
Discrete Applied Mathematics 142 (2004) 87–97
www.elsevier.com/locate/dam

Permutation polytopes corresponding to strongly
supermodular functions

Frank K. Hwanga, J.S. Leea, Uriel G. Rothblumb;1

aDepartment of Applied Mathematics, Chiaotung University, Hsinchu, Taiwan 30045 ROC
bFaculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 24 February 1999; received in revised form 4 November 2002; accepted 15 November 2002

Abstract

Throughout, let p be a positive integer and let � be the set of permutations over {1; : : : ; p}. A real-valued function �
over subsets of {1; : : : ; p}, with �(∅)=0, de7nes a mapping of � into Rp where �∈� is mapped into the vector �� whose
kth coordinate (��)k is the augmented �-value obtained from adding k to the coordinates that precede it, according to the
ranking induced by �. The permutation polytope corresponding to � is then the convex hull of the vectors corresponding
to all permutations. We introduce a new class of strongly supermodular functions and for such functions we derive an
isomorphic representation for the face-lattices of the corresponding permutation polytope.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A permutation (of {1; : : : ; p}) is formally de7ned as an ordered collection of sets �=(�1; : : : ; �p) where �1; : : : ; �p are
singletons that partition {1; : : : ; p}; given such a partition � and k ∈ {1; : : : ; p} there is a unique index j with �j = {k},
which we denote j�(k). Given a real-valued function � on the subsets of {1; : : : ; p} with �(∅) = 0, each permutation �
de7nes a vector �� ∈Rp whose kth coordinate (��)k for k = 1; : : : ; p equals �(

⋃j
t=1 �t) − �(

⋃j−1
t=1 �t) with j ≡ j�(k).

The permutation polytope corresponding to �, denoted H�, is the convex hull of the vectors �� with � ranging over all
permutations of {1; : : : ; p}. These polytopes have been studied in the literature with di@erent motivations.

Shapley [13] studied the core of convex p-person games, otherwise known as supermodular set function games. Such
a game is a real-valued function � on the subsets of {1; : : : ; p} that satis7es �(∅) = 0 and

�(I ∪ J ) + �(I ∩ J )¿ �(I) + �(J ) for all subsets I and J of {1; : : : ; p}: (1.1)

Shapley showed that the core of such games, de7ned as the solution set of the linear inequality system∑
j∈I

xj¿ �(I) for each I ⊆ {1; : : : ; p} and

p∑
j=1

xj = �({1; : : : ; p}); (1.2)

coincides with H�. He further examined other properties of H� for such games.
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Elsewhere a partition problem was studied in Gao, Hwang, Li and Rothblum (GHLR) [7] (see also [8] and references
therein). The data for the problem consists of positive integers p, n, n1; : : : ; np with

∑p
j=1 nj = n and n real numbers

� 16 · · ·6 � n: (1.3)

Given a partition �= (�1; : : : ; �p) of {1; : : : ; n}, let �� be the p-vector with (��)j =
∑

i∈�j �
i for j=1; : : : ; p. The goal is

to 7nd a partition (�1; : : : ; �p) that maximizes an objective function f(��) over the set of partitions � with |�j| = nj for
j = 1; : : : ; p. It is shown in [7] that the function � de7ned on each subset I of {1; : : : ; p} by

�(I) =
n(I)∑
i=1

� i where n(I) =
∑
j∈I

nj (1.4)

satis7es (1.1); further, the convex hull of the ��’s, referred to as the partition polytope, coincides with the permutation
polytope H� corresponding to �. So, permutation polytopes generalize partition polytopes. Also, an instance of partition
polytopes with nj = 1 for j = 1; : : : ; p is referred to as a permutahedron (see [1,7,11,12]).
Both Shapley and GHLR studied the strict version of their problems—for Shapley “strict” refers to the case where

the inequalities in (1.1) are strict when S and T are not comparable by set-inclusion and for GHLR “strict” refers to
strict inequalities in (1.3) which implies that the function � de7ned by (1.4) satis7es Shapley’s strictness condition (see
[7]). Billera and Sarangarajan [1] studied this strictness for the special case of permutahedra (which form a subclass of
partition polytopes). Under either of this strictness assumption, the corresponding permutation polytopes have particularly
simple structure; in fact, all such polytopes are both combinatorially and normally equivalent (see [8]).

Permutation polytopes were studied extensively in the literature for functions � satisfying (1.1) [1,2,4–6,10–13]. Further,
they were extended to base polyhedra which play an important role in the analysis of combinatorial optimization and other
areas of combinatorial analysis, e.g. [3,4]. Functions � satisfying (1.1) were also studied extensively in [9].
In the current paper, we propose a new nondegeneracy condition that sharpens (1.1) and is weaker than the strict

supermodularity introduced by Shapley; under this condition we derive an isomorphic representation of the face lattice
of the corresponding permutation polytopes. We call the new condition strong supermodularity and we note that it is
satis7ed by set functions generated by any partitioning problems.

Preliminaries about Polytopes and Supermodularity are summarized in Sections 2 and 3, and our main results about
strong supermodularity are established in Section 4.

2. Preliminaries: polytopes, permutations and supermodularity

We identify row and column vectors and use Rp to denote the set of either type of p-vectors. Also, we refer to the
standard de7nitions for the convex hulls of subsets of Rp and for the dimension of convex sets, and use the notation conv
C and dim C, respectively. A polytope in Rp is the convex hull of 7nitely many points in Rp. The Main Theorem for
Polytopes (see [14, Theorem 1.1, p. 29]) asserts that a subset of Rp is a polytope if and only if it is bounded and is the
solution set of a system of linear inequalities.

Given a polytope P in Rp, we say that a linear inequality
∑p

j=1 cjxj6 � is valid for P if P ⊆ {x∈Rp: ∑p
j=1 cjxj6 �}.

A face of P is any set of the form F = P ∩ {x∈Rp : ∑p
j=1 djxj = �} where

∑p
j=1 djxj6 � is a valid inequality for P.

