line. The curve fitted with the virtual knot technique using 
linear B-splines with arc ratio insertion is plotted in solid line (with 10 virtual knots) and dot 

line (with 30 virtual knots). 

,P’ 
I’ 

.!’ 

c3.l 
,; 

_;’ 
.’ n 

Fig. 9. Fitting of an open curve: three curves are generated by classical B-spline method (dash), 
the proposed method (solid) and the Salkauskas-Foley method (dash/dot), respectively. 

consistent with the geometric spans to maintain the fairness even when the 
data is rapidly varying. Although various approaches have been proposed to 
attack the problem, most of them focus on the non-homogeneous interpolant. 
The proposed technique use non-uniform parameterization instead of non- 
homogeneous tension. This non-uniform parameterization is achieved by only 
inserting virtual knots. Although the parameterization along the actual knot 
sequence is non-uniform, the parameterization along the new knot sequence 
is kept uniform. By this, the simplicity of uniform interpolation is preserved. 
Therefore, the proposed method is a simple and convenient technique. 
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Our technique can be applied to different kinds of interpolation spaces. In 
this paper, both the cubic B-spline and the linear B-spline have been chosen 
for demonstration. For other interpolation spaces, the general system equa- 
tion derived in Section 3 is also applicable. With the proposed technique, a 
fairer curve can be obtained with slight increase in computation complexity 
in comparison with the classical spline methods. However, the extra compu- 
tational complexity with inserting virtual knots is kept minimum. Since, with 
finite support basis, the matrices T and U are kept banded. Therefore, the 
computation complexity is still kept linearly proportional to the number of 
knots. Moreover, the resultant curve representation is as simple as that of the 
classical uniform interpolation method. 

Appendix A. Virtual knot technique with quadratic B-splines 

In this appendix, the application of virtual knot technique to quadratic 
B-spline is discussed. This is an illustration for the usage of the proposed 
technique to even order B-splines. For higher order B-splines, similar results 
can be obtained. To interpolate a set of data points by quadratic B-splines, 
the resulted system equation can be unsolvable when the join-points of the 
piecewise quadratic curve are chosen as the data points. In (Pham, 1989), 
a smart modification is proposed to overcome the problem. Pham adjusted 
each join-point of the piecewise quadratic curve as the midpoint between every 
two data points to make the system equation become well-conditioned. In our 
approach, the join-point of the piecewise quadratic curve is chosen to be the 
midpoint between the new knot sequence. With this, the quadratic B-spline 
bases are expressed in the form 

I ;m- i) + ;I’, i-i <s<i-i, 

!fy(s) : 
$[-2(s-i)*+$], i-i <s<i+i, 

$[--(s - i) + $I’, i+i<s<i+:, 

and the relation matrix and couple matrix are calculated as 

6 -4 1 0 
-4 6 -4 1 

0 . . . 0 1 -4 

0 . . . 0 0 1 1 

otherwise. 

1 -4 6 -4 1 . . . 0 0 0 

T=f : -. -. Ooo’...’ 1 -. * -4 6 -4 1 
1 0 0 0 . . . 1 -4 6 -4 

_-4 1 0 . . . 0 0 l-4 6_ 
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and 

-6 1 0 0 . . . 0 1 
16 10 0 . ..O 
0 1 6 10 . ..O 

U=$ ; *.* *.* i 

0 . . . 016 10 
0 . . . 001 61 

-1 0 . . . 00 16 

for the case of closed curve. 
For the open curve case, the corresponding relation matrix and couple matrix 

can be calculated with the above-mentioned end conditions. 

- 1 -2 1 0 0 . . . 0 0 0 - 
-2 5 -4 1 0 . . . 0 0 1 
1 -4 6 -4 1 . . . 0 0 0 

T=f : 

0 

*. . *._ *.* ; 

0 0 . . . 1 -4 6 -4 1 
0 0 0 . . . 0 1 -4 5 -2 

-0 0 0 . . . 0 0 l-2 I_ 

and 

‘8 0 0 0 . . . 0 o- 
16 10 0 . ..O 
0 1 6 10 . ..O 

U=f ; *.* *.. i . 

0 . . . 016 10 
0 . . . 001 61 

-0 0 . . . 00 08_ 

Appendix B. The system equation for exact interpolation 

In Section 3, it has been discussed that the system equation for the proposed 
technique will degenerate to the system equation of classical interpolation when 
all mk = 1 (i.e., no virtual knots are added) and p + 03. In this appendix, 
another special case when /_I + cc and not all mk = 1 will be discussed. In 
this case, the fitting process is an exact interpolation with virtual knots. The 
problem will become a constrained optimization problem which minimize the 
stabilizing functional S (f (s ) ) subject to f (sk ) = jk when mk = 1. There 
are various convenient methods to solve a constrained optimization problem 
(Van de Panne, 1975). 



H.-C. Hsieh, W.-T. Chang / Computer Aided Geometric Design 11 (1994) 71-95 93 

Recall the system equation in ( la), the matrix equation can be expanded 
into a set of equations: 

N-l N-l N-l N-l 

C tijvj + P C C UkimkUkjVj = p c ujimjij, 

j=O j=O k=O j=O 

for i = O,l,..., N - 1. It can be written in the form 

N-l N-l N-l 

C tijvj + p C aijvj = p C bijij 
j=O j=O j=O 

where 

N-l 

Uij = c UkimkUkj, bij = Ujimj. 
k=O 

If p approaches to infinity, these equations become 

N-l 

c 
tijVj = 0 if aio = ail = . . . = &N.-l 

j=O 
= bio = bil = . . . = bi,N_l = 0, 

N-l N-l 

c c 
L&j = bijij otherwise, 

j=O j=O 

for i = 0, l,..., N- 1. Solving this set of equation, an exact interpolating curve 
with virtual knots can be obtained. Theoretically, exact interpolation can only 
achieved by setting p to infinity. However, in practice, if j3 is chosen to be 
large enough the resulted curve will be almost identical to that obtained by 
exact interpolation. Therefore, the system equation in ( 18 ) can also be applied 
for this case by choosing a large p (e.g., p = 100). 
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