
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997 741

A Comparison of Block-Matching Algorithms
Mapped to Systolic-Array Implementation

Sheu-Chih Cheng and Hsueh-Ming Hang,Senior Member, IEEE

Abstract—This paper presents an evaluation of several well-
known block-matching motion estimation algorithms from a
system-level very large scale integration (VLSI) design viewpoint.
Because a straightforward block-matching algorithm (BMA) de-
mands a very large amount of computing power, many fast
algorithms have been developed. However, these fast algorithms
are often designed to merely reduce arithmetic operations without
considering their overall performance in VLSI implementation.
In this paper, three criteria are used to compare various block-
matching algorithms: 1) silicon area, 2) input/output requirement,
and 3) image quality. A basic systolic array architecture is
chosen to implement all the selected algorithms. The purpose of
this study is to compare these representative BMA’s using the
aforementioned criteria. The advantages/disadvantages of these
algorithms in terms of their hardware tradeoff are discussed. The
methodology and results presented here provide useful guidelines
to system designers in selecting a BMA for VLSI implementation.

Index Terms—Architecture mapping, block matching, motion
estimation, MPEG-2, systolic array.

I. INTRODUCTION

I N designing a very large scale integration (VLSI) chip,
there are tradeoffs among various chip cost and perfor-

mance factors particularly from the system design view-
point [1]. Since the chip design and layout process is time-
consuming and expensive, it is very desirable to be able
to predict the overall system performance of a high-level
algorithm before its circuit layout is fully deployed. The focus
of this paper is to discuss the impact of different block-
matching motion estimation (ME) algorithms on VLSI design.
Because of the complexity of the entire motion estimation
system, decision in choosing one algorithm versus the other
algorithms is often empirical and heuristic. For example, the
previous motion estimator design often pays attention to only
the processor complexity; however, the I/O bandwidth and
the on-chip memory size are as important in determining the
manufacturing cost.

Motion estimation is an essential element in a standard video
coder such as H.261, MPEG1, and MPEG2. A straightfor-
ward implementation of a block-matching motion estimation
algorithm requires a large amount of hardware. Manyfast
block-matching algorithms have thus been devised to reduce
the computational complexity without degrading the estima-

Manuscript received September 30, 1996; revised January 31, 1997. This
work was supported in part by the National Science Council of R.O.C. under
Grant NSC86-2221-E-009-023.

The authors are with the Department of Electronics Engineering and Center
for Telecommunications Research, National Chiao Tung University, Hsinchu,
Taiwan 300, R.O.C.

Publisher Item Identifier S 1051-8215(97)05884-9.

tion performance significantly. Examples of fast algorithms
are described in [2]–[6]. We choose six well-known algo-
rithms and analyze them in depth in this paper. They are
the exhaustive search, the three-step search, the modified log
search, the conjugate direction search, the alternating pixel-
decimation search, and the subsampled motion-field search.
Although these algorithms are devised to use fewer arithmetic
operations, they may need additional control circuits and
data buffers and thus may not lead to lower cost in VLSI
manufacturing.

The aforementioned algorithms are chosen not only because
of their popularity, but also because they are rather generic and
they represent different ways of cutting down the computation.
The decimation search reduces the number of data points in
each matching calculation, while the other searches try to
reduce the number of search points using different techniques
(explained in Section II). There are many variations of these
algorithms. For example, we could compare the partial results
against a properly selected threshold and terminate the search-
ing process in the middle to save computation [22]. In addition,
there exist many other block-matching algorithms (BMA’s)
that we cannot cover here. One structure worth mentioning
is the hierarchical algorithm that performs a search first on a
loose grid and then on a denser grid [4], [5]. The hierarchical
steps can be more than two. In a way, it is a variation
of a sequential search (like three-step search). Nevertheless,
the analysis described in this paper can be applied to the
algorithms not included here.

The hardware implementation of motion estimation algo-
rithms can be classified into programmable video signal pro-
cessor (VSP) structures and dedicated (special purpose) struc-
tures. Programmable VSP structures [7]–[9] allow a higher
degree of flexibility; however, they often have a lower through-
put rate, higher hardware cost [10], and generally require
additional software development effort. Using today’s fab-
rication technology, dedicated structures seem to be more
economical for mass production. Therefore, we consider only
the dedicated structure in this paper.