A face F of P is proper if ∅ 
= F 
= P. Faces of dimension 0, 1 and (dim P) − 1 are called vertices, edges and facets,
respectively. For convenience, we refer to a vertex not only as a face of dimension zero, but also as the single element
that such a face contains. A number of results about faces of polytopes are recorded in Proposition A.1 in the Appendix.

With set inclusion as the partial order, the set of faces of a polytope P is known to be a lattice (cf., Part (b) of
Proposition A.1 of the Appendix), and we refer to this lattice as the face-lattice of P.

Real-valued functions � on the nonempty subsets of {1; : : : ; p} are automatically extended to the empty set with �(∅)=0;
and a function � on subsets of {1; : : : ; p} which satisfy �(∅) = 0 is viewed as a function on the nonempty subsets of
{1; : : : ; p}. Recall the de7nition of supermodular functions given in the Introduction via (1.1). A real-valued function �
on the subsets of {1; : : : ; p} with �(∅) = 0 is called strictly supermodular if strict inequality holds in (1.1) whenever the
two sets I and J are not ordered by set inclusion, that is, I * J and J * I .
Suppose � is supermodular on subsets of {1; : : : ; p}. A triplet (I; K; J ) of subsets of {1; : : : ; p} is called �-4at if

I ⊂ K ⊂ J and, with L= I ∪ (J \ K),
�(I) + �(J ) = �(K) + �(L): (2.1)

We observe that strict supermodularity means that there exist no �-Pat triplets.
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We say that a function � on subsets of {1; : : : ; p} is strongly supermodular if � is supermodular and for every pair of
subsets I; J of {1; : : : ; p} if it satis7es the following condition:

if there exists a subset K of {1; : : : ; p} such that (I; K; J ) is �-Pat, then for every subset K ′ satisfying I ⊂ K ′ ⊂ J ,
(I; K ′; J ) is �-Pat.

Of course, strict supermodularity implies strong supermodularity.
The next two examples demonstrate that supermodularity does not imply strong supermodularity and that strong super-

modularity does not imply strict supermodularity.

Example 1. Let p = 3 and � be given by �({1}) = 1, �({2}) = 2, �({3}) = �({1; 2}) = 3, �({1; 3}) = �({2; 3}) = 5,
�({1; 2; 3})=7. Then � is supermodular. However, � is not strongly supermodular as �({2})+�({1; 3})=7=�(∅)+�(1; 2; 3)
assuring that (∅; {2}; {1; 2; 3}) is �-Pat. But, (∅; {1}; {1; 2; 3}) is not �-Pat because �({1}) + �({2; 3}) = 6¡ 7 = �(∅) +
�({1; 2; 3}).

Example 2. Let p = 3 and � be given by �(I) = |I | if |I |6 2 and �({1; 2; 3}) = 4. Then � is not strictly supermodular
as equality in (1.1) occurs for all distinct sets I and J which contain a single element. As equality in (1.1) occurs only
for such pairs, it immediately follows that � is strongly supermodular.

Let � be a supermodular function on subsets of {1; : : : ; p}. We say that a pair of subsets (I; J ) of {1; : : : ; p} is �-4at
if |J \ I |¿ 2 and for every I ⊂ K ⊂ J , the triplet (I; K; J ) is �-Pat. Strong supermodularity of � means for every �-Pat
triplet (I; K; J ), the pair (I; J ) must be �-Pat.

We next consider an important class of strongly supermodular functions that appear in partitioning problems (e.g. [7,8]).
Throughout the end of this section, let � 1; : : : ; � n be real numbers satisfying (1.3) and let n1; : : : ; np be nonnegative

integers satisfying
∑p

j=1 nj = n. For subset I of {1; : : : ; p}, let
n(I) ≡

∑
j∈I

nj; (2.2)

and

�(n1 ; :::; np)∗ (I) =
n(I)∑
i=1

� i; (2.3)

in particular, n({1; : : : ; p}) = n and �(n1 ; :::; np)∗ ({1; : : : ; p}) = ∑n
i=1 �

i.
We note that (1.3) implies that

u+w∑
i=u+1

� i6
v+w∑
i=v+1

� i for nonnegative integers u; v and w with u6 v: (2.4)

Further, if u¡v and w¿ 0, equality holds in (2.4) if and only if � i is a constant for u¡ i6 v+ w. In particular, (2.4)
holds strictly when the inequalities in (1.3) are strict, u¡v and w¿ 0.
The next two lemmas and following theorem establish useful properties of �(n1 ; :::; np)∗ .

Lemma 2.1. Let n1; : : : ; np be nonnegative integers with n =
∑p

j=1 nj . Then, �
(n1 ; :::; np)∗ is supermodular. Further, if the

nj’s are positive, then for subsets I and J of {1; : : : ; p} where neither is a subset of the other we have that

�(n1 ; :::; np)∗ (I ∪ J ) + �(n1 ; :::; np)∗ (I ∩ J ) = �(n1 ; :::; np)∗ (I) + �(n1 ; :::; np)∗ (J ); (2.5)

if and only if � i is constant for n(I ∩ J )¡i6 n(I ∪ J ).

Proof. For subsets I and J of {1; : : : ; p}, n(I ∪J )=n(I)+n(J \ I), n(J )=n(I ∩J )+n(J \ I) and (2.4) with u ≡ n(I ∩J ),
v ≡ n(I)(¿ n(I ∩ J ) = u) and w = n(J \ I)¿ 0 implies that

�(n1 ; :::; np)∗ (I ∪ J ) − �(n1 ; :::; np)∗ (I) =
n(I∪J )∑
i=1

� i −
n(I)∑
i=1

� i =
n(I)+n(J\I)∑
i=n(I)+1

� i
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¿
n(I∩J )+n(J\I)∑
i=n(I∩J )+1

� i =
n(J )∑

i=n(I∩J )+1

� i =
n(J )∑
i=1

� i −
n(I∩J )∑
i=1

� i

= �(n1 ; :::; np)∗ (J ) − �(n1 ; :::; np)∗ (I ∩ J ): (2.6)

Next, assume that the nj’s are positive, that I * J and that J * I . Then n(I ∩ J )¡n(I) and n(J \ I)¿ 0; hence, the
comment following (2.4) implies that the left-most and right-most expressions of (2.6) are equal if and only if � i is a
constant for n(I ∩ J )¡i6 n(I ∪ J ).

