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Abstract

In the context of Lo’s high-order plate theory, the present work applies the eigenfunction expansion approach to

investigating the Williams-type stress singularities at the vertex of a wedge. The characteristic equations for determining

the orders of singularities in stress resultants are separately developed for plates under extension and bending. The

characteristic equations of plates under extension differ from those in generalized plane stress cases when the clamped

boundary condition is imposed along one of the radial edges around the vertex. For plates under bending, the presented

characteristic equations are identical to those of first-order shear deformation plate theory (FSDPT) if the clamping is

not involved in boundary conditions along the radial edges of the vertex. The orders of singularities in stress resultants,

which vary with the vertex angle, are plotted for various types of boundary conditions. The results are also compre-

hensively compared with those obtained according to other plate theories such as classical plate theory, FSDPT and

Reddy’s refined plate theory.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Plates are widely used components in engineering

applications in civil engineering, mechanical engineer-

ing, and aerospace engineering. The plate problem is a

three-dimensional problem, but several plate theories

have been proposed to simplify the three-dimensional

problem into a two-dimensional one. Various plate

theories were thoroughly reviewed in [1]. Re-entrant

corners, at which stress singularities exist, are often

encountered in analyses of plate problems. Although

stress singularities are not of the real world, the exact

nature of the singularities must be considered in a

numerical solution to obtain an accurate and effective

solution [2,3]. For example, Leissa et al. [4,5] analyzed

free vibrations of circular sectorial plates with re-entrant

corners or V-notches using the Ritz method, by intro-
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ducing the so-called corner functions into the admissible

functions to describe accurately the singular behaviors

of thin plates. In the finite element approach, singular

elements [6,7] are conventionally used to solve the

problems with stress singularities by describing the exact

order of stress singularities.

Many papers have addressed stress singularities at

sharp corners in planar and three-dimensional elasticity

theories (i.e., [8–12]), but only a few have considered

corner stress singularities in various plate theories.

According to the classical thin plate theory (CPT),

Williams and his co-workers [13–15] first used the ei-

genfunction expansion approach to comprehensively

investigate the corner stress singularities induced by

homogeneous boundary conditions around a corner for

isotropic plates and orthotropic plates. Rao [16] also

applied the eigenfunction expansion technique to iden-

tify stress singularities at the interface corners of bi-

material thin plates. Huang et al. [17] studied corner

stress singularities for a sector plate with simply sup-

ported radial edges by finding the closed-form solution
ed.
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Fig. 1. Coordinate system and positive displacement compo-

nents for a wedge.
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for the vibration of such a plate. Sinclair [18] elucidated

the occurrence of logarithmic stress singularities in

angular thin plates. Using the classical lamination the-

ory, Ojikutu et al. [19] applied a finite difference scheme

to determine the orders of stress singularities in a com-

posite wedge.

It is well known that shear deformation and rotary

inertial effects have to be considered for a moderately

thick plate. Within the context of first-order shear

deformation plate theory (FSDPT), Burton and Sinclair

[20] first examined the Williams-type corner stress sin-

gularities by introducing a stress potential. Huang et al.

[21] elucidated corner stress singularities in the closed-

form solution for the vibration of a sector plate with

simply supported radial edges. The results of Huang

et al. [21] indicate the incompleteness of the solution of

Burton and Sinclair [20], whose solution did not include

singularities of shear forces. Recently, Huang [22] rein-

vestigated corner stress singularities by adopting Xie

and Chaudhuri’s approach [12] to solve the equilibrium

equations in terms of displacement components, and

obtained the orders of moment and shear force singu-

larities identical to those obtained by Huang et al. [21]

for the case of a corner with simply supported boundary

conditions.

Although first-order shear deformation plate theory

has been frequently applied to analyze thick plate

problems, FSDPT has some limitations: the transverse

shear strains are assumed to be constant through the

thickness of the plate and a shear correction coefficient is

needed. Some high-order plate theories (HPT) have been

offered [1]. However, up to now, only one paper has

considered the corner stress singularities in HPT. Huang

[23] investigated the corner stress singularities by

applying Reddy’s refined plate theory [24], neglecting in-

plane displacement of the mid-plane; and revealed that

different plate theories (CPT, FSDPT and Reddy’s plate

theory) yields very different orders of stress singularities

at a corner, under a fixed set of boundary conditions.

Notably, Reddy’s refined plate theory is equivalent to

the high-order plate theories proposed by Schmidt [25]

and Krishna Murty [26].

There are other high-order plate theories that are not

equivalent to Reddy’s. Bert [27] critically evaluated of

various plate theories for nonlinear bending stress dis-

tribution and concluded that the plate theory of Lo et al.

[28] offered a very accurate prediction. Furthermore, this

high-order plate theory has also been used to study

various types of plate problems (i.e., [29–31]). This the-

ory differs from CPT, FSDPT and Reddy’s plate theory

not only in the assumed displacement fields, but also in

the relations between strains and stresses. Unlike the

generalized plane stress assumption of zero normal

stress in the thickness direction used in CPT, FSDPT

and Reddy’s plate theory, Lo’s theory uses the three-

dimensional Hooke’s law.
The aim of this work is to derive the characteristic

equations to determine the orders of Williams-type

stress singularities under various boundary conditions

around a corner, by applying Lo’s high-order plate

theory. The characteristic equations are derived by

adopting the approach of Hartranft and Sih [9] for

three-dimensional elasticity problems. This paper

investigates not only the singular behaviors of moments

and shear forces but also the singular behaviors of in-

plane forces. Notably, the singular behaviors of in-plane

forces in FSDPT and Reddy’s plate theory are the same

as those for plane stress theory, so they were not dis-

cussed in [22,23]. The variations of the orders of singu-

larities in stress resultants with the vertex angle of a

wedge are graphically represented for different boundary

conditions around the vertex. The current results are

also comprehensively compared with those for CPT,

FSDPT and Reddy’s refined plate theory. The obtained

singular behaviors may be used when sharp corners are

involved to solve free vibration, static deflection, stress

intensity and buckling problems for thick plates if Lo’s

high-order plate theory is applied.
2. Governing equations

As in Lo et al. [28] for Cartesian coordinates, the

displacement field for a sector plate (or a wedge) with

cylindrical coordinates as shown in Fig. 1 is given as

�uðr; h; zÞ ¼ uðr; hÞ þ zwrðr; hÞ þ z2nrðr; hÞ þ z3/rðr; hÞ;
ð1aÞ

�vðr; h; zÞ ¼ vðr; hÞ þ zwhðr; hÞ þ z2nhðr; hÞ þ z3/hðr; hÞ;
ð1bÞ

�wðr; h; zÞ ¼ wðr; hÞ þ zwzðr; hÞ þ z2nzðr; hÞ; ð1cÞ
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where �u;�v, and �w are the displacement components in

the r, h, and z directions, respectively. This displacement

field includes both in-plane and out-of-plane modes of

deformation. There are 11 r and h dependent displace-

ment functions, namely, u; v;w;wr;wh;wz; nr; nh; nz;/r,

and /h.