Typically, a specific motion estimation algorithm is first
chosen and then a specific hardware architecture is designed
for this chosen algorithm. For example, several hardware
implementations are designed for the exhaustive search algo-
rithm [11]–[13] and a couple of implementations for the fast
algorithms [14], [15]. Also, a few programmable architectures
[16]–[18] have been proposed and designed to implement
both the exhaustive and some selected fast search algorithms.
Usually, these architectures require additional special control

1051–8215/97$10.00 1997 IEEE

742 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

circuit and memory management to set up data paths for
different algorithms.

For a specific algorithm such as the sequential (or hierar-
chical) algorithm, a well-designed programmable architecture
could be rather efficient [18]. However, identifying theoptimal
VLSI design for every BMA of interest is a very difficult
task. One possible approach is collecting all the existing
architectures and comparing them. For example, Pirschet
al. [10] has an excellent summary of the existing ME chips
(but their analysis is focused on the comparison of different
implementations). Even if following this approach, we are not
sure we could claim our choice for Algorithm A is asoptimal
as that for Algorithm B. Hence, a different approach is taken.
We choose a hardware structure as the common ground for
comparing all algorithms. Because of its regular layout, high
throughput rate, and massive parallel computing capability,
systolic array is a very popular and good candidate structure
in designing motion estimation chips [11], [19]. Therefore, we
also use the systolic array architecture as the basic building
block in implementing various block-matching algorithms.

Our goal in this paper is evaluating block matching algo-
rithms from mainly the hardware viewpoint. We try to point
out that the traditional measure of algorithms, the number of
operations, does not match well the VLSI performance. Also,
the known fast algorithms have significant VLSI advantages
only for large search ranges and large size pictures. We do not
intend to find thebestalgorithm and architecture combination
in this study. We compare only algorithms using essentially the
same basic hardware structure. Some of the above observations
were touched in the past, but we have not seen reports with
thorough studies.

The information contained in this paper may serve as a
reference or guide to system designers. Given a specific appli-
cation (picture size, search range, etc.) a hardware designer
can start with a couple of the more promising algorithms
and tune the architecture/hardware layout for that specific
algorithm. An algorithm (and architecture) designer can also
learn from this study what elements are more critical in a BMA
for improving VLSI performance and thus designs algorithms
accordingly. Furthermore, this work is an attempt to propose
a methodology in evaluating algorithms from both VLSI
implementation viewpoint and compression performance. A
similar study can be applied to the other block matching
algorithms and other types of signal processing algorithms.
On the other hand, our approach is limited by the varying
efficiency of the proposed structure on different algorithms.
However, our survey on the existing BMA VLSI structures
indicates that this set of implementations should be able to
show the distinct advantages and disadvantages of various
algorithms in VLSI implementation.

The rest of this paper is organized as follows. Section II
describes the block-matching algorithms examined in this
paper. Section III discusses the systolic array structures for
the evaluated algorithms and their computational complexity.
In Section IV, we look into the silicon cost and I/O configu-
ration issues for different algorithms in various applications.
Section V shows the simulation results of picture quality of
the examined algorithms. Section VI briefly summarizes our

TABLE I
MOTION ESTIMATION PARAMETERS FORCCIR-601AND CIF PICTURES

work in this paper.

II. BLOCK-MATCHING MOTION ESTIMATION ALGORITHMS

Block-matching motion estimation is an effective method
in reducing the temporal redundancy in video coding and
thus is adopted by many video coding standards [2], [5]. The
basic operation of a block-matching algorithm is picking up
the best candidate image block in the reference image frame
by calculating and comparing the matching functions between
the current image block and all the candidate blocks inside
a confined area in the reference frame. The sizes of image
block and confined area (so-calledsearch area) have a strong
impact on the performance and the computational complexity
of the motion estimation results. A small size block offers a
good approximation to the moving object, but it also produces
a large amount of redundant motion information data. Small
size blocks are easily interfered by random noise. On the
other hand, large size blocks may produce a less accurate
motion vector since a large block may contain two or more
objects moving at different speeds and directions. Block sizes
of 8 8 or 16 16 are generally considered adequate from
experiments, and thus the international video standards adopt
the 16 16 block size, which is used in this study.

