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Abstract

In the context of Lo’s high-order plate theory, the present work applies the eigenfunction expansion approach to
investigating the Williams-type stress singularities at the vertex of a wedge. The characteristic equations for determining
the orders of singularities in stress resultants are separately developed for plates under extension and bending. The
characteristic equations of plates under extension differ from those in generalized plane stress cases when the clamped
boundary condition is imposed along one of the radial edges around the vertex. For plates under bending, the presented
characteristic equations are identical to those of first-order shear deformation plate theory (FSDPT) if the clamping is
not involved in boundary conditions along the radial edges of the vertex. The orders of singularities in stress resultants,
which vary with the vertex angle, are plotted for various types of boundary conditions. The results are also compre-
hensively compared with those obtained according to other plate theories such as classical plate theory, FSDPT and

Reddy’s refined plate theory.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Plates are widely used components in engineering
applications in civil engineering, mechanical engineer-
ing, and aerospace engineering. The plate problem is a
three-dimensional problem, but several plate theories
have been proposed to simplify the three-dimensional
problem into a two-dimensional one. Various plate
theories were thoroughly reviewed in [1]. Re-entrant
corners, at which stress singularities exist, are often
encountered in analyses of plate problems. Although
stress singularities are not of the real world, the exact
nature of the singularities must be considered in a
numerical solution to obtain an accurate and effective
solution [2,3]. For example, Leissa et al. [4,5] analyzed
free vibrations of circular sectorial plates with re-entrant
corners or V-notches using the Ritz method, by intro-
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ducing the so-called corner functions into the admissible
functions to describe accurately the singular behaviors
of thin plates. In the finite element approach, singular
elements [6,7] are conventionally used to solve the
problems with stress singularities by describing the exact
order of stress singularities.

Many papers have addressed stress singularities at
sharp corners in planar and three-dimensional elasticity
theories (i.e., [8-12]), but only a few have considered
corner stress singularities in various plate theories.
According to the classical thin plate theory (CPT),
Williams and his co-workers [13-15] first used the ei-
genfunction expansion approach to comprehensively
investigate the corner stress singularities induced by
homogeneous boundary conditions around a corner for
isotropic plates and orthotropic plates. Rao [16] also
applied the eigenfunction expansion technique to iden-
tify stress singularities at the interface corners of bi-
material thin plates. Huang et al. [17] studied corner
stress singularities for a sector plate with simply sup-
ported radial edges by finding the closed-form solution
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for the vibration of such a plate. Sinclair [18] elucidated
the occurrence of logarithmic stress singularities in
angular thin plates. Using the classical lamination the-
ory, Ojikutu et al. [19] applied a finite difference scheme
to determine the orders of stress singularities in a com-
posite wedge.

It is well known that shear deformation and rotary
inertial effects have to be considered for a moderately
thick plate. Within the context of first-order shear
deformation plate theory (FSDPT), Burton and Sinclair
[20] first examined the Williams-type corner stress sin-
gularities by introducing a stress potential. Huang et al.
[21] elucidated corner stress singularities in the closed-
form solution for the vibration of a sector plate with
simply supported radial edges. The results of Huang
et al. [21] indicate the incompleteness of the solution of
Burton and Sinclair [20], whose solution did not include
singularities of shear forces. Recently, Huang [22] rein-
vestigated corner stress singularities by adopting Xie
and Chaudhuri’s approach [12] to solve the equilibrium
equations in terms of displacement components, and
obtained the orders of moment and shear force singu-
larities identical to those obtained by Huang et al. [21]
for the case of a corner with simply supported boundary
conditions.

Although first-order shear deformation plate theory
has been frequently applied to analyze thick plate
problems, FSDPT has some limitations: the transverse
shear strains are assumed to be constant through the
thickness of the plate and a shear correction coefficient is
needed. Some high-order plate theories (HPT) have been
offered [1]. However, up to now, only one paper has
considered the corner stress singularities in HPT. Huang
[23] investigated the corner stress singularities by
applying Reddy’s refined plate theory [24], neglecting in-
plane displacement of the mid-plane; and revealed that
different plate theories (CPT, FSDPT and Reddy’s plate
theory) yields very different orders of stress singularities
at a corner, under a fixed set of boundary conditions.
Notably, Reddy’s refined plate theory is equivalent to
the high-order plate theories proposed by Schmidt [25]
and Krishna Murty [26].

There are other high-order plate theories that are not
equivalent to Reddy’s. Bert [27] critically evaluated of
various plate theories for nonlinear bending stress dis-
tribution and concluded that the plate theory of Lo et al.
[28] offered a very accurate prediction. Furthermore, this
high-order plate theory has also been used to study
various types of plate problems (i.e., [29-31]). This the-
ory differs from CPT, FSDPT and Reddy’s plate theory
not only in the assumed displacement fields, but also in
the relations between strains and stresses. Unlike the
generalized plane stress assumption of zero normal
stress in the thickness direction used in CPT, FSDPT
and Reddy’s plate theory, Lo’s theory uses the three-
dimensional Hooke’s law.

The aim of this work is to derive the characteristic
equations to determine the orders of Williams-type
stress singularities under various boundary conditions
around a corner, by applying Lo’s high-order plate
theory. The characteristic equations are derived by
adopting the approach of Hartranft and Sih [9] for
three-dimensional elasticity problems. This paper
investigates not only the singular behaviors of moments
and shear forces but also the singular behaviors of in-
plane forces. Notably, the singular behaviors of in-plane
forces in FSDPT and Reddy’s plate theory are the same
as those for plane stress theory, so they were not dis-
cussed in [22,23]. The variations of the orders of singu-
larities in stress resultants with the vertex angle of a
wedge are graphically represented for different boundary
conditions around the vertex. The current results are
also comprehensively compared with those for CPT,
FSDPT and Reddy’s refined plate theory. The obtained
singular behaviors may be used when sharp corners are
involved to solve free vibration, static deflection, stress
intensity and buckling problems for thick plates if Lo’s
high-order plate theory is applied.