The principle of stationary potential energy is used to

derive equilibrium equations through a variational ap-

proach. Without assuming generalized plane stress

(i.e.,rzz ¼ 0), the three-dimensional Hooke’s law for

isotropic material is used. Eleven equilibrium equations

for the 11 displacement functions can be found as fol-

lows, without external loading:

Nr;r þ Nrh;h=r þ ðNr � NhÞ=r ¼ 0; ð2Þ
Nrh;r þ Nh;h=r þ 2Nrh=r ¼ 0; ð3Þ
Qr;r þ Qh;h=r þ Qr=r ¼ 0; ð4Þ
Mr;r þMrh;h=r þ ðMr �MhÞ=r � Qr ¼ 0; ð5Þ
Mrh;r þMh;h=r þ 2Mrh=r � Qh ¼ 0; ð6Þ
Rr;r þ Rh;h=r þ Rr=r � Nz ¼ 0; ð7Þ
Pr;r þ Prh;h=r þ ðPr � PhÞ=r � 2Rr ¼ 0; ð8Þ
Prh;r þ Ph;h=r þ 2Prh=r � 2Rh ¼ 0; ð9Þ
Sr;r þ Sh;h=r þ Sr=r � 2Mz ¼ 0; ð10Þ
Mr;r þMrh;h=r þ ðMr �MhÞ=r � 3Sr ¼ 0; ð11Þ
Mrh;r þMh;h=r þ 2Mrh=r � 3Sh ¼ 0; ð12Þ

where the subscript, ‘‘a,’’ denotes a partial differential

with respect to the independent variable a. In addition,

11 boundary conditions for the r- and h-constant edges
can also be derived. Along a radial edge, one member of

each of the following 11 products must be prescribed:

uNrh, vNh, wQh, wrMrh, whMh, wzRh, nrPrh, nhPh, nzSh,
/rMrh, and /hMh. For the r-constant edge, one member

of each of the following 11 products must also be pre-

scribed: uNr, vNrh, wQr, wrMr, whMrh, wzRr, nrPr, nhPrh,
nzSr, /rMr, and /hMrh. Notably, the governing equa-

tions can also be obtained by multiplying the well-

known three-dimensional equilibrium equations in

continuum mechanics with 1, z, z2, or z3, and integrating

them with respect to z. To the author’s knowledge, these

equilibrium equations (Eqs. (2)–(12)) have not been

shown before.

The resultant forces in Eqs. (2)–(12) are defined as

follows:
Nr Nh Nz Nrh Qr Qh

Mr Mh Mz Mrh Rr Rh

� �

¼
Z h=2

�h=2

1

z

� �
rrr rhh rzz rrh rrz rhzð Þdz;

ð13aÞ

Pr Ph Prh
Mr Mh Mrh

� �
¼

Z h=2

�h=2

z2

z3

� �
rrr rhh rrhð Þdz;

ð13bÞ

Sr Shð Þ ¼
Z h=2

�h=2
z2 rrz rhzð Þdz; ð13cÞ

where rij are stress components. From Eqs. (13a–c) and

using the three-dimensional Hooke’s law for isotropic

material and strain–displacement relations for infinites-

imal deformation, we can obtain the following relations

between the resultant forces and the displacement

functions:

Nr ¼ h½ðkþ 2GÞu;r þ kðuþ v;hÞ=r þ kwz�

þ h3

12
½ðkþ 2GÞnr;r þ kðnr þ nh;hÞ=r�; ð14aÞ

Nh ¼ h½ku;r þ ðkþ 2GÞðuþ v;hÞ=r þ kwz�

þ h3

12
½knr;r þ ðkþ 2GÞðnr þ nh;hÞ=r�; ð14bÞ

Nz ¼ h½ku;r þ kðuþ v;hÞ=r þ ðkþ 2GÞwz�

þ h3

12
½knr;r þ kðnr þ nh;hÞ=r�; ð14cÞ

Nrh ¼ Gh½v;r � ðv� u;hÞ=r� þ
Gh3

12
½nh;r � ðnh � nr;hÞ=r�;

ð14dÞ

Qr ¼ Ghðwr þ w;rÞ þ
Gh3

12
ð3/r þ nz;rÞ; ð14eÞ

Qh ¼ Ghðwh þ w;h=rÞ þ
Gh3

12
ð3/h þ nz;h=rÞ; ð14fÞ

Mr ¼
h3

12
½ðkþ 2GÞwr;r þ kðwr þ wh;hÞ=r þ 2knz�

þ h5

80
½ðkþ 2GÞ/r;r þ kð/r þ /h;hÞ=r�; ð14gÞ

Mh ¼
h3

12
½kwr;r þ ðkþ 2GÞðwr þ wh;hÞ=r þ 2knz�

þ h5

80
½k/r;r þ ðkþ 2GÞð/r þ /h;hÞ=r�; ð14hÞ
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Mz ¼
h3

12
½kwr;r þ kðwr þ wh;hÞ=r þ 2ðkþ 2GÞnz�

þ h5

80
½k/r;r þ kð/r þ /h;hÞ=r�; ð14iÞ
Mrh ¼
Gh3

12
½ðwr;h � whÞ=r þ wh;r�

þ Gh5

80
½ð/r;h � /hÞ=r þ /h;r�; ð14jÞ
Rr ¼
Gh3

12
ð2nr þ wz;rÞ; ð14kÞ
Rh ¼
Gh3

12
ð2nh þ wz;h=rÞ; ð14lÞ
Pr ¼
h3

12
½ðkþ 2GÞu;r þ kðuþ v;hÞ=r þ kwz�

þ h5

80
½ðkþ 2GÞnr;r þ kðnr þ nh;hÞ=r�; ð14mÞ
Ph ¼
h3

12
½ku;r þ ðkþ 2GÞðuþ v;hÞ=r þ kwz�

þ h5

80
½knr;r þ ðkþ 2GÞðnr þ nh;hÞ=r�; ð14nÞ
Prh ¼
Gh3

12
½v;r � ðv� u;hÞ=r� þ

Gh5

80
½nh;r � ðnh � nr;hÞ=r�;