Lemma 2.2. Let n1; : : : ; np be positive integers with n=
∑p

j=1 nj and let K and L be subsets of {1; : : : ; p} with K ⊆ L.
Then the following are equivalent:

(a) (K; I; L) is �(n1 ; :::; np)∗ -4at for some subset I of {1; : : : ; p},
(b) |L \ K |¿ 2 and (K; L) is �(n1 ; :::; np)∗ -4at, and
(c) |L \ K |¿ 2 and � i is constant for n(K)¡i6 n(L).

Proof. (b) ⇒ (a): Assume (b) holds. The assertion |L \ K |¿ 2 assures that there is a set I with K ⊂ I ⊂ L; for such a
set, (b) implies that (K; I; L) is �(n1 ; :::; np)∗ -Pat.

(c) ⇒ (b): Suppose |L \ K |¿ 2 and � i is constant for n(K)¡i6 n(L). As |L \ K |¿ 2, there exists a set I satisfying
K ⊂ I ⊂ L. Let J ≡ K ∪ (L \ I). Then, I ∩ J = K , I ∪ J = L and I and J are not ordered by set inclusion. Lemma 2.1
then implies that (2.5) must be satis7ed, assuring that (K; I; L) is �(n1 ; :::; np)∗ -Pat.
(a) ⇒ (c): Suppose (K; I; L) is �(n1 ; :::; np)∗ -Pat for some subset I of {1; : : : ; p}. Then K ⊂ I ⊂ L assuring that |L \

K |¿ 2. Also, let J ≡ K ∪ (L \ I). Then, I ∩ J = K , I ∪ J = L and I and J are not ordered by set inclusion; further,
the �(n1 ; :::; np)∗ -Patness of (K; I; L) assures that (2.5) is satis7ed. Lemma 2.1 then implies that � i is constant for n(K) =
n(I ∩ J )¡i6 n(I ∪ J ) = n(L).

Theorem 2.3. Let n1; : : : ; np be positive integers with n =
∑p

j=1 nj . Then �
(n1 ; :::; np)∗ is strongly supermodular; further, if

the � i’s are distinct, then �(n1 ; :::; np)∗ is strictly supermodular.

Proof. Lemma 2.1 shows that �(n1 ; :::; np)∗ is supermodular, and the implication (a) ⇒ (b) in Lemma 2.2 proves that �(n1 ; :::; np)∗
is strongly supermodular.

Next assume that � i’s are distinct and let I and J be subsets of {1; : : : ; p} where neither is a subset of the other. Then,
n(I ∪ J ) − n(I ∩ J )¿ 2; thus, the second conclusion of Lemma 2.1 implies that (2.5) cannot hold, that is necessarily

�(n1 ; :::; np)∗ (I ∪ J ) + �(n1 ; :::; np)∗ (I ∩ J )¿�(n1 ; :::; np)∗ (I) + �(n1 ; :::; np)∗ (J ): (2.7)

Thus, �(n1 ; :::; np)∗ is strictly supermodular.

Let #(n1 ; :::; np) be the set of partitions � = (�1; : : : ; �p) of {1; : : : ; n} satisfying |�j| = nj for j = 1; : : : ; p. Then for each
J ⊆ {1; : : : ; p},

�(n1 ; :::; np)∗ (J ) = min

{∑
j∈J

(��)j: �∈#(n1 ; :::; np)

}
:

Also, it is shown in [8] that the permutation polytope H�
(n1 ; :::; np)∗ equals the (partition) polytope

P(n1 ; :::; np) ≡ conv





∑
i∈�1

� i; : : : ;
∑
i∈�p

� i


 : � = (�1; : : : ; �p)∈#(n1 ; :::; np)


 :

3. Permutation polytopes corresponding to supermodular functions

In this section, we record some results on permutation polytopes corresponding to supermodular functions to facilitate
proofs on permutation polytopes corresponding to strongly supermodular functions to be presented in Section 4. These
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results have been established in a more general context (see [4]). We include some elementary proofs for the sake of
completeness.

Throughout we assume that � is a real-valued function on the nonempty subsets of {1; : : : ; p}. For such �, the permutation
polytope H� is de7ned in the 7rst paragraph of Section 1. Also, let C� be the solution set of the system of linear inequalities
given by (1.2).
For each I ⊆ {1; : : : ; p}, let FI be the subset of C� obtained by tightening the inequality corresponding to I in (1.2),

that is,

FI ≡
{
x∈C� :

∑
j∈I

xj = �(I)

}
: (3.1)

We note that the faces of C� are precisely intersections of FI ’s (see Proposition A.1, parts (b), (c) and (g)).

Lemma 3.1. Suppose � is supermodular and I and J are subsets of {1; : : : ; p}.
(a) If (I ∩ J; I; I ∪ J ) is �-4at, then FI∩J ∩ FI∪J ⊆ FI ∩ FJ .
(b) If FI ∩ FJ 
= ∅, then FI∩J ∩ FI∪J = FI ∩ FJ and either I and J are ordered by set-inclusion or (I ∩ J; I; I ∪ J ) is

�-4at.

Proof. (a) Suppose (I ∩ J; I; I ∪ J ) is �-Pat and y∈FI∩J ∩ FI∪J . Then

�(I) + �(J )6
∑
j∈I

yj +
∑
j∈J

yj =
∑
j∈I∩J

yj +
∑
j∈I∪J

yj = �(I ∩ J ) + �(I ∪ J ) = �(I) + �(J );

it follows that all of the above inequalities hold as equalities. Thus,
∑

j∈I yj=�(I) and
∑

j∈J yj=�(J ), that is, y∈FI∩FJ .
So, the inclusion FI∩J ∩ FI∪J ⊆ FI ∩ FJ has been established.