2. Governing equations

As in Lo et al. [28] for Cartesian coordinates, the
displacement field for a sector plate (or a wedge) with
cylindrical coordinates as shown in Fig. 1 is given as

u(r,0,2) = u(r,0) +29,(r,0) + 22&,(r,0) + 2°¢,(r, 0),

(la)
5("7 972) = U(rv 6) +Zl//(-)(r7 9) +ZZ€()(V7 9) +23¢9(ra 9)7

(1b)
w(r,0,z) = w(r,0) + 2y (r, 0) + 22E,(r, 0), (1c)

Fig. 1. Coordinate system and positive displacement compo-
nents for a wedge.
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where #,0, and w are the displacement components in
the r, 0, and z directions, respectively. This displacement
field includes both in-plane and out-of-plane modes of
deformation. There are 11 r and 6 dependent displace-
ment functions, namely, wu,v,w,,, ¥y, ., &, &, EoL D,
and ¢.

The principle of stationary potential energy is used to
derive equilibrium equations through a variational ap-
proach. Without assuming generalized plane stress
(i.e.,0.. = 0), the three-dimensional Hooke’s law for
isotropic material is used. Eleven equilibrium equations
for the 11 displacement functions can be found as fol-
lows, without external loading:

N.r + Nyoo/r + (N, — No)/r =0, 2)
Nyoy 4+ Noo/r + 2Ny /r =0, 3)
Orr + Qoo/r+ 0r/r =0, (4)
M, +Myo/r + (M, — My)/r — O, =0, (5)
Mg, + Myg/r+2M,/r — Qy = 0, (6)
R, +Roo/r+R,Jr—N, =0, (7)
P, +Pyg/r+ (P.—Py)/r — 2R, =0, (8)
P, + Pyo/r+2Py/r — 2Ry =0, 9)
Sy +Soo/r+S./r—2M, =0, (10)
Vo, + Moo )r + (V, — )/ — 35, = 0, (11)
My, +Mog/r+2M,/r — 35y =0, (12)

where the subscript, “o;,” denotes a partial differential
with respect to the independent variable «. In addition,
11 boundary conditions for the »- and 6-constant edges
can also be derived. Along a radial edge, one member of
each of the following 11 products must be prescribed:
uNyg, vNo, wQo, WMy, YoMy, W.Ro, &P, SoPo, E.S0,
¢, M.y, and ¢pyMy. For the r-constant edge, one member
of each of the following 11 products must also be pre-
scribed: uN,, vN,g, WO, W, M,, oM., Y.R,, &P, EoPro,
ES., ¢,M,, and ¢,M,;. Notably, the governing equa-
tions can also be obtained by multiplying the well-
known three-dimensional equilibrium equations in
continuum mechanics with 1, z, 22, or z*, and integrating
them with respect to z. To the author’s knowledge, these
equilibrium equations (Egs. (2)-(12)) have not been
shown before.

The resultant forces in Egs. (2)-(12) are defined as
follows:

N. Ny N. Ny O Oy
Mr M0 Mz Mr[) R,— R()

h/2 1
= / { } ( Op 09 Oz Op O Op; ) dZ7
—h/2 z

(13a)
})r P })r h/2 ZZ
(13b)
2
(5, S)) = / MZZ(G,.Z ou ) dz, (13¢)

where o;; are stress components. From Egs. (13a—c) and
using the three-dimensional Hooke’s law for isotropic
material and strain—displacement relations for infinites-
imal deformation, we can obtain the following relations
between the resultant forces and the displacement
functions:

N, = h[(2+ 2G)u, + A(u+vg) /r+ 2]

3

+ % (24 2G)E,, + & + Coo) /7], (14a)

Ny =hldu, + (A+2G)(u+vy)/r+ 2]

+ g (280 + (A +2G)(C, + Eo0) /7], (14b)

N, = h[du, + A(u+vy)/r+ (2 +2G).]

3
P, + A+ G, (14)
3
Nr() - Gh[v.r - (U - u‘())/}"] + % [é(),r - (é() - ir,(})/rL
(14d)
3
0, = Gh(h, +w,) + oo (30, + &), (14¢)
Gh?
Op = Gh(Yg+wy/r) + 1 (Bpg + E.0/7), (14f)
M, =TG4 26), + A, + )+ 23]
5
455 [04 2608, + 26, + o), (149
h3
My =151, + (4 26) W, + )7+ 226
5
eslig, +GH26) 6, + )/l (14n)
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M= i, 4 A0, 4 )+ 20042602

5
bl + A6, + a1 (14i)
h3
M,y = (i_Z (W, — Vo) /7 + Wy, ]
5
+ (;]8 (D0 — o) /7 + b0, (145)
R =0z 10, (14K)
Ry =S 8+ /), (141
h3
P =350+ 2G)u, + A+ vo) [+ W]
5
80 [(A+2G)Crr+)‘(§ +60())/7‘] (14m)

3

P = % u, + (A+2G)(u+vy)/r+ 2]

+ g (48, + (A4 2G)(&, + Sop) /7], (14n)
Gh®
Po=—~5 (v, — (v—up)/r] + [50, (& — &.)/7,
(140)
M'” 8(5) [(’1+2G)W” +/’{(l// +l//59)/r+2Agz]
+4Z,78[(/L+2G)¢H +;~(¢y+(f)070)/}"], (14p)

5
Wy = o it + (4 26) W, + )+ 28

7
+ %8 (A, + (2 +2G)(d, + Pog)/7], (149)
5
Wy = S (W = Vo) + Ui,
Gh’ 14
+448 (b0 — Do) /7 + b0, (14r)
3 5
5= S )+ S 3,4 ), (145)
3 5
Sp = Gh (lp(, +wy/r)+ ;(l) By + Eo/r), (1)

where G is the shear modulus, A is one of the Lame’s
constants, and 7 is the thickness of the plate.