To decide an adequate search area is somewhat involved.
It depends on both the contents of pictures and the coding
system structure. For video-phone applications, small pictures
and slow motion are expected, and thus the search range is
assumed to be small (around 7 or 15 pels). On the other hand,
in MPEG coding, large pictures are expected and the temporal
distance between two predictive frames (P-frames) is often
greater than a couple of frames [20]. Hence, a large search
range (say, 47 pels) is necessary. In addition to block size and
search range, picture size and frame rate also have a strong
impact on the VLSI cost.

In summary, the important parameters used in the following
discussions are: i) picture size (horizontal and vertical), ;
ii) picture rate (frames/s), ; iii) block size, ; iv) search
range, ; v) external memory bus width, W; and vi) the
number of image blocks per second which is derived from
the first three parameters: . The
parameters used in this paper are listed in Table I for CCIR-
601 and common intermediate format (CIF) pictures. The
former picture format is targeting at digital television (DTV)
applications and the latter, video-phone applications.

Another important factor that affects the block-matching
hardware complexity is the matching criterion. To reduce com-

CHENG AND HANG: COMPARISON OF BLOCK-MATCHING ALGORITHMS MAPPED TO SYSTOLIC-ARRAY IMPLEMENTATION 743

putational complexity, the mean absolute difference (MAD)
criterion is adopted by almost all the VLSI designs in the
market and in the literature. It (MAD) provides a motion
estimation performance nearly comparable to the more compli-
cated matching criteria such as the mean square error [2], [5].
Some fast search algorithms calculate the frame differences
only on the decimated pels (described in Sections II-E and II-
F). For convenience, we thus define two terms:SAD (sum of
absolute difference)is referred to the ordinary MAD performed
on every pel inside a block, andSDAD (sum of decimated
absolute difference)is the MAD that applies to only the
decimated pels. That is, for

SAD AD (1)

SDAD AD (2)

AD

where and are the pel
values in the current block and in the reference (frame) block,
respectively, is the pel coordinate relative to the current
block location, is the (backward) motion vector, and
is the time difference (temporal distance) between the current
and the reference frames.

The final motion vector is the one that minimizes the MAD
criterion

SAD or SDAD

(3)

In general, we need subtractions, absolute operations,
and additions to compute one point of SAD .
For SDAD, all the aforementioned operations are reduced by
a factor determined by the chosen decimation pattern. In the
alternate pixel decimation algorithm described in this paper,
the reducing factor is four. For the values in the range
of interest such as , can be reasonably
approximated by . The total number of operations needed
to compute the MAD criterion is an important attribute of an
ME algorithm. In the rest of this section, we briefly describe
the operations of the motion estimation algorithms examined
in this paper.

A. Exhaustive Search

The most straightforward searching algorithm is the ex-
haustive search (full search), which evaluates all the possible
displacements (motion vector candidates) inside the search
area. In each block time interval, SAD search points
and two-term comparisons are calculated to find the
best match. In other words, its computational complexity is
on the order of , .

B. Three-Step Search

This popular fast search algorithm is proposed by Kogaet
al. [21]. It starts with a step size slightly larger than half of

the search range. In the first step, the algorithm compares and
selects the minimum SAD from the nine candidate locations
located on the corners and the midpoints of the square borders
one step size away from the center. The minimum point
becomes the center of the next step. In the second step, the
step size is halved and eight new candidates located again on
the square borders are calculated. The new minimum point
is obtained by comparing the SAD values of the new eight
candidates together with the previous minimum. The above
procedure is repeated until the step size is smaller than one
and the final motion vector is thus found. Unfortunately, unlike
the exhaustive search algorithm, the candidate points are data-
dependent—the current step result decides the to-be-evaluated
search points in the next step. Therefore, each step has to be
performed sequentially. In total, there are search
steps and SAD search points for each image
block. It is clear that the number of search steps and points
must be an integer and thus denotes the least integer
greater than or equal to in the rest of this paper.