(b) Assume that FI ∩ FJ 
= ∅ and x∈FI ∩ FJ . Then

�(I) + �(J ) =
∑
j∈I

xj +
∑
j∈J

xj =
∑
j∈I∩J

xj +
∑
j∈I∪J

xj¿ �(I ∩ J ) + �(I ∪ J )¿ �(I) + �(J ):

It follows that all of the above inequalities hold as equalities. Thus,
∑

i∈I∪J xi = �(I ∪ J ),
∑

i∈I∩J xi = �(I ∩ J ) and
�(I ∩ J ) + �(I ∪ J ) = �(I) + �(J ). In particular, x∈FI∩J ∩ FI∪J and either I and J are ordered by set-inclusion or
(I ∩ J; I; I ∪ J ) is �-Pat. As x∈FI ∩ FJ was selected arbitrarily, we conclude that FI ∩ FJ ⊆ FI∩J ∩ FI∪J . Next, the
reverse inclusion follows from part (a). If (I ∩ J; I; I ∪ J ) is �-Pat and is trivial otherwise (when I and J are ordered by
set-inclusion).

A (possibly empty) sequence I1; I2; : : : ; Ik of subsets of {1; : : : ; p} is called a chain if ∅ ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik ⊂
{1; : : : ; p}, in which case we refer to k as the length of the chain. Such a chain is usually augmented with I0 ≡ ∅ and
Ik+1 ≡ {1; : : : ; p}. We say that a chain I1; I2; : : : ; Ik is a representing chain of a subset F of Rp, if F =

⋂k
t=1 FIt . In this

case, F is a face of H� (as an intersection of FI ’s). We say that chain I ′1 ; I
′
2 ; : : : ; I

′
k′ is a subchain of I1; I2; : : : ; Ik and

that I1; I2; : : : ; Ik is a superchain of I ′1 ; I
′
2 ; : : : ; I

′
k′ , if {I ′1 ; I ′2 ; : : : ; I ′k′} ⊆ {I1; I2; : : : ; Ik}; we say that I ′1 ; I

′
2 ; : : : ; I

′
k′ is a proper

subchain of I1; I2; : : : ; Ik and that I1; I2; : : : ; Ik is a proper superchain of I ′1 ; I
′
2 ; : : : ; I

′
k′ when the above inclusion is strict.

The maximal length of a chain is p − 1 and every chain has a superchain of length p − 1. A chain I1; : : : ; Ik is called
maximal (minimal) if it has no proper superchain (subchain) which is a representing chain of

⋂k
t=1 FIt .

For a chain I1; I2; : : : ; Ik , we have that {It \ It−1: t =1; : : : ; k +1} is a partition of {1; : : : ; p}. In particular, if the length
of the chain is p−1, each of the sets It \ It−1 is a singleton and {It \ It−1: t=1; : : : ; p}={{j} : 16 j6p}. Thus, a chain
of length p− 1 de7nes a permutation � of {1; : : : ; p} with �t = It \ It−1 for t=1; : : : ; p. We note that the correspondence
of chains of length p− 1 into permutations is one-to-one and onto, with the pre-image of permutations � being the chain
I1; : : : ; Ip−1 with It =

⋃t
s=1 �s. We say that a permutation � is consistent with a chain I1; : : : ; Ik if I1; : : : ; Ik is a subchain

of the unique chain of length p− 1 corresponding to �.
The following result is due to Shapley [13].

Theorem 3.2. Suppose � is supermodular. Then:

(a) H� = C�,
(b) the vertices of H� are precisely the ��’s where � ranges over the permutations of {1; : : : ; p},
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(c) the nonempty faces of H� are precisely the sets represented by chains, and
(d) a chain of length p− 1 is a representing chain of {��} where � is the corresponding permutation.

The next result records a relationship between face-inclusion and representing chains. It has been established
in the more general framework of base polytopes (see [4]). We include an elementary proof using the following
lemma.

Lemma 3.3. Suppose � is supermodular. Let I1; : : : ; Ik be a chain and let I ′1 ; : : : ; I
′
k′ be nonempty proper subsets of

{1; : : : ; p} with F ′ = (
⋂k
t=1 FIt ) ∩ (

⋂k′
t=1 FI′t ) 
= ∅. Then there exists a superchain of I1; : : : ; Ik which is a representing

chain of F ′.

Proof. It suRces to consider the case with k ′ = 1, in which case we let I stand for I ′1. So, F
′ ≡

(⋂k
t=1 FIt

)
∩ FI 
= ∅.

For t = 1; : : : ; k + 1, let Jt ≡ It−1 ∪ [(It \ It−1) ∩ I ]. We next prove by induction that for s= 0; 1; : : : ; k, F ′ =
(⋂s

t=1 FJt
) ∩

FIs∪I ∩
(⋂k

t=s+1 FIt
)
. As I0 = ∅, the case where s=0 follows from the representation F ′ = FI ∩

(⋂k
t=1 FIt

)
. Next assume

that the asserted representation holds for 06 s¡ k. As Is ⊆ Is+1, we have that (Is ∪ I)∩ Is+1 = Is ∪ [(Is+1 \ Is)∩ I ] = Js+1

and (Is ∪ I) ∪ Is+1 = Is+1 ∪ I ; by the induction assumption FIs∪I ∩ FIs+1 ⊇ F ′ 
= ∅. Hence, part (b) of Lemma 3.1
implies that FIs∪I ∩ FIs+1 = F(Is∪I)∩Is+1 ∩ F(Is∪I)∪Is+1 = FJs+1 ∩ FIs+1∪I and therefore F ′ = (