Substituting Eqgs. (14a)—(14t) into Egs. (2)-(12) with
careful arrangement yields the equilibrium equations in
terms of displacement functions:

Jue v G upw G+iv,y 3G+lv
T TR G P 26+ r 26+ R
) h? &, & G S
et {5’”*****26*“ =
G+2 & 3G+1E
2o = RN 15
+2G+A r 2G+ 4 r? ’ (13)
+&7£+ZG+AM i+ Guyy 3G+Aiuy
Orr roor? G G r G
+ilﬁz0 ¢ f()r &y 26+ Sm
G r orr 72 G 72
A+ GCg 3GHAEp |
+ G, + G =0 (16)
hz er
Wy = +%+w,,+”” +w“+ﬁ{ém+g—‘
i (¢,r+¢ +¢“)} =0, (17)
12 G lpr,r l//y G Iprﬁ(?
_ﬁ2G+i(W"'+w’) O Ve SRy
G+ Yo 3G+AYy —G+2zf
2G+4 r 2G4+ 12 2G+ 4 7
¢ +3_hz ¢ ¢r G ¢r,(%~)
2G+/1 mr 2G+ 4 r?
G+ Qo0 3G+ Ay
- el 1
+2G+/1 r 2G+ 4 1?2 9, (18)
12 ‘//v,r Vo 2G4+ 2 Y0
hz( +l//o>+'//0rr 7_r_2+ G 2
G+2Y,,0 3G+, —-G+21¢&,
+ G r + G 2 G r =30

3h2 p ¢9, o 2G+ A by | G2 D
orr r2 G 72 G r

3G+ 2 ¢y
LA 1
#3020k o, (19)
A u vy 2G+ 4 " ‘//z, V.00
6<u,r+;+7>+ G v, — {l// ot + )
2G— 4 & oo _
+=¢ (é +E4 =0, (20)
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u G U g G_‘—)v U.r0 3G+/L.D()
2G—|—i 72 2G4+ 2G+ A2
ZG—/l 4G 3n? ¢, &

T2V TG +2o{ mt TR
G % G+A 56,)-9_3G+/1% _

2G+4 rr 2G+4A r  2G+ A r? '

u.r
U,y +—
P

+

(1)

v 2G+Aivg GH+Au,y 3G+ 1 Uy
U;r+___+ + Ny

72 G r_2 G r G
—2G+ A Y., 50] &
+ -G 5 4&y + {50 T2
2G+ A &gy G+ A f,.‘,g 3G+ 4 é,}g B
+ G 72 G r + G | 0
(22)

, G-2
w.,<,+w7'+w+ (l//,.,+ﬂ+m)

72 G r r
3 402G+ 1), 3h2 i .00
G =T = 2
3G - 22
+ (dm £+¢i)} (23)
G
20G l// ¥, G g
7h2(2G+;V)( +l//)+l//rrr r2 2G+/1 }"2
G+ m_mw,m_mfz/ly
G+ r 2G+i 2 26+
_ 9—G¢ 5h2 ¢ ¢r Sy G ¢r,99
2G+ A R 3 2G+ 4 1?2
G+ 2 d)()‘r() 3G + 2 ¢0>0 B
Y%+ s 2G+i e [T (24)
20 ‘//o,r Vo  2G+ 2 Yy
T () o ST T S
n G+ Y, .0 " 3G+ AV, —3G+21&
G r G 72 G
G + A (pr.rl)

5112 é ¢0r by 2G+ A dop
orr r2 G r2 G r

3G+ g
+ G r } =0, (25)
The above equations were developed with the aid of the
symbolic logic software program MATHMATICA.

Note that Eqgs. (15)—(25) partially decouple such that
the equations can be combined into two groups. One
group comprises Egs. (15), (16), (20), (21), and (22) for
the displacement functions u, v, ., &,, and &,, which are
related to the extension of the middle plane of the plate.
The second group consists of the other equations, which
describe the behavior of a plate under bending. Conse-
quently, in the following, we investigate the stress sin-
gularities for these two groups separately.

3. Stress singularities for plates under extension

Here, a plate under extension means that in-plane
loading is applied to the plate and may cause the
extension of the middle plane of the plate. Some of Eqs.
(15), (16), (20), (21), and (22) can be further simplified
through some mathematic manipulations. From Egs.
(15) and (21), we can obtain

2G 4G, K f ¢,

2G+/Ll//”+2G+/Lgy { rr r_z
n G G, G+ 60,r0_3G+)“@ -~
2G+2 2 2G4+ r 2G+4 2 [

(26)

From Egs. (16) and (22), the following equation can be
obtained

2 W Cor &o, 2G+ A Copp
— 4¢&, — — 2522 250
rl//"‘o + e 15 {éo " 72 G r2
y A&,

+ G ér,r() + 3G+ érﬂ } =0.