ð14oÞ
Mr ¼
h5

80
½ðkþ 2GÞwr;r þ kðwr þ wh;hÞ=r þ 2knz�

þ h7

448
½ðkþ 2GÞ/r;r þ kð/r þ /h;hÞ=r�; ð14pÞ
Mh ¼
h5

80
½kwr;r þ ðkþ 2GÞðwr þ wh;hÞ=r þ 2knz�

þ h7

448
½k/r;r þ ðkþ 2GÞð/r þ /h;hÞ=r�; ð14qÞ
Mrh ¼
Gh5

80
½ðwr;h � whÞ=r þ wh;r�

þ Gh7

448
½ð/r;h � /hÞ=r þ /h;r�; ð14rÞ
Sr ¼
Gh3

12
ðwr þ w;rÞ þ

Gh5

80
ð3/r þ nz;rÞ; ð14sÞ
Sh ¼
Gh3

12
ðwh þ w;h=rÞ þ

Gh5

80
ð3/h þ nz;h=rÞ; ð14tÞ

where G is the shear modulus, k is one of the Lame’s

constants, and h is the thickness of the plate.
Substituting Eqs. (14a)–(14t) into Eqs. (2)–(12) with

careful arrangement yields the equilibrium equations in

terms of displacement functions:
u;rr þ
u;r
r
� u
r2

þ G
ð2Gþ kÞ

u;hh
r2

þ Gþ k
2Gþ k

v;rh
r

� 3Gþ k
2Gþ k

v;h
r2

þ k
2Gþ k

wz;r þ
h2

12
nr;rr

�
þ nr;r

r
� nr

r2
þ G
2Gþ k

nr;hh
r2

þ Gþ k
2Gþ k

nh;rh
r

� 3Gþ k
2Gþ k

nh;h
r2

�
¼ 0; ð15Þ

v;rr þ
v;r
r
� v
r2

þ 2Gþ k
G

v;hh
r2

þ kþ G
G

u;rh
r

þ 3Gþ k
G

u;h
r2

þ k
G

wz;h

r
þ h2

12
nh;rr

�
þ nh;r

r
� nh

r2
þ 2Gþ k

G
nh;hh
r2

þ kþ G
G

nr;rh
r

þ 3Gþ k
G

nr;h
r2

�
¼ 0; ð16Þ

w;rr þ
w;r

r
þ w;hh

r2
þ wr;r þ

wr

r
þ
wh;h

r
þ h2

12
nz;rr

�
þ nz;r

r

þ nz;hh
r2

þ 3 /r;r

�
þ /r

r
þ
/h;h

r

��
¼ 0; ð17Þ

� 12

h2
G

2Gþ k
ðw;r þ wrÞ þ wr;rr þ

wr;r

r
� wr

r2
þ G
2Gþ k

wr;hh

r2

þ Gþ k
2Gþ k

wh;rh

r
� 3Gþ k
2Gþ k

wh;h

r2
þ�Gþ 2k

2Gþ k
nz;r

� 3G
2Gþ k

/r þ
3h2

20
/r;rr

�
þ
/r;r

r
� /r

r2
þ G
2Gþ k

/r;hh

r2

þ Gþ k
2Gþ k

/h;rh

r
� 3Gþ k
2Gþ k

/h;h

r2

�
¼ 0; ð18Þ

� 12

h2
w;h

r

�
þ wh

�
þ wh;rr þ

wh;r

r
� wh

r2
þ 2Gþ k

G

wh;hh

r2

þ Gþ k
G

wr;rh

r
þ 3Gþ k

G

wr;h

r2
þ�Gþ 2k

G
nz;h
r

� 3/h

þ 3h2

20
/h;rr

�
þ
/h;r

r
� /h

r2
þ 2Gþ k

G

/h;hh

r2
þ Gþ k

G

/r;rh

r

þ 3Gþ k
G

/r;h

r2

�
¼ 0; ð19Þ

k
G

u;r
�

þ u
r
þ v;h

r

�
þ 2Gþ k

G
wz �

h2

12
wz;rr

�
þ
wz;r

r
þ
wz;hh

r2

þ 2G� k
G

nr;r

�
þ nr

r
þ nh;h

r

��
¼ 0; ð20Þ
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u;rr þ
u;r
r
� u
r2

þ G
2Gþ k

u;hh
r2

þ Gþ k
2Gþ k

v;rh
r

� 3Gþ k
2Gþ k

v;h
r2

� 2G� k
2Gþ k

wz;r �
4G

2Gþ k
nr þ

3h2

20
nr;rr

�
þ nr;r

r
� nr

r2

þ G
2Gþ k

nr;hh
r2

þ Gþ k
2Gþ k

nh;rh
r

� 3Gþ k
2Gþ k

nh;h
r2

�
¼ 0;

ð21Þ
v;rr þ
v;r
r
� v
r2

þ 2Gþ k
G

v;hh
r2

þ Gþ k
G

u;rh
r

þ 3Gþ k
G

u;h
r2

þ�2Gþ k
G

wz;h

r
� 4nh þ

3h2

20
nh;rr

�
þ nh;r

r
� nh

r2

þ 2Gþ k
G

nh;hh
r2

þ Gþ k
G

nr;rh
r

þ 3Gþ k
G

nr;h
r2

�
¼ 0;

ð22Þ
w;rr þ
w;r

r
þ w;hh

r2
þ G� 2k

G
wr;r

�
þ wr

r
þ
wh;h

r

�

� 4ð2Gþ kÞ
G

nz þ
3h2

20
nz;rr

�
þ nz;r

r
þ nz;hh

r2

þ 3G� 2k
G

/r;r

�
þ /r

r
þ
/h;h

r

��
¼ 0; ð23Þ
� 20G
h2ð2Gþ kÞ ðw;r þ wrÞ þ wr;rr þ

wr;r

r
� wr

r2
þ G
2Gþ k

wr;hh

r2

þ Gþ k
2Gþ k

wh;rh

r
� 3Gþ k
2Gþ k

wh;h

r2
� 3G� 2k

2Gþ k
nz;r

� 9G
2Gþ k

/r þ
5h2

28
/r;rr

�
þ
/r;r

r
� /r

r2
þ G
2Gþ k

/r;hh

r2

þ Gþ k
2Gþ k

/h;rh

r
� 3Gþ k
2Gþ k

/h;h

r2

�
¼ 0; ð24Þ
� 20

h2
w;h

r

�
þ wh

�
þ wh;rr þ

wh;r

r
� wh

r2
þ 2Gþ k

G

wh;hh

r2

þ Gþ k
G

wr;rh

r
þ 3Gþ k

G

wr;h

r2
þ�3Gþ 2k

G
nz;h
r

� 9/h

þ 5h2

28
/h;rr

�
þ
/h;r

r
� /h

r2
þ 2Gþ k

G

/h;hh

r2
þ Gþ k

G

/r;rh

r

þ 3Gþ k
G

/r;h

r2

�
¼ 0; ð25Þ

The above equations were developed with the aid of the

symbolic logic software program MATHMATICA.

Note that Eqs. (15)–(25) partially decouple such that

the equations can be combined into two groups. One

group comprises Eqs. (15), (16), (20), (21), and (22) for

the displacement functions u; v;wz; nr, and nh, which are

related to the extension of the middle plane of the plate.

The second group consists of the other equations, which

describe the behavior of a plate under bending. Conse-

quently, in the following, we investigate the stress sin-

gularities for these two groups separately.
3. Stress singularities for plates under extension

Here, a plate under extension means that in-plane

loading is applied to the plate and may cause the

extension of the middle plane of the plate. Some of Eqs.

(15), (16), (20), (21), and (22) can be further simplified

through some mathematic manipulations. From Eqs.