C. Modified Log Search

This fast search algorithm is proposed by Kappagantula and
Rao [22]. The procedure in this algorithm is similar to that of
the three-step search but each search step is broken into two
substeps. In the first substep, five search points are evaluated.
They consist of the central point of a diamond-shape region
and the four search points located one step size away from the
central point along the horizontal and vertical directions. If
the minimum-SAD position is the central point, the step size
is halved and the above process is repeated again. Otherwise,
one of the corner points is the minimum point and the second
substep is activated. Two additional search points located one
step size away from the minimum point are evaluated. These
two new search points are located vertically if the first substep
minimum point is on the horizontal line. Otherwise, two
horizontal search points are used. The minimum among these
three search points becomes the center of the new diamond-
shape region with a step size equal to half of the previous step
size. Then, the next search step starts. The above procedure
continues until the step size is smaller than one. The number
of SAD calculations in this algorithm varies depending upon
the location of the final motion vector. However, we need to
consider the worst case situation in VLSI design, and thus
there are SAD operations for each block.

D. Conjugate Direction Search

The conjugate direction search algorithm suggested by
Srinivasan and Rao [23] breaks the two-dimensional (2-D)
search problem into two one-dimensional (1-D) problems.
Assuming that the search starts with the horizontal direction,
we first compute the SAD of three candidates located one next
to the other. The center candidate is typically the zero motion
vector. Then, compare and select the minimum SAD from
these three values. If the minimum-SAD position is not the
central point, it becomes the new center and the position imme-
diately next to it along the minimum-SAD direction is included
as the new candidate. The above procedure is repeated until

744 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

Fig. 1. Decimated patterns for computing SDAD.

Fig. 2. Alternating patterns of pels in the search region for the APD
technique.

the minimum-SAD position is the central point or we hit the
search area boundary. In either case, the horizontal direction
is completed and we turn to the vertical direction. Starting
from the current minimum-SAD point, the same procedure is
applied to find the vertical minimum point. The number of
operations in this algorithm depends on the location of the
final motion vector. In the worst case, there are SAD
operations for each block. When the search range () is very
large, its computational complexity is on the order of, ,
larger than that of the three-step search whose computational
complexity is .

E. Alternating Pixel-Decimation (APD) Search

This algorithm is proposed by Liu and Zaccarin [24].
It differs from the previous fast algorithms in that it tries
to reduce the calculations involved in each SAD operation
but maintains the overall motion estimation performance at
a comparable level. The basic concept is to decimate the
pels inside a block and compute the differences only on the
decimated pels. This algorithm can be explained by using
Figs. 1 and 2. Fig. 1 shows a block of 8 8 pels with pels
labeleda, b, c, and d in a regular manner. The decimation
patternA is made of all thea pels. PatternsB, C, andD are
similarly defined. Fig. 2 shows the pels in (a portion of) the
search area. They are labeled1, 2, 3, and4. For example, when
a 1 pel is a motion vector candidate, patternA is used as the
decimation pattern to pick up the pels in calculating SDAD.
Similarly, patternsB, C, and D are the decimation patterns
for the candidates located at pels2, 3, and4, respectively. For
each of these four decimation patterns, the minimum SDAD
candidate is retained. Then, for each decimation pattern, the
full SAD is computed using all the block pels. The best among
them becomes the final motion vector.

Fig. 3. White and shaded blocks in the SAPD technique.

Fig. 4. Block diagram of a general motion estimation chip.

In the above procedure, SDAD operations are
needed for one block. In addition, four SAD operations are
calculated for the final motion vector selection. If the four SAD
operations are neglected for large search ranges, the computa-
tional complexity of this algorithm is roughly a quarter of that
of the exhaustive search. Hence, its computational complexity
is , the same as the exhaustive search.

F. Subsampled Motion-Field Search with Alternating
Pixel-Decimation Patterns (SAPD)

This algorithm combines both motion field subsampling and
the alternating pixel decimation (APD) techniques [24]. There
are two stages. At the first stage, we estimate half of the motion
vectors using the previous APD technique. The locations of the
estimated blocks are indicated by the shaded blocks in Fig. 3.
At the second stage, the motion vector of a white block is
calculated based on the four vectors of its adjacent shaded
blocks. For example, the motion vector assigned to the white
block A in Fig. 3 is one of the motion vectors of blocksB, C,
D, or E that gives the smallest SAD value.