+G r G

(27)

Consequently, the stress singularities for plates under
extension will be investigated by solving Egs. (15), (16),
(20), (26), and (27) and employing some combinations of
boundary conditions along radial edges.

3.1. Construction of the series solution

An eigenfunction expansion approach similar to that
used in [23] is applied to solve Egs. (15), (16), (20), (26),
and (27). Let

V;"" +n (])Em) (0’ ;Lm ) ,

h
NgE
NgE

3
Il
o
£
Il
o

2

r/'.,,, +n Vn(m) (97 ;\'m) ,

i
NgE
NgE

3
Il
o
Il
=3
o

&= 3 a0, ),
m=0 n=0,2
&= i i QN (0, ),
m=0 n=0,2
and
b= 3 3 P 0. 2,), (28)

I
=
3

I
o

m 2

where the characteristic values 4, are assumed to be
constants and can be complex numbers. Notably, odd =
in Eq. (28) will not give any additional solutions;
therefore, they are excluded.

The regularity conditions at » = 0 require #, 0, and w
to be finite; therefore, the real part of 4, has to exceed
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zero. Consequently, the relations between stress resul-
tants and displacement functions given in Egs. (14a)—
(14d) and (14k)—(140) reveal that the solution given by
Eq. (28) yields the singularities for N,, Ny, N., Ny, P., Py,
and P,y at r = 0 when the real part of 4, is below one.
Nevertheless, no singularities occur for the stress resul-
tants R, and Ry.

Substituting Eq. (28) into Egs. (15), (16), (20), (26),
and (27) and requiring that the coefficients of » with
different orders equal zero yield the following recurrent
equations for U™, yim, Qm Q" and wm:

2

15{(ﬂm+n+3)<7~m+n+ nely S _am

(n+2) + 2G + /"LQF(I1+2>,00

+2G+/1(A'" +”+2)Q 02,0 ~ 3G 1 /00420
4G

2G
_ m om
26+ a TG

G+ 3G+ }

(o + 14+ 1) (29)

2

ZG+/L (m)
Q,
15

G 0(n+2),00

{(Am 0+ 3) (o + 0+ 1DQ )+

G+/b m 3G+} m
+ (A +n+2) ;n>+2)0+ G Qi(nﬁ }

—{2win, + a0}, (30)
G
(G +0+3)n +n+ 1)Un+2 + T U, 00

+(G+A)(Am+n+2) -(3G+14) )
2G + 4 e

2

h m
+5 {() 0+ 3) (o + 0+ DY

G Hm
Q
+ZG+) r(n+2),00
2G+/’{ 0(n+2),0

o 1 1) P (31)

’2G+ﬂ,(

W 2G40,
(14 3) 1+ DY+ =22V

(G+ ) +n+2)+BG+1)
+ G U)E+)2‘0

2

h m
+5 {(; 0+ 3) (o + 0+ DY

+ G QO(H+2),00

(G D2+ (G + ) )

+ ,
G r(n+2),0

= _iqﬂ’”

G ™ 0 (32)

4
G

(m (m)

h2
[(/Lm +n+ 3) n+2 + V+2 l)] {(;vn +n+ 3)2

2G —

G

- 2G+ 2 im
+ Qé(,fu),e}} == G 'Ilgn)7 (33)

lpimﬂ) + le w00 T~ va +n+3)Q

r n+2)

and

G m ,
2G+ ) QS{)HG + (;Lm + 1)(Am

(G+ V)dn — 3G+ 2)
2G+ A

- ey

Qe =0, (34)
2G + )\4 m
G 9(000 + (2w + 1) (A — 1)95)0)

G+ )+ (3G +
G 2 GO A g g, (33)

G m R . .
mUé‘&) + (/Lm + 1)(/%71 - I)UO )

(G + )i — (3G + 1)
2G +

h2 G In
+—{ Qs+ (o 1)y — 1)

12 12G+ 4
BG+2) (m
Qe ¢ =0, (36)

(m)
Voo

(G+ V) Am —
2G+ 4

2G4+ A (m m
o i+ U 1) (o = DI

(G+ 2)dm + (3G + 2)
* G

2G+ 2 m
S {22+ G+ ) - 100

G
+(36+7) am }_0 37

(m)
Uno

(G + 7)o

* G

/1 m m h m
6{()M,,,Jrl)Ué )+I/(f0>}—ﬁ{¥'(w+() + 1)y

Jr2G—/1
G

194, + (o + 1)95:;“}} —o. (38)

Through lengthy and tedious mathematical operations,
one can find the general solutions for Egs. (34)—(38)
given as follows:

UM = Ay cos( Ay + 1)0 + Ay sin(4, 4 1)0
+ A3 cos(A, — 1)0 + Ay sin(4,, — 1)0, (39)

Vo(m) = A;5c08(/ 4+ 1)0 — 4, sin(4,, + 1)0
+ ki[A4 cos(Ln — 1)0 — A3 sin(4, — 1)6], (40)

= Cycos(ly + 1)0 + Cysin(4,, + 1)0
+ C3c08(Ay — 1)0 + Cysin(4,, — 1)0, (41)
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QI = Cycos(Ay + 1)0 — Cy sin(, +1)0
+ k1 [Cy cos( A, — 1)0 — Cy8in(4,, — 1)0], (42)
P = Ey cos(Ay + 1)0 + Ey sin(4, + 1)0
+ kA3 cos(Ay, — 1)0 + Ay sin(4,, — 1)0)
+ k3][C5 cos(Ay — 1)0 + Cy sin(4,, — 1)0], (43)
Am—40 _ —24y _2(1-3v
where ki = 5700 b = sttty e = 5 and v

is the Poisson’s ratio. In Egs. (39)-(43), the character-
istic value /, and the coefficients E,FE,,A4;, and C;
(i=1,2,3,4) are determined by satisfying the boundary
conditions along radial edges.

um, ym Qm olm and W™ for n > 1 are deter-
mined by solving Egs. (29)-(33). However, these solu-
tions are not related to the singularities of the stress
resultants, so they will not be considered further here.