(15) and (21), we can obtain

2G
2Gþ k

wz;r þ
4G

2Gþ k
nr �

h2

15
nr;rr

�
þ nr;r

r
� nr

r2

þ G
2Gþ k

nr;hh
r2

þ Gþ k
2Gþ k

nh;rh
r

� 3Gþ k
2Gþ k

nh;h
r2

�
¼ 0:

ð26Þ

From Eqs. (16) and (22), the following equation can be

obtained

2

r
wz;h þ 4nh �

h2

15
nh;rr

�
þ nh;r

r
� nh

r2
þ 2Gþ k

G
nh;hh
r2

þ kþ G
G

nr;rh
r

þ 3Gþ k
G

nr;h
r2

�
¼ 0: ð27Þ

Consequently, the stress singularities for plates under

extension will be investigated by solving Eqs. (15), (16),

(20), (26), and (27) and employing some combinations of

boundary conditions along radial edges.

3.1. Construction of the series solution

An eigenfunction expansion approach similar to that

used in [23] is applied to solve Eqs. (15), (16), (20), (26),

and (27). Let

u ¼
X1
m¼0

X1
n¼0;2

rkmþnU ðmÞ
n ðh; kmÞ;

v ¼
X1
m¼0

X1
n¼0;2

rkmþnV ðmÞ
n ðh; kmÞ;
nr ¼
X1
m¼0

X1
n¼0;2

rkmþnXðmÞ
rn ðh; kmÞ;

nh ¼
X1
m¼0

X1
n¼0;2

rkmþnXðmÞ
hn ðh; kmÞ;

and

wz ¼
X1
m¼0

X1
n¼0;2

rkmþnþ1WðmÞ
zn ðh; kmÞ; ð28Þ

where the characteristic values km are assumed to be

constants and can be complex numbers. Notably, odd n
in Eq. (28) will not give any additional solutions;

therefore, they are excluded.

The regularity conditions at r ¼ 0 require �u, �v, and �w
to be finite; therefore, the real part of km has to exceed
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zero. Consequently, the relations between stress resul-

tants and displacement functions given in Eqs. (14a)–

(14d) and (14k)–(14o) reveal that the solution given by

Eq. (28) yields the singularities for Nr, Nh, Nz, Nrh, Pr, Ph,
and Prh at r ¼ 0 when the real part of km is below one.

Nevertheless, no singularities occur for the stress resul-

tants Rr and Rh.

Substituting Eq. (28) into Eqs. (15), (16), (20), (26),

and (27) and requiring that the coefficients of r with

different orders equal zero yield the following recurrent

equations for U ðmÞ
n , V ðmÞ

n , XðmÞ
rn , XðmÞ

hn , and WðmÞ
zn :
h2

15
ðkm

�
þ nþ 3Þðkm þ nþ 1ÞXðmÞ

rðnþ2Þ þ
G

2Gþ k
XðmÞ

rðnþ2Þ;hh

þ Gþ k
2Gþ k

ðkm þ nþ 2ÞXðmÞ
hðnþ2Þ;h �

3Gþ k
2Gþ k

XðmÞ
hðnþ2Þ;h

�

¼ 2G
2Gþ k

ðkm þ nþ 1ÞWðmÞ
zn þ 4G

2Gþ k
XðmÞ

rn ; ð29Þ

h2

15
ðkm

�
þ nþ 3Þðkm þ nþ 1ÞXðmÞ

hðnþ2Þ þ
2Gþ k

G
XðmÞ

hðnþ2Þ;hh

þ Gþ k
G

ðkm þ nþ 2ÞXðmÞ
rðnþ2Þ;h þ

3Gþ k
G

XðmÞ
rðnþ2Þ;h

�

¼ � 2WðmÞ
zn;h

n
þ 4XðmÞ

hn

o
; ð30Þ

ðkm þ nþ 3Þðkm þ nþ 1ÞU ðmÞ
nþ2 þ

G
2Gþ k

U ðmÞ
nþ2;hh

þ ðGþ kÞðkm þ nþ 2Þ � ð3Gþ kÞ
2Gþ k

V ðmÞ
nþ2;h

þ h2

12
ðkm

�
þ nþ 3Þðkm þ nþ 1ÞXðmÞ

rðnþ2Þ

þ G
2Gþ k

XðmÞ
rðnþ2Þ;hh

þ ðGþ kÞðkm þ nþ 2Þ � ð3Gþ kÞ
2Gþ k

XðmÞ
hðnþ2Þ;h

�

¼ � k
2Gþ k

ðkm þ nþ 1ÞWðmÞ
zn ; ð31Þ

ðkm þ nþ 3Þðkm þ nþ 1ÞV ðmÞ
nþ2 þ

2Gþ k
G

V ðmÞ
nþ2;hh

þ ðGþ kÞðkm þ nþ 2Þ þ ð3Gþ kÞ
G

U ðmÞ
nþ2;h

þ h2

12
ðkm

�
þ nþ 3Þðkm þ nþ 1ÞXðmÞ

hðnþ2Þ

þ 2Gþ k
G

XðmÞ
hðnþ2Þ;hh

þ ðGþ kÞðkm þ nþ 2Þ þ ð3Gþ kÞ
G

XðmÞ
rðnþ2Þ;h

�

¼ � k
G
WðmÞ

zn;h; ð32Þ
k
G
½ðkm þ nþ 3ÞU ðmÞ

nþ2 þ V ðmÞ
nþ2;h� �

h2

12
ðkm

�
þ nþ 3Þ2

WðmÞ
zðnþ2Þ þWðmÞ

zðnþ2Þ;hh þ
2G� k

G
½ðkm þ nþ 3ÞXðmÞ

rðnþ2Þ

þ XðmÞ
hðnþ2Þ;h�

�
¼ � 2Gþ k

G
WðmÞ

zn ; ð33Þ

and

G
2Gþ k

XðmÞ
r0;hh þ ðkm þ 1Þðkm � 1ÞXðmÞ

r0

þ ðGþ kÞkm � ð3Gþ kÞ
2Gþ k

XðmÞ
h0;h ¼ 0; ð34Þ

2Gþ k
G

XðmÞ
h0;hh þ ðkm þ 1Þðkm � 1ÞXðmÞ

h0

þ ðGþ kÞkm þ ð3Gþ kÞ
G

XðmÞ
r0;h ¼ 0; ð35Þ

G
2Gþ k

U ðmÞ
0;hh þ ðkm þ 1Þðkm � 1ÞU ðmÞ

0

þ ðGþ kÞkm � ð3Gþ kÞ
2Gþ k

V ðmÞ
0;h

þ h2

12

G
2Gþ k

XðmÞ
r0;hh

�
þ ðkm þ 1Þðkm � 1ÞXðmÞ

r0

þ ðGþ kÞkm � ð3Gþ kÞ
2Gþ k

XðmÞ
h0;h

�
¼ 0; ð36Þ

2Gþ k
G

V ðmÞ
0;hh þ ðkm þ 1Þðkm � 1ÞV ðmÞ

0

þ ðGþ kÞkm þ ð3Gþ kÞ
G

U ðmÞ
0;h

þ h2

12

2Gþ k
G

XðmÞ
h0;hh

�
þ ðkm þ 1Þðkm � 1ÞXðmÞ

h0

þ ðGþ kÞkm þ ð3Gþ kÞ
G

XðmÞ
r0;h

�
¼ 0; ð37Þ

k
G

ðkm
n

þ 1ÞU ðmÞ
0 þ V ðmÞ

0;h

o
� h2

12
WðmÞ

z0;hh

�
þ ðkm þ 1Þ2WðmÞ

z0

þ 2G� k
G

½XðmÞ
h0;h þ ðkm þ 1ÞXðmÞ

r0 �
�

¼ 0: ð38Þ

Through lengthy and tedious mathematical operations,

one can find the general solutions for Eqs. (34)–(38)

given as follows:

U ðmÞ
0 ¼ A1 cosðkm þ 1Þhþ A2 sinðkm þ 1Þh

þ A3 cosðkm � 1Þhþ A4 sinðkm � 1Þh; ð39Þ

V ðmÞ
0 ¼ A2 cosðkm þ 1Þh� A1 sinðkm þ 1Þh

þ k1½A4 cosðkm � 1Þh� A3 sinðkm � 1Þh�; ð40Þ

XðmÞ
r0 ¼ C1 cosðkm þ 1Þhþ C2 sinðkm þ 1Þh

þ C3 cosðkm � 1Þhþ C4 sinðkm � 1Þh; ð41Þ
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XðmÞ
h0 ¼ C2 cosðkm þ 1Þh� C1 sinðkm þ 1Þh

þ k1½C4 cosðkm � 1Þh� C3 sinðkm � 1Þh�; ð42Þ
WðmÞ
z0 ¼ E1 cosðkm þ 1Þhþ E2 sinðkm þ 1Þh

þ k2½A3 cosðkm � 1Þhþ A4 sinðkm � 1Þh�
þ k3½C3 cosðkm � 1Þhþ C4 sinðkm � 1Þh�; ð43Þ

where k1 ¼ 3þkm�4t
�3þkmþ4t, k2 ¼ �24t

h2ð�3þkmþ4tÞ, k3 ¼
2ð1�3tÞ

�3þkmþ4t, and t

is the Poisson’s ratio. In Eqs. (39)–(43), the character-

istic value km and the coefficients E1;E2;Ai, and Ci

(i ¼ 1; 2; 3; 4) are determined by satisfying the boundary

conditions along radial edges.

U ðmÞ
n , V ðmÞ

n , XðmÞ
rn , XðmÞ

hn , and WðmÞ
zn for nP 1 are deter-

mined by solving Eqs. (29)–(33). However, these solu-

tions are not related to the singularities of the stress

resultants, so they will not be considered further here.

Notably, one can also start to construct the series

solution by assuming the following form of the general

solutions for Eqs. (15), (16), (20), (26), and (27):

u ¼
X1
m¼0

X1
n¼0;2

rkmþnþl1U ðmÞ
n ðh; kmÞ;

v ¼
X1
m¼0

X1
n¼0;2

rkmþnþl2V ðmÞ
n ðh; kmÞ;

nr ¼
X1
m¼0

X1
n¼0;2

rkmþnþl3XðmÞ
rn ðh; kmÞ;

nh ¼
X1
m¼0

X1
n¼0;2

rkmþnþl4XðmÞ
hn ðh; kmÞ;

wz ¼
X1
m¼0

X1
n¼0;2

rkmþnþl5WðmÞ
zn ðh; kmÞ; ð44Þ

where li ði ¼ 1; 2; . . . ; 5Þ are either one or zero. Follow-

ing the above procedure of constructing the solutions,

one discovers that the solution form given by Eq. (28) is

the only one resulting in the Williams-type singularities

of stress resultants.

3.2. Characteristic equations and singularities for stress

resultants

As mentioned earlier, the characteristic values, km,
are determined by satisfying the boundary conditions
Table 1

Characteristic equations for plates under extension

Case no. Boundary conditions Present

1 Free–free sin kma ¼ �km sin

2 Clamped–clamped sin kma ¼ � km
�3þ4t

3 Clamped–free sin2 kma ¼ �4ð�1þ
�3þ4
along the radial edges of a corner. Two types of

boundary conditions along a radial edge are considered

here:

free: Nh; Nrh; Rh; Ph; and Prh ¼ 0; ð45aÞ
clamped: u; v; nr; nh; and wz ¼ 0: ð45bÞ

These two cases can be combined to give three distinct

problems concerning a wedge.

Substituting Eqs. (39)–(43) and Eq. (28), with n ¼ 0,

into Eqs. (45a) or (45b) with h ¼ 0 and a, where a is the

vertex angle of the wedge, yields the vanishing deter-

minant of a 10 · 10 coefficient matrix. Then, the char-

acteristic equations for km can be established. Notably,

when the same boundary conditions are imposed along

the two radial edges, the symmetry of the problem can

be taken advantage of, by considering �a=26 h6 a=2,
and separately considering the symmetric and anti-

symmetric parts of the solution given in Eqs. (39)–(43).

For example, considering the symmetric behavior of a

wedge with two fixed radial edges, Eqs. (39)–(43), with

A2 ¼ A4 ¼ C2 ¼ C4 ¼ E2 ¼ 0, are substituted into Eq.

(45b), the determinant of the resulting 5 · 5 coefficient

matrix is expanded, and

sin kma

�
� km
3� 4t

sin a

�
cosðkm þ 1Þa=2 ¼ 0 ð46Þ

is obtained. However, cosðkm þ 1Þa=2 ¼ 0 yields

A1 ¼ A3 ¼ C1 ¼ C3 ¼ 0 and does not give any stress

singularities at the vertex of the wedge. Accordingly, it is

discarded. Table 1 lists the characteristic equations for

three possible combinations of boundary conditions

along the two radial edges. These characteristic equa-

tions are not related to the thickness of the plate. Pois-

son’s ratio is the only material property involved in these

characteristic equations.

For comparison, Table 1 also summarizes the char-

acteristic equations given by Williams [8] for generalized

plane stress in thin plates. The characteristic equations

in this work differ from Williams’ when the clamped

boundary condition is applied, because Lo’s plate theory

does not use the generalized plane stress condition. Note

that if t in the characteristic equations presented herein

is replaced by t=1þ t, then the resulting characteristic

equations are identical to Williams’.
Thin plate theory [8]

a sin kma ¼ �km sin a

sin a sin kma ¼ �ð 1þt
�3þtÞkm sin a

tÞ2
t þ k2m

�3þ4t sin
2 a sin2 kma ¼ 4

ð3�tÞð1þtÞ � ð1þt
3�tÞk

2
m sin

2 a



Fig. 2. Variation of minimum ReðkmÞ with vertex angle

(extension).
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Fig. 2 shows the smallest positive real part of km
varies with the vertex angle ðaÞ for three combinations of

boundary conditions after the roots of the characteristic

equations given in Table 1 are numerically determined.