⋂s
t=1 FJt )∩ FIs∪I ∩ (

⋂k
t=s+1 FIt ) =

(
⋂s+1
t=1 FJt ) ∩ FIs+1∪I ∩ (

⋂k
t=s+2 FIt ). Thus, the induction hypothesis has been established with s+ 1 replacing s. As Ik+1 =

{1; : : : ; p}, we have that Ik ∪ I = Ik ∪ [(Ik+1 \ Ik) ∩ I ] = Jk+1 and the veri7ed inductive hypothesis with s = k proves that
F ′ =

⋂k+1
t=1 FJt . We next observe that

∅ = I0 ⊆ J1 ⊆ I1 ⊆ J2 ⊆ · · · ⊆ Jk ⊆ Ik ⊆ Jk+1 ⊆ Ik+1 = {1; : : : ; p}: (3.2)

As
⋂k+1
t=1 FJt = F ′ ⊆ ⋂k

t=1 FIt , we have that (
⋂k+1
t=1 FJt ) ∩ (

⋂k
t=1 FIt ) = F ′; further, by dropping Jt’s which coincide with

either It−1 or with It , we get a superchain of I1; : : : ; Ik which is a representing chain of F ′.

Theorem 3.4. Suppose � is supermodular and F and F ′ are nonempty faces of H�. Then the following are equivalent:

(i) F ′ ⊆ F ,
(ii) each representing chain of F has a superchain which is a representing chain of F ′, and
(iii) some representing chain of F has a superchain which is a representing chain of F ′,

Proof. The implication (i) ⇒ (ii) follows directly from Lemma 3.3, and the implication (ii) ⇒ (iii) is immediate from
the existence of representing chains of faces (Theorem 3.2). Finally, if I1; : : : ; Ik is a representing chain of F and I ′1 ; : : : ; I

′
k′

is a superchain of I1; : : : ; Ik which is a representing chain of F ′, then F =
⋂k
t=1 FIt ⊇ ⋂k′

t=1 FI′t = F ′.

The following corollary of Theorem 3.4 demonstrates that representing chains of a face of H� provide characterization
of the vertices in that face.

Corollary 3.5. Suppose � is supermodular. Let F be a nonempty face of H� with representing chain I1; : : : ; Ik . Then a
vertex v of H� is in F if and only if there is a permutation � which is consistent with I1; : : : ; Ik and has v = ��, in
particular, F = conv{�� : � is a permutation which is consistent with I1; : : : ; Ik}.

4. Permutation polytopes corresponding to strongly supermodular functions

In this section we study permutation polytopes corresponding to strongly supermodular functions. For such polytopes,
we show that minimal chain representation of faces is unique and use the minimal chain representation of faces to derive
an isomorphic representation of the corresponding face lattice.

Lemma 4.1. Suppose � is strongly supermodular and (I; J ) is �-4at. Then every triplet (I ′; K ′; J ′) with I ⊆ I ′ ⊂ K ′ ⊂
J ′ ⊆ J is �-4at.
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Proof. Let L′ ≡ I ′ ∪ (J ′ \ K ′). By the �-Patness of (I; J ) we then have that

�(I) + �(J ) = �(I ′) + �[I ∪ (J \ I ′)];
= �(J ′) + �[I ∪ (J \ J ′)];

= �(K ′) + �[I ∪ (J \ K ′)];

= �(L′) + �[I ∪ (J \ L′)]: (4.1)

As K ′ ∩ L′ = I ′ and K ′ ∪ L′ = J ′, the supermodularity of � implies that

�(K ′) + �(L′)6 �(I ′) + �(J ′): (4.2)

Also, as

[I ∪ (J \ K ′)] ∩ [I ∪ (J \ L′)] = I ∪ [J \ (K ′ ∪ L′)] = I ∪ (J \ J ′)

and

[I ∪ (J \ K ′)] ∪ [I ∪ (J \ L′)] = I ∪ [J \ (K ′ ∩ L′)] = I ∪ (J \ I ′);
we have that

�[I ∪ (J \ K ′)] + �[I ∪ (J \ L′)]6 �[I ∪ (J \ I ′)] + �[I ∪ (J \ J ′)]: (4.3)

We conclude from (4.1)–(4.3) that

0 = �(I ′) + �(J ′) − �(K ′) − �(L′) + �[I ∪ (J \ I ′)]
+�[I ∪ (J \ J ′)] − �[I ∪ (J \ K ′)] − �[I ∪ (J \ L′)]¿ 0:

It follows that equality holds in (4.2) (and (4.3)), assuring that (I ′; K ′; J ′) is �-Pat.

Corollary 4.2. Suppose � is strongly supermodular and (I; J ) is �-4at. Then every pair of subsets (I ′; J ′) with I ⊆ I ′ ⊂
J ′ ⊆ J and |J ′ \ I ′|¿ 2 is �-4at.

Lemma 4.3. Suppose � is strongly supermodular and I ′; I; J ′ and J are subsets of {1; : : : ; p} such that I ′ ⊆ I ⊂ J ′ ⊆ J
where both (I ′; J ′) and (I; J ) are �-4at. Then (I ′; J ) is �-4at.

Proof. The result is trivial when either I ′ = I or J ′ = J . In the remaining case I ′ ⊂ I ⊂ J ′ ⊂ J and the assumptions of
the lemma imply that (I ′; I; J ′) and (I; J ′; J ) are �-Pat. Let K ≡ I ′ ∪ (J ′ \ I) and L ≡ I ∪ (J \ J ′) = I ′ ∪ (J \ K). As
(I ′; I; J ′) is �-Pat, we have that

�(I) + �(K) = �(I ′) + �(J ′);

and as (I; J ′; J ) is �-Pat, we have that

�(J ′) + �(L) = �(I) + �(J ):

Summing the above equalities and canceling identical terms, we see that

�(K) + �(L) = �(I ′) + �(J );

as L= I ′ ∪ (J \ K), we conclude that (I ′; K; J ) is �-Pat; hence, by the strong supermodularity of �, (I ′; J ) is �-Pat.