In the original formulation [24], blockA could be used as a
subblockto increase the motion estimation accuracy. However,
in order to match the MPEG coding structure, blockA in
this paper has the size of the basic motion estimation unit,

. Thus, for a shaded block, SDAD and
four SAD operations are needed to compute its motion vector.
In addition, four SAD operations are needed for each white
block. The total computational complexity of this algorithm is
approximately reduced by a factor of eight in comparing with

CHENG AND HANG: COMPARISON OF BLOCK-MATCHING ALGORITHMS MAPPED TO SYSTOLIC-ARRAY IMPLEMENTATION 745

Fig. 5. Block diagram of the 2-D systolic architecture for block-matching.

Fig. 6. Block diagram of the one-column systolic architecture.

the exhaustive search. But its computational complexity is still
, the same as the exhaustive search.

III. VLSI I MPLEMENTATION AND COMPLEXITY ANALYSIS

Several important factors have to be considered in choosing
an algorithm for VLSI implementation, for example, i) chip
area, ii) I/O bandwidth, and iii) image quality. We will discuss
the first two factors in this and the next sections and the
third factor in Section V. In implementing block-matching
algorithms, the chip area can be approximated by

(4)

where is the area used for the computation kernel,
is for the on-chip data buffer, and is for the

system controller. Because of the massive local connection
and parallel data flow in the systolic array structure, a system
controller is needed to generate data addresses and flow
control signals. Particularly, computing SAD requires specific
ordering of data. Therefore, our system controller contains an
address generator and a data flow controller.

Due to the very massive data used in computing motion
vectors, it becomes impractical for the processor array to

access image data directly from the external memory for it
results in a very high bus bandwidth requirement. In addition,
the search areas of nearby blocks overlap significantly; hence,
an internal reference-data buffer is introduced to relieve some
of the external memory access. The block diagram of our
motion estimation system with internal buffer is shown in
Fig. 4. The memory controller reads in the current and the
reference image blocks from external DRAM and stores them
in the current-block bufferand the reference-frame buffer,
respectively. In this paper, the I/O configuration is referred to
as the number of I/O pads and the I/O speed requirement which
is constrained by the external memory speed. The external
memory bandwidth depends on the size of the internal buffer.
This topic will be elaborated in Section IV.

A. Mapping Algorithms to Architectures

Systolic architectures are good candidates for VLSI real-
ization of block-matching algorithms with a regular search
procedure [19]. A typical systolic array consists of local
connections only and thus does not require significant control
circuitry overhead. In this paper, a basic systolic array archi-
tecture is adopted for estimating the silicon area of various
block-matching algorithms. Its general structure is shown in

746 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

Fig. 5. The processor array (2-D array architecture) consists
of 16 16 processor elements (PE’s) or 8 8 PE’s if the
APD search technique is in use. If the number of PE’s ()
is less than or equal to 16, then this system is reduced to
one-column architecture as shown in Fig. 6. If the estimated

is smaller than the size of a 2-D array but larger
than that of a 1-D array (one-column), we then use multiple
one-column circuits. In the multiple one-column structures,
independent data are processed by several one-column circuits
simultaneously. Similarly, multiple 2-D arrays are used when

is several times larger than the size of a 2-D array. Four
types of computing nodes are used in this structure. Their
circuits are shown in Fig. 7. The subtraction, absolute value,
and partial sum addition in SAD or SDAD are performed by
the PE node. The summation operations are done by the ADD
nodes. The CMP nodes compare the matching criteria of the
candidates and select the minimum one. The AP node is used
to execute the operations of both ADD and CMP when the
speed requirement is not critical.