Notably, one can also start to construct the series
solution by assuming the following form of the general
solutions for Egs. (15), (16), (20), (26), and (27):

u= Z Z r)»:n+n+/1 Urgm)(67 /lm)y
m=0 n=0,2
= Z Z r/i,n+n+[2 V;l(m)(a )Lm)7
m=0 n=0,2
5r _ Z Z r),",+n+l3gizl)(9’ /'Lm)’
m=0 n=0,2
é(} = Z Z ri.,n+n+l4Q§)’n")(07 )~m)7
m=0 n=0,2
v, = Z Z phtntls ‘1”%)(97 Jom), (44)
m=0 n=0,2
where /; (i =1,2,...,5) are either one or zero. Follow-

ing the above procedure of constructing the solutions,
one discovers that the solution form given by Eq. (28) is
the only one resulting in the Williams-type singularities
of stress resultants.

3.2. Characteristic equations and singularities for stress
resultants

As mentioned earlier, the characteristic values, A4,

are determined by satisfying the boundary conditions

Table 1
Characteristic equations for plates under extension

1663

along the radial edges of a corner. Two types of
boundary conditions along a radial edge are considered
here:

free: Ng, ]Vr(.)7 R(;, Pg, and PrH :0, (453)

clamped: u, v,¢,, &, and Y, =0. (45b)
These two cases can be combined to give three distinct
problems concerning a wedge.

Substituting Egs. (39)-(43) and Eq. (28), with n =0,
into Eqgs. (45a) or (45b) with 6 = 0 and o, where « is the
vertex angle of the wedge, yields the vanishing deter-
minant of a 10x 10 coefficient matrix. Then, the char-
acteristic equations for 4,, can be established. Notably,
when the same boundary conditions are imposed along
the two radial edges, the symmetry of the problem can
be taken advantage of, by considering —o/2 <0< a/2,
and separately considering the symmetric and anti-
symmetric parts of the solution given in Egs. (39)-(43).
For example, considering the symmetric behavior of a
wedge with two fixed radial edges, Eqgs. (39)-(43), with
Ay = A4 =Cy, =Cy = E, =0, are substituted into Eq.
(45b), the determinant of the resulting 5% 5 coefficient
matrix is expanded, and

( sin Ao —

is obtained. However, cos(4,+ 1)a/2=0 yields
Ay =A43;=C; =C; =0 and does not give any stress
singularities at the vertex of the wedge. Accordingly, it is
discarded. Table 1 lists the characteristic equations for
three possible combinations of boundary conditions
along the two radial edges. These characteristic equa-
tions are not related to the thickness of the plate. Pois-
son’s ratio is the only material property involved in these
characteristic equations.

For comparison, Table 1 also summarizes the char-
acteristic equations given by Williams [8] for generalized
plane stress in thin plates. The characteristic equations
in this work differ from Williams’ when the clamped
boundary condition is applied, because Lo’s plate theory
does not use the generalized plane stress condition. Note
that if v in the characteristic equations presented herein
is replaced by v/1 4 v, then the resulting characteristic
equations are identical to Williams’.

m

3—4p

sin oc) cos(dy + Da/2 =0 (46)

Case no. Boundary conditions Present Thin plate theory [8]

1 Free—free sin A,,00 = £/, sina sin 4,00 = +4,, sin o

2 Clamped—clamped sin A, = £ —22-sino sin 2,00 = £(42) 4, sina

3 Clamped-free sin® A0 = 741;::): + 7;"'14” sin’ o sin? A0 = m - (H)/len sin®
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F_F(Williams) |
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Fig. 2. Variation of minimum Re(4,) with vertex angle
(extension).

Fig. 2 shows the smallest positive real part of 7,
varies with the vertex angle (o) for three combinations of
boundary conditions after the roots of the characteristic
equations given in Table 1 are numerically determined.
The results were computed for v = 0.3. In the legend of
Fig. 2, “C” and “F” denote clamped and free boundary
conditions, respectively.

Fig. 2 depicts that no singularities exist for N,, Ny, N,
Ny, P., Pj, and P, when the vertex angle is less than
approximately 57°. However, singularities always arise
for a > 180°, regardless of which of the three combina-
tions of boundary conditions around the vertex is con-
sidered. Among the three combinations of boundary
conditions considered here, boundary condition C_F
provides the strongest singularity. As the vertex angle
approaches 27 (i.e., a crack), the singular order of stress
resultants at the tip of the crack approaches ~¥/* for the
boundary condition C_F, while the boundary conditions
C_C and F_F yield an order of »~'/2. Comparing the
present results with Williams’ reveals that the orders of
stress singularities associated with Lo’s plate theory are
very close to those according to generalized plane stress
theory, except those that involve the boundary condition
C_F with approximately o < 142°.