Lemma 4.4. Suppose � is strongly supermodular; I1; : : : ; Ik is a chain and s∈ {1; : : : ; k}. Then the following are equivalent:

(a)
⋂k
t=1 FIt =

⋂k
t=1; t �=s FIt ,

(b) FIs−1 ∩ FIs+1 ⊆ FIs , and
(c) (Is−1; Is+1) is �-4at.

Proof. (b) ⇒ (a): This implication is trite.
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(c) ⇒ (b): Suppose (Is−1; Is+1) is �-Pat. Then, (Is−1; Is; Is+1) is �-Pat. Let Js ≡ Is−1 ∪ (Is+1 \ Is). As Is ∩ Js = Is−1 and
Is ∪ Js = Is+1, part (a) of Lemma 3.1 next implies that FIs−1 ;∩FIs+1 ⊆ FIs ∩ FJs ⊆ FIs .

(a) ⇒ (c): Suppose (a) holds. Again, let Js ≡ Is−1 ∪ (Is+1 \ Is). As I1; : : : ; Is−1, Js, Is+1; : : : ; Ik is a chain, it represents
a nonempty face F (Theorem 3.2) which is contained in the face F ′ ≡ ⋂k

t=1; t �=s FIt =
⋂k
t=1 FIt . It follows that ∅ 
= F ′ ⊆

FJs ∩ FIs . As Is and Js are not ordered by set inclusion, Is ∩ Js = Is−1 and Is ∪ Js = Is+1, we conclude from part (b) of
Lemma 3.1 that (Is−1; Is; Is+1) is �-Pat; hence, by the strong supermodularity of �, (Is−1; Is+1) is �-Pat.

Corollary 4.5. Suppose � is strongly supermodular; I1; : : : ; Ik is a minimal chain and F =
⋂k
t=1 FIt , and s∈ {0; : : : ; k}. If

there exists a set I satisfying Is ⊂ I ⊂ Is+1 and FI ⊇ F , then (Is; Is+1) is �-4at.

Proof. The insertion of I into the chain I1; : : : ; Ik , between Is and Is+1, yields a superchain which is another representing
chain of F . As the removal of I from this superchain is the original chain which represents F , the equivalence of (a) and
(c) in Lemma 4.4 implies that (Is; Is+1) is �-Pat.

The next result establishes uniqueness of minimal representing chains of faces.

Lemma 4.6. Suppose � is strongly supermodular. If I1; : : : ; Ik and I ′1 ; : : : ; I
′
k′ are minimal chains with

⋂k
t=1 FIt=

⋂k′
t=1 FI′t 
=

∅, then k = k ′ and It = I ′t for t = 1; : : : ; k = k ′.

Proof. Let F ≡ ⋂k
t=1 FIt =

⋂k′
t=1 FI′t 
= ∅. We proceed with an inductive argument and prove that for each positive integer

s6min{k; k ′}+1, Is= I ′s , in particular, if s=min{k; k ′}+1, then Is= I ′s ={1; : : : ; p} and s=k+1=k ′ +1. As I0 = I ′0 =∅,
the assertion is trite for s = 0. Assume the assertion holds for integer s¡min{k; k ′} + 1 and we will establish it with
s + 1 replacing s.

We 7rst observe that (Is; Is+2) is not �-Pat, for otherwise Lemma 4.4 implies that I1; : : : ; Is; Is+2; : : : ; Ik is also a repre-
senting chain of F , contradicting the minimality of I1; : : : ; Ik .

We next argue that Is+1 and I ′s+1 are ordered by set inclusion. Aiming to establish a contradiction we assume that
this conclusion is false. In particular, neither Is+1 nor I ′s+1 equals {1; : : : ; p} assuring that s + 1¡min{k; k ′} + 1. With
J ≡ Is+1 ∩ I ′s+1 and K ≡ Is+1 ∪ I ′s+1, we have that Is ⊆ J ⊂ Is+1 ⊂ K . As FIs+1 ∩ FI′s+1

⊇ F 
= ∅, Lemma 3.1 implies that
FJ ∩ FK = FIs+1 ∩ FI′s+1

⊇ F and �(J ) + �(K) = �(Is+1) + �(I ′s+1); in particular, the strong supermodularity of � implies
that (J; K) is �-Pat. Now, if Is 
= J , then Is ⊂ J ⊂ Is+1 ⊂ K ; as FJ ⊇ FJ ∩ FK ⊇ F , Corollary 4.5 implies that (Is; Is+1),
is �-Pat. So both (Is; Is+1) and (J; K) are �-Pat and Lemma 4.3 assures that (Is; K) is �-Pat. When Is = J , we have that
(Is; K) is �-Pat from the established �-Patness of (J; K). Thus, we conclude that regardless of whether or not Is=J , (Is; K)
is �-Pat. As it was shown that (Is; Is+2) is not �-Pat and (Is; K) is �-Pat, it now follows from Corollary 4.2 that Is+2 * K .

We next argue that necessarily K ⊂ Is+2. Indeed, suppose this is not the case. As Is+2 * K , we then have that K and
Is+2 are not ordered by set-inclusion. As FIs+2 ∩ FK ⊇ F 
= ∅, Lemma 3.1 and the strong supermodularity of � imply that
(Is+2 ∩ K , Is+2 ∪ K) is �-Pat. As Is ⊆ K ∩ Is+2 ⊂ K ⊂ K ∪ Is+2 and (Is; K) was shown to be �-Pat, we conclude from
Lemma 4.3 that (Is; K ∪ Is+2) is �-Pat; as Is ⊂ Is+2 ⊆ K ∪ Is+2, it then follows from Corollary 4.2 that (Is; Is+2) is �-Pat,
a contradiction. Thus, indeed, K ⊂ Is+2. So, Is ⊂ Is+1 ⊂ K ⊂ Is+2. As FK ⊇ FK ∩ FJ ⊇ F , Corollary 4.5 implies that
(Is+1; Is+2) is �-Pat and therefore the �-Patness of (Is; K) and another application of Lemma 4.3 imply that (Is; Is+2) is
�-Pat, a contradiction. This contradiction establishes that Is+1 and I ′s+1 are ordered by set inclusion.