The results were computed for t ¼ 0:3. In the legend of

Fig. 2, ‘‘C’’ and ‘‘F’’ denote clamped and free boundary

conditions, respectively.

Fig. 2 depicts that no singularities exist for Nr, Nh, Nz,

Nrh, Pr, Ph, and Prh when the vertex angle is less than

approximately 57�. However, singularities always arise

for a > 180�, regardless of which of the three combina-

tions of boundary conditions around the vertex is con-

sidered. Among the three combinations of boundary

conditions considered here, boundary condition C_F

provides the strongest singularity. As the vertex angle

approaches 2p (i.e., a crack), the singular order of stress

resultants at the tip of the crack approaches r�3=4 for the

boundary condition C_F, while the boundary conditions

C_C and F_F yield an order of r�1=2. Comparing the

present results with Williams’ reveals that the orders of

stress singularities associated with Lo’s plate theory are

very close to those according to generalized plane stress

theory, except those that involve the boundary condition

C_F with approximately a < 142�.
4. Stress singularities for plates in bending

Recall that Eqs. (17)–(19) and (23)–(25) are for plates

under bending. Through mathematical manipulation

of these equations, we can obtain the following equa-

tions, which are simpler than Eqs. (17)–(19) and (23)–

(25):
2k
G

wr;r

�
þ wr

r
þ
wh;h

r

�
þ 4ð2Gþ kÞ

G
nz

� h2

15
nz;rr

�
þ nz;r

r
þ nz;hh

r2

�

þ h2

20

�4Gþ 6k
G

/r;r

�
þ /r

r
þ
/h;h

r

�
¼ 0; ð47Þ
8G
h2ð2Gþ kÞ ðw;r þ wrÞ þ

2G
2Gþ k

nz;r þ
6G

2Gþ k
/r

� h2

35
/r;rr

�
þ
/r;r

r
� /r

r2
þ G
2Gþ k

/r;hh

r2
þ Gþ k
2Gþ k

/h;rh

r

� 3Gþ k
2Gþ k

/h;h

r2

�
¼ 0; ð48Þ
8

h2
w;h

r

�
þ wh

�
þ 2nz;h

r
þ 6/h �

h2

35
/h;rr

�
þ
/h;r

r
� /h

r2

þ 2Gþ k
G

/h;hh

r2
þ Gþ k

G

/r;rh

r
þ 3Gþ k

G

/r;h

r2

�
¼ 0;

ð49Þ
6

7h2
w;h

r

�
þ wh

�
þ 19

70

�
þ 2k
35G

�
nz;h
r

þ 57

70
/h

þ 1

35
/h;rr

�
þ
/h;r

r
� /h

r2
þ 2Gþ k

G

/h;hh

r2
þ Gþ k

G

/r;rh

r

þ 3Gþ k
G

/r;h

r2

�
¼ 0; ð50Þ
6G
7h2ð2Gþ kÞ ðw;r þ wrÞ þ

19G
70

�
þ 2k
35

�
1

2Gþ k
nz;r

þ 57G
70ð2Gþ kÞ/r þ

1

35
/r;rr

�
þ
/r;r

r
� /r

r2
þ G
2Gþ k

/r;hh

r2

þ Gþ k
2Gþ k

/h;rh

r
� 3Gþ k
2Gþ k

/h;h

r2

�
¼ 0; ð51Þ
1

15
w;rr

�
þ w;r

r
þ w;hh

r2

�
þ 1

15

�
þ k
6G

�
wr;r

�
þ wr

r
þ
wh;h

r

�

þ 2Gþ k
3G

nz þ
h2k
40G

/r;r

�
þ /r

r
þ
/h;h

r

�
¼ 0: ð52Þ

For example, Eq. (47) was obtained by subtracting Eq.

(23) from Eq. (17), while Eq. (48) was obtained by

subtracting Eq. (24) from Eq. (18).

4.1. Construction of the series solution

To establish the series solution for Eqs. (47)–(52)

using the eigenfunction expansion approach, the fol-

lowing solution form is used:
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w ¼
X1
m¼0

X1
n¼0;2

r
�kmþnþ1W ðmÞ

n ðh; �kmÞ;

nz ¼
X1
m¼0

X1
n¼0;2

r
�kmþnþ1XðmÞ

zn ðh; �kmÞ;

wr ¼
X1
m¼0

X1
n¼0;2

r
�kmþnWðmÞ

rn ðh; �kmÞ;

wh ¼
X1
m¼0

X1
n¼0;2

r
�kmþnWðmÞ

hn ðh; �kmÞ;

/r ¼
X1
m¼0

X1
n¼0;2

r
�kmþnUðmÞ

rn ðh; �kmÞ;

/h ¼
X1
m¼0

X1
n¼0;2

r
�kmþnUðmÞ

hn ðh; �kmÞ;

ð53Þ

where the characteristic values �km are again assumed to

be constants and can be complex numbers. It is also

noted that odd n in the above equation will not produce

any additional solution, so they are not included.

The real part of �km must exceed zero to satisfy the

regularity conditions at the apex of the wedge. Notably,
�km with a real part smaller than one leads to singularities

of Mr, Mh, Mz, Mrh, Mr, Mh and Mrh at the vertex but no

singularities for Qr, Qh, Sr and Sh, which can be dis-

covered from the relationships between these stress

resultants and the displacement functions given in Eqs.

(14e)–(14j) and (14p)–(14t).

Substituting Eq. (53) into Eqs. (47)–(52), the van-

ishing of the coefficients corresponding to the smallest

order in r for each equation results in

2k
G

ð�km þ 1ÞWðmÞ
r0 þ 2k

G
Wh0;h �

h2

15
ðXðmÞ

z0;hh þ ð�km þ 1Þ2XðmÞ
z0 Þ

þ h2

20

�4Gþ 6k
G

ð�km
n

þ 1ÞUðmÞ
r0 þ UðmÞ

h0;h

o
¼ 0; ð54Þ

G
2Gþ k

UðmÞ
r0;hh þ ð�km þ 1Þð�km � 1ÞUðmÞ

r0

þ ðGþ kÞ�km � ð3Gþ kÞ
2Gþ k

UðmÞ
h0;h ¼ 0; ð55Þ

2Gþ k
G

UðmÞ
h0;hh þ ð�km þ 1Þð�km � 1ÞUðmÞ

h0

þ ðGþ kÞ�km þ ð3Gþ kÞ
G

UðmÞ
r0;h ¼ 0; ð56Þ

G
2Gþ k

WðmÞ
r0;hh þ ð�km þ 1Þð�km � 1ÞWðmÞ

r0

þ ðGþ kÞ�km � ð3Gþ kÞ
2Gþ k

WðmÞ
h0;h ¼ 0; ð57Þ

2Gþ k
G

WðmÞ
h0;hh þ ð�km þ 1Þð�km � 1ÞWðmÞ

h0

þ ðGþ kÞ�km þ ð3Gþ kÞ
G

WðmÞ
r0;h ¼ 0; ð58Þ
1

15
W ðmÞ

0;hh

n
þ ð�km þ 1Þ2W ðmÞ

0

o
þ 1

15

�
þ k
6G

�
WðmÞ

h0;h

n

þ ð�km þ 1ÞWðmÞ
r0

o
þ h2k
40G

UðmÞ
h0;h

n
þ ð�km þ 1ÞUðmÞ

r0

o
¼ 0:

ð59Þ

The general homogeneous solutions for the above dif-

ferential equations are

W ðmÞ
0 ¼ eA1 cosð�km þ 1Þhþ eA2 sinð�km þ 1Þh

þ k6½eB3 cosð�km � 1Þhþ eB4 sinð�km � 1Þh�
þ k7½eE3 cosð�km � 1Þhþ eE4 sinð�km � 1Þh�; ð60Þ

WðmÞ
r0 ¼ eB1 cosð�km þ 1Þhþ eB2 sinð�km þ 1Þh

þ eB3 cosð�km � 1Þhþ eB4 sinð�km � 1Þh; ð61Þ

WðmÞ
h0 ¼ eB2 cosð�km þ 1Þh� eB1 sinð�km þ 1Þh

þ k1½eB4 cosð�km � 1Þh� eB3 sinð�km � 1Þh�; ð62Þ

UðmÞ
r0 ¼ eE1 cosð�km þ 1Þhþ eE2 sinð�km þ 1Þh

þ eE3 cosð�km � 1Þhþ eE4 sinð�km � 1Þh; ð63Þ

UðmÞ
h0 ¼ eE2 cosð�km þ 1Þh� eE1 sinð�km þ 1Þh

þ k1½eE4 cosð�km � 1Þh� eE3 sinð�km � 1Þh�; ð64Þ

XðmÞ
z0 ¼ eD1 cosð�km þ 1Þhþ eD2 sinð�km þ 1Þh

þ k4½eB3 cosð�km � 1Þhþ eB4 sinð�km � 1Þh�
þ k5½eE3 cosð�km � 1Þhþ eE4 sinð�km � 1Þh�; ð65Þ

where k4 ¼ � 60t
h2ð�3þ�kmþ4tÞ, k5 ¼

3ð1�5tÞ
�3þ�kmþ4t

, k6 ¼ 1þ3t
�3þ�kmþ4t

, and

k7 ¼ 3th2

4ð�3þ�kmþ4tÞ. The characteristic value �km and the

coefficients eA1, eA2, eD1, eD2, eBi, and eEi ði ¼ 1; 2; 3; 4Þ are
determined from the boundary conditions along the two

radial edges of the wedge.

4.2. Characteristic equations

Four types of homogeneous boundary conditions

along a radial edge are considered here to elucidate the

stress singularities at the vertex of the wedge:

clamped: w ¼ wr ¼ wh ¼ /r ¼ /h ¼ nz ¼ 0; ð66aÞ

free: Qh ¼ Mrh ¼ Mh ¼ Mrh ¼ Mh ¼ Sh ¼ 0; ð66bÞ

type I simply supported: w ¼ wr ¼ /r ¼ nz

¼ Mh ¼ Mh ¼ 0; ð66cÞ

type II simply supported: w ¼ Mrh ¼ Mh

¼ Mrh ¼ Mh ¼ Sh ¼ 0: ð66dÞ



Fig. 3. Variation of minimum Reð�kmÞ with vertex angle

(bending).
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For simplicity, in the following, the clamped and free

boundary conditions are denoted by C and F, respec-

tively, while type I and type II simply supported

boundary conditions are represented by S(I) and S(II),

respectively.

Substituting Eqs. (60)–(65) and Eq. (53) with n ¼ 0

into the prescribed boundary conditions along two ra-

dial edges yields twelve linear homogeneous algebraic

equations in eA1, eA2, eD1, eD2, eBi, and eEi ði ¼ 1; 2; 3; 4Þ.
The vanishing determinant of the 12 · 12 coefficient

matrix from the twelve equations yields the character-

istic equations for �km.
Table 2 lists the characteristic equations for 10 com-

binations of the boundary conditions. These character-

istic equations are again not related to the thickness of

the plate. Again, Poisson’s ratio is the only material

property involved in these characteristic equations. Some

boundary conditions yield the same characteristic equa-

tions. The boundary conditions F_F, S(II)_S(II), and

S(II)_F lead to the same characteristic equation, while

the boundary conditions S(I)_F and S(I)_S(II) also share

the same characteristic equation. The C_F boundary

condition gives the same characteristic equation as does
Table 2

Characteristic equations for plates under bending

Case no. Boundary conditions Present Reddy’s refined plate theory

[23]

1 Simply supported (I)–simply supported (I) cos �kma ¼ � cos a cos �ka ¼ � cos aa;b

2 Clamped–free sin2 �kma ¼ �4ð�1þtÞ2
�3þ4t þ �k2m

�3þ4t sin
2 a sin2 �kma ¼ 4��k2mð1þtÞ2 sin2 a

ð3�tÞð1þtÞ

a

sin2 �kma ¼ 4��k2mð1�tÞ2 sin2 a
ð3þtÞð1�tÞ

b

3 Simply supported (I)–free sin 2�kma ¼ �km sin 2a sin 2�kma ¼ �km sin 2aa

sin 2�kma ¼ �kmð1�tÞ
�3�t sin 2ab

4 Simply supported (I)–clamped sin 2�kma ¼ �km
�3þ4t sin 2a sin 2�kma ¼ �kmð1þtÞ

�3þt sin 2aa

sin 2�kma ¼ �km sin 2ab

5 Free–free sin �kma ¼ ��km sin a sin �kma ¼ ��km sin aa

sin �kma ¼ � �kmð1�tÞ
�3�t sin ab

6 Clamped–clamped sin �kma ¼ � �km
�3þ4t sin a sin �kma ¼ � �kmð1þtÞ

�3þt sin aa

sin �kma ¼ ��km sin ab

7 Simply supported (II)–simply supported (II) sin �kma ¼ ��km sin a sin �kma ¼ ��km sin aa

cos �kma ¼ � cos a

8 Clamped–simply supported (II) sin2 �kma ¼ �4ð�1þtÞ2
�3þ4t þ �k2m

�3þ4t sin
2 a sin2 �kma ¼ 4��k2mð1þtÞ2 sin2 a

ð3�tÞð1þtÞ

a

sin 2�kma ¼ �km sin 2a

9 Simply supported (I)–simply supported (II) sin 2�kma ¼ �km sin 2a sin 2�kma ¼ �km sin 2aa

cos 2�kma ¼ cos 2a

10 Simply supported (II)–free sin �kma ¼ ��km sin a sin �kma ¼ ��km sin aa

sin 2�kma ¼ �kmð�1þtÞ
3þt sin 2a

Note: ‘‘a’’ means that the equation can be recovered in FSDPT.

‘‘b’’ means that the equation can be regained in CPT.
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the C_S(II) boundary condition. Moreover, the charac-

teristic equations for the bending and extension cases are

the same for the boundary conditions C_F and C_C.