4. Stress singularities for plates in bending

Recall that Egs. (17)—(19) and (23)—(25) are for plates
under bending. Through mathematical manipulation
of these equations, we can obtain the following equa-
tions, which are simpler than Eqgs. (17)—(19) and (23)-
(25):

2/ v, '//0 0 422G+ 4)
6 (l//r; —+— ]+ T éz
h Cor | Coo
15 (gz"—i_ r + 72 )
h* —4G + 64 o, ¢0 0
oS (e ) 47)
8G 2G 6G
maG Wt e T aga
hz b, ¢, G b G+ Py
(¢'”+ +2G—|—), 2 2G+4 r
3G+ 2 g0\
"6t )0 (48)
(rb@r ¢()
S+ ~ 35 (0 + 2o -2
26 + ¢> Gty 3G+ gb,.,o Y
G r G ) 7
(49)
6 19 24 \¢&o 57
7 (5 vn) + (%Jrssc) 70
<¢9}r bor o n 2G+ A by G+ 7 P

r2 G r2 G r

3G+ 29,0\
+ G rz)fo, (50)
6G vy (196, 2) 1,
TG+ )Y 70 ' 35)2G+ %
57G b P, G b
7006+ 33 <¢’“’+ RERR T
G+ bo,0 3G+ 2 g\
TG+ ir a6iie ) 5D
1(w +EEL B0 T2 (y,, by Ve
s\ 15 6G oy r
2G+ A 2y ¢, Doy _
736 C+M(‘7’”+7+7 =0

For example, Eq. (47) was obtained by subtracting Eq.
(23) from Eq. (17), while Eq. (48) was obtained by
subtracting Eq. (24) from Eq. (18).

4.1. Construction of the series solution
To establish the series solution for Eqgs. (47)-(52)

using the eigenfunction expansion approach, the fol-
lowing solution form is used:
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W:Z Zr/ +n+IW(m)(6 /1 )
m=0 n=0,2
©
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3
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<
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NgE
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=
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o
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()

where the characteristic values 4,, are again assumed to
be constants and can be complex numbers. It is also
noted that odd » in the above equation will not produce
any additional solution, so they are not included.

The real part of 4, must exceed zero to satisfy the
regularity conditions at the apex of the wedge. Notably,
. with a real part smaller than one leads to singularities
of M,, My, M., My, M,, My and M,y at the vertex but no
singularities for Q,, Oy, S, and Sy, which can be dis-
covered from the relationships between these stress
resultants and the displacement functions given in Egs.
(14e)—(14j) and (14p)—(14t).

Substituting Eq. (53) into Egs. (47)—(52), the van-
ishing of the coefficients corresponding to the smallest
order in r for each equation results in

2/ - w22 ", = m
G U+ DG U = Yo — 5 (Qﬁo}m (G + 1)7Q0)
W —4G + 6 m
55— { U+ DO + oL =0, (54)
G m ) K m
2G+ Fi (Dﬁo.)[m + (/Lm + 1)(2”" - 1)¢£0)
(G4 2)hm — (3G +72)
2G + /4 @5;0?(, =0, (55)
2G4+ 2 _(m m
G (DE)OO() + (;m + 1)()% - 1)(p(()0)
G+ 1)+ (3G+2)
Nt OG0 g 56
G m - m
G+ v, 000+ (o +1) (A — nwy
(G+ )i —BG+1) (m
2G+ )\’ '{11()0.)0 = 0’ (57)
2G+ A 5 m
G q’(o oo+ (Am + 1) (Gow — 1)5”;0)
+(G+/L)/Lm+ (3G+/L) tpig)() :07 (58)

G

! m 7 207,(m 1 A .
75 (i + G 7 (EJFE){"’EOL
7 h A .

(59)
The general homogeneous solutions for the above dif-
ferential equations are
W™ = 4, cos(Ay 4 1)0 + A, sin(7,, + 1)0
+ k[B3 c08( 2 — 1)0 + By sin(Z,, — 1)0]
+ ky[E5 cos(4, — 1)0 + Eysin(Z,, — 1)0],  (60)

‘1’56") = B, c08(% 4+ 1)0 + By sin(Z, + 1)0
+ B3 cos(2,, — 1)0 + Bysin(4,, — 1)0, (61)

P — By cos(Ay + 1)0 — By sin(Z, + 1)0
+ kl [E4 COS(Em - 1)9 - §3 Sin(j'm - 1)6]’ (62)

QP%’) =E cos(Zy + 1)0 + E, sin(Z, + 1)0
+ E3c08(J — 1)0 + Ey sin(Z,, — 1)0, (63)

O\ = Ey08(7y + 1)0 — Ey sin(Z, + 1)0
+ ky[E4 c08(2y, — 1)0 — Essin(Z,, — 1)6], (64)

Qﬁg") = D ¢08(Ay 4 1)0 + Dy sin(Z, + 1)0
+ k4[B3 cos(2,, — 1)0 + Bysin(4,, — 1)6)]

+k5[E3 COS(}m — 1)9+E4 Sln(Am — 1)9] (65)
_ 60v _ _3(1=5v) 143
where ks = — s Gy ks = S 5a ke = =57, 5 and

k; = 4(31”7/":4”) ~The characteristic value 4, and the

coeflicients A,, A5, Dy, Dy, B;, and E, (i=1,2,3,4) are
determined from the boundary conditions along the two
radial edges of the wedge.

4.2. Characteristic equations

Four types of homogeneous boundary conditions
along a radial edge are considered here to elucidate the
stress singularities at the vertex of the wedge:

W:lp;-:w0:¢r:¢0:éz:07 (663)

clamped:

free: Q() r(; = M() M,() = M() = S() = 07 (66b)

type I simply supported: w =1y, = ¢, =¢.
=M, :M() :0, (660)

type II simply supported: w = M,y = M,
=M,y =My=S,=0. (66d)
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For simplicity, in the following, the clamped and free
boundary conditions are denoted by C and F, respec-
tively, while type I and type II simply supported
boundary conditions are represented by S(I) and S(II),
respectively.