Without loss of generality, we proceed under the assumption that Is+1 ⊆ I ′s+1. So, K = Is+1 ∪ I ′s+1 = I ′s+1. Now, suppose
Is+1 
= I ′s+1, that is, Is+1 ⊂ I ′s+1. As I

′
s = Is ⊂ Is+1 ⊂ I ′s+1 and FIs+1 ⊇ F =

⋂k′
t=1 FI′t , we conclude from Corollary 4.5 that

(I ′s = Is; I ′s+1 = K) is �-Pat. The arguments of the above paragraph then imply that (Is; Is+2) is �-Pat, a contradiction. This
contradiction proves that Is+1 = I ′s+1.

We observe that subchains of minimal chains are minimal, and every chain I1; : : : ; Ik has a minimal subchain I ′1 ; : : : ; I
′
k′

with
⋂k′
t=1 FI′t =

⋂k
t=1 FIt . We say that minimal chain I ′1 ; : : : ; I

′
k′ re9nes minimal chain I1; : : : ; Ik if I ′1 ; : : : ; I

′
k′ can be con-

structed from I1; : : : ; Ik by augmenting this chain with additional sets and then dropping sets which become superPuous;
formally I ′1 ; : : : ; I

′
k′ re7nes I1; : : : ; Ik if there exists a chain I ′′1 ; : : : ; I

′′
k′′ which is a superchain of both I1; : : : ; Ik and I ′1 ; : : : ; I

′
k′

and
⋂k′′
t=1 FI′′t =

⋂k′
t=1 FI′t . We observe that the re7ning relationship is a partial order on the set of minimal chains.

Example 3. Let p=3, �(I)=2|I |− 1 for each ∅ ⊂ I ⊆ {1; 2; 3}. Then � is supermodular, in fact, strongly supermodular,
and (by Theorem 3.2) C� =H� is the convex hull of {(1; 2; 2), (2; 1; 2) and (2; 2; 1)}. It is easy to verify that the chains
I1 ={1; 2} and I ′1 ={1} are minimal chains representing the faces {x∈R3: x1 +x2 =3, x3 =2} and {(1; 2; 2)}, respectively.
Now, the chain I ′′1 = I ′1, I

′′
2 = I1 is a superchain of the above two minimal chains and FI′′1 ∩ FI′′2 = FI′1 . So, I

′
1 re7nes I1.
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Theorem 4.7. Suppose � is strongly supermodular. A subset F of Rp is a nonempty face of H� if and only if there is
a minimal chain I1; : : : ; Ik with F =

⋂k
t=1 FIt , and the correspondence of nonempty faces of H� onto minimal chains is

one-to-one. Further, if F is a nonempty face of H� corresponding to minimal chain I1; : : : ; Ik , then:

(a) if I ′1 ; : : : ; I
′
k′ is a chain with F =

⋂k′
t=1 FI′t , then I1; : : : ; Ik is a subchain of I ′1 ; : : : ; I

′
k′ ,

(b) if F ′ is a nonempty face of H�, then the following are equivalent:
(i) F ′ ⊆ F ,
(ii) F ′ has a representing chain which is a superchain of I1; : : : ; Ik ,
(iii) the minimal chain representing F ′ re9nes I1; : : : ; Ik ,

(c) dim F6 dimH� − k.

Proof. By Theorem 3.2, a subset F of Rp is a nonempty face of H� if and only if there is a chain I1; : : : ; Ik with
F =

⋂k
t=1 FIt ; each such chain has a minimal subchain I ′1 ; : : : ; I

′
k′ with

⋂k′
t=1 FI′t =

⋂k
t=1 FIt = F . We conclude that a set

F ⊆ Rp is a nonempty face of H� if and only if it has a representing chain which is minimal. By Lemma 4.6, a minimal
chain representing a given face is unique; also, trivially, a minimal chain uniquely de7nes the corresponding face. So the
correspondence of nonempty faces of H� to minimal chains is one-to-one and onto.

Next, let F be a nonempty face of H� with representing minimal chain I1; : : : ; Ik .
(a): If I ′1 ; : : : ; I

′
k′ is a representing chain of F , then it has a minimal subchain I ′′1 ; : : : ; I

′′
k′′ with

⋂k′′
t=1 FI′′t =

⋂k′
t=1 FI′t =

F =
⋂k
t=1 FIt . As

⋂k′′
t=1 FI′′t =

⋂k
t=1 FIt , Lemma 4.6 assures that the minimal chains I1; : : : ; Ik and I ′′1 ; : : : ; I

′′
k′′ coincide, thus

I1; : : : ; Ik is a subchain of I ′1 ; : : : ; I
′
k′ .

(b): Suppose F ′ is a nonempty face of H�. The implication (i) ⇒ (ii) follows from Theorem 3.4. To see that (ii)
⇒ (iii) assume that F ′ has a representing chain I ′′1 ; : : : ; I

′′
k′′ which is a superchain of I1; : : : ; Ik . It then follows from

the established part (a) that the minimal chain representing F ′, say I ′1 ; : : : ; I
′
k′ , is a subchain of I ′′1 ; : : : ; I

′′
k′′ . As minimal

chains I1; : : : ; Ik and I ′1 ; : : : ; I
′
k′ are both subchains of I ′′1 ; : : : ; I

′′
k′′ and

⋂k′′
t=1 FI′′t = F ′ =

⋂k′
t=1 FI′t , we have that I ′1 ; : : : ; I

′
k′

re7nes I1; : : : ; Ik . Finally, to see that (iii) ⇒ (i) assume the minimal chain representing F ′, say I ′1 ; : : : ; I
′
k′ , re7nes I1; : : : ; Ik .