For comparison, Table 2 also summarizes the char-

acteristic equations corresponding to various boundary

conditions based on CPT [13], FSDPT [20,22] and

Reddy’s plate theory [23]. Notably, the characteristic

equations of Reddy’s plate theory include those of CPT

and FSDPT, except for those related to the S(II)

boundary condition, which does not apply in CPT.

Comparing the characteristic equations in Table 2

indicates that different plate theories usually yield dif-

ferent characteristic equations. Interestingly, the char-
Fig. 4. Comparison of minimum Reð�kmÞ for different plate theories:

boundary conditions C_F and C_C, (c) for boundary conditions S(II

and S(II)_F.
acteristic equations obtained herein are exactly the same

as those for FSDPT when the clamped boundary con-

dition is not imposed along the radial edges. The

boundary condition S(I)_S(I) results in the same char-

acteristic equation for different plate theories.

4.3. Singularities of stress resultants

Fig. 3 displays the minimum positive real part of the

characteristic value �km, which varies with the vertex

angle of the wedge, a, and the boundary conditions. The

results were determined for t ¼ 0:3. Recall that �km with a

real part less than one, leads to the singularities of Mr,
(a) for boundary conditions S(I)_F, S(I)_C and F_F, (b) for

)_S(II) and C_S(II) and (d) for boundary conditions S(I)_S(II)
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Mh, Mz, Mrh, Mr, Mh and Mrh at the vertex. No singu-

larities arise for approximately a < 57�, while singular-

ities always exist for a > 180�. The boundary conditions

C_F and C_S(II) produce the strongest singularities at

57� < a < 109�, while the S(I)_S(I) boundary condition

leads to the strongest singularities for aP 109�. The

boundary condition C_C yields the weakest singularities

among the considered boundary conditions.

Fig. 4a–d compare the minimum positive Reð�kmÞ
obtained using different plate theories. Again, the results

were computed for t ¼ 0:3. Recall that the characteristic

equations based on Reddy’s plate theory consist of those

of CPT and FSDPT except for those related to the S(II)

boundary condition. Hence, the smallest positive Reð�kmÞ
for Reddy’s plate theory in Fig. 4a and b is the smaller

of the characteristic values for CPT and FSDPT. The

boundary condition S(II) does not occur in CPT, so Fig.

4c and d do not display the results for CPT.

The results in Fig. 4a reveal several important find-

ings. Under the boundary condition S(I)_F, CPT and

Reddy’s theory produce stronger singularities than does

FSDPT or Lo’s high-order plate theory (referred to as

HPT in the legend) for 90� < a < 180� and 270� < a <
360�. Lo’s theory generates the strongest singularities for
90� < a < 180� and 270� < a < 360� in the case of the

S(I)_C boundary condition. However, HPT and FSDPT

generate very similar minimum positive Re(�km) for the

boundary condition S(I)_C. For a wedge with two free

radial edges, CPT produces weaker singularities at the

vertex than does FSDPT, Reddy’s theory or HPT.

Fig. 4b indicates that under the C_F boundary con-

dition, HPT yields a smaller positive Re(�km) than the

other theories when a is below about 142�, while all the

theories generate almost identical orders of stress sin-

gularities at other angles. More severe singularities occur

with CPT and Reddy’s theory than with FSDPT and

HPT for the C_C boundary condition. Nevertheless, all

the theories share the same orders of stress singularities

when the vertex angle approaches 2p.
Fig. 4c and d present the minimum positive Re(�km)

for boundary conditions involving S(II). Fig. 4c displays

that the minimum positive Re(�km) for Reddy’s theory

differs greatly from that for FSDPT and HPT under the

S(II)_S(II) boundary condition. The former produces

much stronger singularities than the latter. For the

C_S(II) boundary condition, Reddy’s theory and

FSDPT generate identical minimum positive Re(�km)
except for 180� < a < 270�. For the C_S(II) boundary

condition, HPT produces stronger singularities than do

FSDPT and Reddy’s theory for a below roughly 142�,
while HPT and FSDPT produce almost identical mini-

mum positive Re(�km) for other angles. Fig. 4d shows

that Reddy’s theory produces more severe singularities

at the vertex than do FSDPT and HPT for the boundary

conditions S(I)_S(II) and S(II)_F. Notably, when the

vertex angle approaches 2p, the orders of stress singu-
larities obtained using Reddy’s theory are different from

those obtained using FSDPT and HPT in the cases of

the S(II)_S(II), S(II)_F, and S(I)_S(II) boundary con-

ditions, while all the theories share the identical orders

of stress singularities for the other boundary conditions.
5. Concluding remarks

This work presented an eigenfunction expansion

approach to investigating corner singularities of stress

resultants in thick plates based on Lo’s high-order plate

theory. The singular behaviors of stresses at a sharp

corner of a plate under extension and bending were

thoroughly studied. The characteristic equations for

determining the orders of stress singularities were de-

rived for various combinations of boundary conditions

around the vertex of a wedge. The thickness of the plate

does not affect the orders of stress singularities, while

Poisson’s ratio is the only material property that can

possibly influence the singularity behavior.

For a wedge under extension, Lo’s high-order plate

theory and the theory that uses the generalized plane

stress assumption yield the same characteristic equation

for the F_F boundary condition along the radial edges

of the wedge, but they give different characteristic

equations for the cases of the C_F and C_C boundary

conditions. This difference may follow from the high-

order plate theory’s using the three-dimensional Hoo-

ke’s law for stress-strain relations. Nevertheless, these

different characteristic equations for the C_C boundary

condition produce very similar orders of stress singu-

larities when the Poisson’s ratio is 0.3, and generate al-

most identical singular orders for the C_F boundary

condition when the vertex angle exceeds roughly 142�.
For a plate (wedge) under bending, Lo’s high-order

plate theory gives the same characteristic equations as

FDSPT when the boundary conditions along the radial

edges do not involve clamping. Generally, different plate

theories, such as CPT, FSDPT, Reddy’s refined plate

theory, and Lo’s high-order plate theory, yield different

characteristic equations. However, these plate theories

yields identical characteristic equations for the S(I)_S(I)

boundary condition. For a plate with a Poisson’s ratio

of 0.3, Lo’s theory does not generate stress singularities

when the vertex angle is below 57�, while a singularity

always arises when the vertex angle exceeds p. More-

over, the boundary conditions C_F and C_S(II) produce

the strongest singularities for 57� < a < 109�, while the

S(I)_S(I) boundary condition leads to the strongest

singularities for aP 109�. Finally, it should be specially

noted that Lo’s theory does not produce the kind of

shear force singularity generated by CPT and FSDPT.

The characteristic equations and the numerical re-

sults shown here are very important for dealing with

thick plates having sharp corners when Lo’s theory is
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applied. The stress singularities at the corners have to be

appropriately taken into account to obtain accurate

solution when such numerical techniques as the finite

element method, the finite difference approach, and the

Ritz method are used to solve complex plate problems

with sharp corners. Notably, Lo’s theory may also

produce logarithmic stress singularities, and therefore

requires further research.
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