Substituting Egs. (60)—(65) and Eq. (53) with n =0
into the prescribed boundary conditions along two ra-
dial edges yields twelve linear homogeneous algebraic
equations in A4, Az, Di, D,, B, and E, (i=1,2,3,4).
The vanishing determinant of the 12x12 coeﬂicient
matrix from the twelve equations yields the character-
istic equations for 4,.

Table 2 lists the characteristic equations for 10 com-
binations of the boundary conditions. These character-
istic equations are again not related to the thickness of
the plate. Again, Poisson’s ratio is the only material
property involved in these characteristic equations. Some
boundary conditions yield the same characteristic equa-
tions. The boundary conditions F_F, S(II)_S(I), and
S(I)_F lead to the same characteristic equation, while
the boundary conditions S(I)_F and S(I)_S(II) also share
the same characteristic equation. The C_F boundary
condition gives the same characteristic equation as does

Table 2
Characteristic equations for plates under bending
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Curve Boundary
C No. Condition )
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Fig. 3. Variation of minimum Re(/,) with vertex angle
(bending).

Case no. Boundary conditions Present Reddy’s refined plate theory
[23]

1 Simply supported (I)-simply supported (I) €OS A0 = Fcosa cos Au = = cos o

2 Clamped-free sin? A0 = ’47(;:)’)2 + 731 ssin’ o sin’ 2,0 = %

c 2% 4210 sin o

sin Ao = =450y

3 Simply supported (I)-free sin 22,0 = A, sin 2o Sin 22,0 = A, sin 20
sin 22,0 = ’”’“ %) in 20°

: S A _ /,,,(1+.)

4 Simply supported (I)-clamped sin 24,00 = = sin 24,0 = sin 20
sin 27,0 = lm sin 2o°

5 Free—free sin 4,0 = £, sina sin A,,0 = £, sino®
sin Ao = + M sin o®

6 Clamped—clamped sin A,,x = + ;1 5 sina sin 4,0 = i%sin o
sin 4,0 = £/, sino®

7 Simply supported (II)-simply supported (II)  sin A,,o = %4, sina sin ji,,,oz = 4/, sino®
COS A, 00 = Ecosa

8 Clamped-simply supported (II) sin’ 2,00 = 745;35)2 + 7314,7 sin o sin® 4,00 = %
Sin 24,00 = A, sin 2o

9 Simply supported (I)-simply supported (II) sin 27,0 = 4, sin 2o sin 2%,,,9: =, 5in 202
oS 22,00 = cos 2a

10 Simply supported (II)-free sin 4,0 = £, sina sin 0 = £, sin o
sin 24,00 = M sin 2o

Note: “a” means that the equation can be recovered in FSDPT.

“b” means that the equation can be regained in CPT.
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the C_S(II) boundary condition. Moreover, the charac-
teristic equations for the bending and extension cases are
the same for the boundary conditions C_F and C_C.
For comparison, Table 2 also summarizes the char-
acteristic equations corresponding to various boundary
conditions based on CPT [13], FSDPT [20,22] and
Reddy’s plate theory [23]. Notably, the characteristic
equations of Reddy’s plate theory include those of CPT
and FSDPT, except for those related to the S(II)
boundary condition, which does not apply in CPT.
Comparing the characteristic equations in Table 2
indicates that different plate theories usually yield dif-
ferent characteristic equations. Interestingly, the char-

2 S S e e
[ Curve Boundary Theory
- No.  condition
. 1 S@O_F HPTFSDPT
1.75 — s(_c cPT
I~ Sm_F  CPT
~ S(I).C HPT
R S(I)_C FSDPT
FF  HPTFSOPT
8 = S FF _CPT
125 —
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acteristic equations obtained herein are exactly the same
as those for FSDPT when the clamped boundary con-
dition is not imposed along the radial edges. The
boundary condition S(I)_S(I) results in the same char-
acteristic equation for different plate theories.

4.3. Singularities of stress resultants

Fig. 3 displays the minimum positive real part of the
characteristic value 1,, which varies with the vertex
angle of the wedge, «, and the boundary conditions. The
results were determined for v = 0.3. Recall that /,, with a
real part less than one, leads to the singularities of M,,

2
( h
C Boundary |
No.  Condition
175 C 1 CF  HPT
’ | R A A A WA S S - S A AR R A I 2 C_F FSDPT
(VA 0 O A il 3 CF cPT
15 [~ 4 CC HPT
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: E
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g
E T
- S
H] C 2
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0_1111|||1|||\|i|1i1| A O
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(b) Vertex Angle & (degree)
2 \s -
H \ I [ Curve Boundary  Theory
. A\ 1 No. Condition
A 1 S(I)_S(II) HPTFSDPT
1.75 o : \ \ ‘| ii 2 SI_SD Reddy's
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L “\ ] v
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Fig. 4. Comparison of minimum Re(4,) for different plate theories: (a) for boundary conditions S(I)_F, S(I)_C and F_F, (b) for
boundary conditions C_F and C_C, (c) for boundary conditions S(II)_S(II) and C_S(II) and (d) for boundary conditions S(I)_S(II)
and S(II)_F.
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My, M., My, M,, My and M, at the vertex. No singu-
larities arise for approximately o < 57°, while singular-
ities always exist for o > 180°. The boundary conditions
C_F and C_S(II) produce the strongest singularities at
57° < o < 109°, while the S(I)_S(I) boundary condition
leads to the strongest singularities for o« > 109°. The
boundary condition C_C yields the weakest singularities
among the considered boundary conditions.