In the 2-D array structure, the current block data,
, are first loaded into each PE

node. Then, the reference block data, , slide in
from the left. The calculation starts from the upper-left
corner of the processor array. During the first clock cycle,
the node computes the absolute difference between

and . The result passes to the PE node below.
During the second clock cycle, the node computes
the absolute difference between and and
adds its result to the partial sum propagated from above. In
the meanwhile, node computes the absolute difference
between and , and node computes the
absolute difference between and . After 16 clock
cycles, the first partial sum,
is completed and placed into the left-most ADD node. In
the following clock cycle, this partial sum is passed to the
immediate right ADD node and added together with the
second partial sum, . The total
sum (SAD) for the motion vector candidate is completed
and propagated to CMP in the following 14 clock cycles. This
SAD is compared against the stored SAD resulting from the
previous comparison, and then the smaller one is kept in CMP
for future comparison. The preceding computation procedure
is repeated until all possible candidates are compared and
the final motion vector is obtained. The one-column array
computation procedure is similar. Some algorithm variations
can be implemented with a small addition to the CMP node.
For example, the CMP node can be modified to a two-stage
structure that compares the calculated SAD with a preselected
threshold value at the first stage and then performs the ordinary
comparison against the previous matched value. The search
process terminates if the calculated SAD is smaller than
the threshold. Thus, we realize the “stopping in the middle”
feature.

It is clear that an address generator is needed to generate
the proper addresses to retrieve data, and then these data have
to be distributed properly by a data flow controller (DFC)
to the processor array at correct timing. Fig. 8 shows the
block diagram of DFC. The output data are broadcasted to

(a)

(b)

(c)

(d)

Fig. 7. Schematic diagrams of PE, ADD, CMP, and AP node elements. (a)
block diagram of “PE” node, (b) block diagram of “ADD” node, (c) block
diagram of “CMP” node, and (d) block diagram of “AP” node.

the assigned PE nodes during the current clock cycle and
then propagated to successive PE nodes in the next clock.
The efficiency (EFF) of an array architecture is defined to be
the ratio of the active operating time (of all PE’s) to the total
operating time (including the idling time for data loading).

The silicon area of the computation kernel used in this
architecture can be approximated by

(5)

where , , and are the numbers of PE, ADD,
and CMP nodes, respectively; is the silicon area of
one PE, and and are similarly defined. In this
architecture, the number of PE’s is decided by clock rate,
picture size, and search range. If one-column array is sufficient

CHENG AND HANG: COMPARISON OF BLOCK-MATCHING ALGORITHMS MAPPED TO SYSTOLIC-ARRAY IMPLEMENTATION 747

Fig. 8. Block diagram of data flow controller.

to process the data in time, it will be chosen to increase the
utilization efficiency (EFF) of PE. Otherwise, the 2-D array is
forced into use. The PE number, , is also restricted by the
maximum system clock. To match the available IC fabrication
technology, the maximum clock rate is assumed to be 100
MHz for DTV and 40 MHz for video-phone applications.

Search areas of adjacent blocks overlap quite significantly.
This overlapped area data can be stored inside the internal (on-
chip) buffer to reduce external memory accesses (bandwidth).
Three types of internal buffers for the exhaustive and the APD
searches are under evaluation: i) Type A buffer whose size
equals to the search area, pels; ii) Type
B buffer that has the size of one slice of search area; that is,
the height of block (or subblock) times the width of search
area, pels; and iii) Type C buffer that
has the size of a block or a subblock, pels.
Note that the parameter in the above expressions equals one
for SAD calculation and equals two for SDAD (pel decimation
technique). For the other search schemes, Type A and C buffers
are still meaningful. However, the Type B buffer defined here
does not always make sense for sequential searches. Therefore,
we may modify the size and the function of the Type B buffer
when appropriate. Generally, we assume that the Type B buffer
can hold the data needed for processing one search step. This,
in fact, in certain cases does not save either computation or
bus bandwidth as will be noted.

A picture frame contains picture slices and each slice
contains blocks. In order to derive the I/O bandwidth
requirement, we first calculate the size of the new data to

be loaded from the external memory down to the on-chip
buffer for each block. As shown in Fig. 9(a), the newly loaded
data size for the Type A buffer is pels when
the next block is on the same picture slice. For processing
one picture slice, we need to load the complete buffer at
the beginning of a slice; thus, the total external data access
is approximately
pels if boundary block cases are neglected. Then, for the
entire picture, the total external data access is approximately

pels.
Similar analysis can be carried over to the cases of Type B
and C buffers as shown in Fig. 9(b) and (c). The exact sizes
of Type B and C buffers depend on the search algorithms
and will be discussed in the next subsection. Either one-
port or two-port on-chip memory can be used as the internal
buffer. The two-port buffer has the advantage of having higher
processor utilization efficiency because data read and write can
be executed in the same clock cycle. The drawback is it costs
more silicon area to implement.