Then there exists a chain I ′′1 ; : : : ; I
′′
k′′ which is a superchain of both I1; : : : ; Ik and I ′1 ; : : : ; I

′
k′ with

⋂k′′
t=1 FI′′t =

⋂k′
t=1 FI′t ; in

particular, F ′ =
⋂k′′
t=1 FI′′t ⊆ ⋂k

t=1 FIt = F .
(c): The minimality of the chain I1; : : : ; Ik implies that the sets F0 ≡ H� and Fs ≡ ⋂s

t=1 FIt for s= 1; : : : ; k are distinct.
As these sets are faces of H� and F0 =H� ⊃ F1 ⊃ · · · ⊃ Fk−1 ⊃ Fk =F , it follows (cf., part (f) of Proposition A.1) that
dimH� = dim F0¿ dim F1¿ · · ·¿ dim Fk−1¿ dim Fk = dim F ; it follows that dim F6 dimH� − k.

Property (a) of the minimal chain corresponding to a face F of H� characterizes that chain as the common subchain
of all representing chains of F , namely as the unique minimal representing chain for F . Property (b) shows that the
correspondence of faces to minimal representing chains is an isomorphism of the face-lattice with set inclusion as the
partial order onto the set of minimal chains with the “re7ning” partial order; in particular, we obtain a lattice structure
for the minimal chains. Finally, property (c) shows the length of the minimal chain corresponding to a face of H� yields
an upper bound on the dimension of that face.

The next example demonstrates that strong supermodularity does not suRce for the unique representation of a face via
minimal chains.

Example 1 (continued). We observe that in Example 1, C� is the polytope de7ned by the linear system

x1¿ 1; x2¿ 2; x3¿ 3;

x1 + x2¿ 3; x1 + x3¿ 5; x2 + x3¿ 5;

x1 + x2 + x3 = 7:

By Theorem 3.2, the vertices of H�=C� are the ��’s with � ranging over the permutations over {1; 2; 3}; these permutations
together with the corresponding ��’s are listed below in Table 1.

In particular, v=(1; 2; 4)T is a vertex which lies in FI for I ∈ {{1}; {2}; {1; 2}; {1; 3}} and FI={v} for I ∈ {{1}; {1; 2}}.
Hence, {1} and {1; 2} are two distinct minimal representing chains (each of length 1). There are 3 maximal representing
chains of {v}, namely: (i) {1}; {1; 2}, (ii) {1}; {1; 3}, and (iii) {2}; {1; 2}. Each of these maximal chains has the length
3 − 1 = 2.

Finally, the next example demonstrates that the bound in part (c) of Theorem 4.7 need not be tight.
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Table 1

Permutation � ��

({1}, {2}, {3}) (1; 2; 4)T

({1}, {3}, {2}) (1; 2; 4)T

({2}, {1}, {3}) (1; 2; 4)T

({2}, {3}, {1}) (2; 2; 3)T

({3}, {1}, {2}) (2; 2; 3)T

({3}, {2}, {1}) (2; 2; 3)T

Table 2

Permutation � ��

({1}, {2}, {3}) (3, 3, 3)
({1}, {3}, {2}) (3, 3, 3)
({2}, {1}, {3}) (5, 1, 3)
({2}, {3}, {1}) (6, 1, 2)
({3}, {1}, {2}) (5, 3, 1)
({3}, {2}, {1}) (6, 2, 1)

Example 4. Let p= 3, �({1}) = �({2; 3}) = 3, �({2}) = �({3}) = 1, �({1; 2}) = �({1; 3}) = 6 and �({1; 2; 3}) = 9. Then
� is not strictly supermodular, as �({1; 2}) + �({1; 3}) = 6 + 6 = 9 + 3 = �({1; 2; 3}) + �({1}); in fact, {1; 2} and {1; 3}
is the only pair of subsets of {1; 2; 3} which is not ordered and satis7es (2.1) with equality; consequently, it follows that
� is strongly supermodular. By Theorem 3.2, the vertices of H� = C� are the ��’s with � ranging over the permutations
of {1; 2; 3}; these permutations along with the ��’s are listed below in Table 2.

It is easy to verify that H�, namely, the convex hull of the ��’s, has dimension 2. The chain {1} of length k = 1 is a
minimal chain representing the vertex F = {(3; 3; 3)} and (dimH�) − k = 2 − 1 = 1¿ 0 = dim F .

Appendix

In this Appendix, we summarize results about polytopes and their faces that are used in our paper. For a proof of the
7rst result, see [14, Propositions 2.2 and 2.3, pp. 52–53, and Theorem 2.7 and followwing discussion, pp. 57–58].

Proposition A.1. Let P be a polytope in Rp. Then:

(a) P is the convex hull of its vertices,
(b) intersections of faces of P are faces of P,
(c) each face of P is the intersection of facets of P,
(d) each proper face F of P is a facet of a face F ′ of P,
(e) the faces of a face F of P are exactly the faces of P that are contained in F , in particular, the vertices of F are

the vertices of P that are contained in F ,
(f) a face F ′ of P is strictly included in a face F of P if and only if F ′ ⊆ F and dim F ′ ¡ dim F ,
(g) if P is a polytope with representation

n∑
j=1

Bkjxj6 bk for all k ∈ ,; (A.1)

where , is a 9nite index set, then each facet F of P has a representation of the form F = {x∈P :
∑n

j=1 Brjxj = br}
for some r ∈ ,,

(h) if P is the convex hull of a 9nite subset B, then B contains all the vertices of P, in particular, maximizers of a
linear function over B is a maximizer of that function over P,

(i) a linear function on P attains a maximum at a vertex of P,
(j) if dim P = 1, then P has exactly two vertices,
(k) a polytope of dimension m has a face of dimension k for each 06 k ¡m, and
(l) F is a face of P if and only if F is a convex extreme set of P.
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