Fig. 4a—d compare the minimum positive Re(/,)
obtained using different plate theories. Again, the results
were computed for v = 0.3. Recall that the characteristic
equations based on Reddy’s plate theory consist of those
of CPT and FSDPT except for those related to the S(IT)
boundary condition. Hence, the smallest positive Re(zm)
for Reddy’s plate theory in Fig. 4a and b is the smaller
of the characteristic values for CPT and FSDPT. The
boundary condition S(IT) does not occur in CPT, so Fig.
4c and d do not display the results for CPT.

The results in Fig. 4a reveal several important find-
ings. Under the boundary condition S(I)_F, CPT and
Reddy’s theory produce stronger singularities than does
FSDPT or Lo’s high-order plate theory (referred to as
HPT in the legend) for 90° < o < 180° and 270° < a <
360°. Lo’s theory generates the strongest singularities for
90° < o < 180° and 270° < o < 360° in the case of the
S(I)_C boundary condition. However, HPT and FSDPT
generate very similar minimum positive Re(4,,) for the
boundary condition S(I)_C. For a wedge with two free
radial edges, CPT produces weaker singularities at the
vertex than does FSDPT, Reddy’s theory or HPT.

Fig. 4b indicates that under the C_F boundary con-
dition, HPT yields a smaller positive Re(4,,) than the
other theories when o is below about 142°, while all the
theories generate almost identical orders of stress sin-
gularities at other angles. More severe singularities occur
with CPT and Reddy’s theory than with FSDPT and
HPT for the C_C boundary condition. Nevertheless, all
the theories share the same orders of stress singularities
when the vertex angle approaches 2.

Fig. 4c and d present the minimum positive Re(4,,)
for boundary conditions involving S(IT). Fig. 4c displays
that the minimum positive Re(/,) for Reddy’s theory
differs greatly from that for FSDPT and HPT under the
S(I)_S(II) boundary condition. The former produces
much stronger singularities than the latter. For the
C_S(II) boundary condition, Reddy’s theory and
FSDPT generate identical minimum positive Re(4,,)
except for 180° < o < 270°. For the C_S(II) boundary
condition, HPT produces stronger singularities than do
FSDPT and Reddy’s theory for « below roughly 142°,
while HPT and FSDPT produce almost identical mini-
mum positive Re(4,,) for other angles. Fig. 4d shows
that Reddy’s theory produces more severe singularities
at the vertex than do FSDPT and HPT for the boundary
conditions S(I)_S(II) and S(II)_F. Notably, when the
vertex angle approaches 27, the orders of stress singu-

larities obtained using Reddy’s theory are different from
those obtained using FSDPT and HPT in the cases of
the S(II)_S(I), SAI_F, and S(I)_S(II) boundary con-
ditions, while all the theories share the identical orders
of stress singularities for the other boundary conditions.

5. Concluding remarks

This work presented an eigenfunction expansion
approach to investigating corner singularities of stress
resultants in thick plates based on Lo’s high-order plate
theory. The singular behaviors of stresses at a sharp
corner of a plate under extension and bending were
thoroughly studied. The characteristic equations for
determining the orders of stress singularities were de-
rived for various combinations of boundary conditions
around the vertex of a wedge. The thickness of the plate
does not affect the orders of stress singularities, while
Poisson’s ratio is the only material property that can
possibly influence the singularity behavior.

For a wedge under extension, Lo’s high-order plate
theory and the theory that uses the generalized plane
stress assumption yield the same characteristic equation
for the F_F boundary condition along the radial edges
of the wedge, but they give different characteristic
equations for the cases of the C_F and C_C boundary
conditions. This difference may follow from the high-
order plate theory’s using the three-dimensional Hoo-
ke’s law for stress-strain relations. Nevertheless, these
different characteristic equations for the C_C boundary
condition produce very similar orders of stress singu-
larities when the Poisson’s ratio is 0.3, and generate al-
most identical singular orders for the C_F boundary
condition when the vertex angle exceeds roughly 142°.

For a plate (wedge) under bending, Lo’s high-order
plate theory gives the same characteristic equations as
FDSPT when the boundary conditions along the radial
edges do not involve clamping. Generally, different plate
theories, such as CPT, FSDPT, Reddy’s refined plate
theory, and Lo’s high-order plate theory, yield different
characteristic equations. However, these plate theories
yields identical characteristic equations for the S(I)_S(I)
boundary condition. For a plate with a Poisson’s ratio
of 0.3, Lo’s theory does not generate stress singularities
when the vertex angle is below 57°, while a singularity
always arises when the vertex angle exceeds n. More-
over, the boundary conditions C_F and C_S(II) produce
the strongest singularities for 57° < o < 109°, while the
S(I)_S(I) boundary condition leads to the strongest
singularities for o > 109°. Finally, it should be specially
noted that Lo’s theory does not produce the kind of
shear force singularity generated by CPT and FSDPT.

The characteristic equations and the numerical re-
sults shown here are very important for dealing with
thick plates having sharp corners when Lo’s theory is
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applied. The stress singularities at the corners have to be
appropriately taken into account to obtain accurate
solution when such numerical techniques as the finite
element method, the finite difference approach, and the
Ritz method are used to solve complex plate problems
with sharp corners. Notably, Lo’s theory may also
produce logarithmic stress singularities, and therefore
requires further research.
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