B. Computational Complexity

In this section, we discuss the computational complexity
of the motion estimation algorithms described in Section II.
There are two stages in loading the reference block data from
the off-chip RAM to the systolic array. In the first or the
external stage, data are moved from the off-chip RAM to
the on-chip buffer, and in the second or theinternal stage,
data are moved from the on-chip buffer to the systolic array

748 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

(a)

(b)

(c)

Fig. 9. The block diagrams of overlapped area for three types of buffers. (a)
Type A buffer, (b) Type B buffer size, and (c) Type C buffer.

processors. There are two issues involved here. The first issue
is the external bus bandwidth requirement so that the external
data can meet the demand of the processors, and the second
issue is the idling time (stuffing cycles) that the processors are
waiting for the data to arrive. Suppose that the first issue has
been solved; that is, the external bus bandwidth is wide enough
to supply data in time. Under this assumption we investigate
the data lag issue.

The total delay time between the go-signal and the time that
the processors produce the first output is the external stage
delay plus the internal stage delay. This delay time may not
introduce processor stuffing cycles if the data can be preloaded
into the pipeline and no gap is needed in and between search
processes. This is true for the exhaustive search since the data
(reference blocks) locations are known ahead of time, and thus
the next block data can be preloaded during the current block
interval. In the sequential searches, however, the data locations
to be used at the next search step are unknown until the current
step is completed. In other words, we start loading data to

the systolic array after the previous search step is completed.
There is a gap (stuffing cycles) between two search steps. At
the beginning of a new search, it takes cycles to fill up
the entire systolic array and then two more cycles are needed
for the summation and comparison operations. Therefore, our
estimate of the stuffing cycles between the completion of the
current search step and the first output of the next search
step is . There are specific processing structures that
can shorten this gap [17]; however, we do not fine-tune our
structure for this purpose because our goal is not to design
theoptimalhardware architecture for any particular algorithm.
In reality, a couple of cycles should be added due to the
external stage delay, but they are small in number and thus
are neglected.

1) Exhaustive Search:The computational kernel of this
algorithm needs to perform at least SAD operations
in each block time. If we use only one PE, the clock rate
has to be higher than 93.57 GHz for encoding a CCIR-601
4 : 2 : 2 resolution picture with a search range of 47 pels. This
is impractical. Typically, the maximum clock speed is upper
bounded by the fabricating technology and the I/O limitation.
To make our analysis more general, we assume an-MHz
clock being employed. The efficiency of systolic architecture
for the exhaustive search is nearly 100% because the input
data flow is regular and can be arranged in advance. In this
case, the number of total PE operations per second is

(6)

where is the number of SAD operations for one image
block, and is the number of blocks per second (in Table I).
Thus, the number of PE nodes required in this structure under
the maximum system clock constraint becomes

(7)

Here, we assume that multiple copies of systolic structures
can be used. The actual value is rounded up to the
nearest multiple of 16 (2-D array) or 16 (1-D array). The
exact number is determined by the picture size, search range,
etc., as to be discussed in the following subsections.

We next consider the on-chip (internal) buffer size and the
data input rate. The Type A buffer situation has been discussed
in Section III-A. In the case of Type B buffer, it first stores
horizontal lines and it then loads one horizontal line when the
search moves vertically down one line. In total, additional
horizontal lines have to be loaded for the entire search area and
each line contains pels. Therefore, the total input data
for computing one block is about pels. For the Type
C buffer, there are candidate positions on the same line,
and in this situation, the new data size for the next position on
the same line is pels. Furthermore, the initial data loading
for every line is pels. Thus, finishing one line of
candidates requires loading pels. Because there
are lines of candidates in one search area, the total input
data size for one block is pels. The
input data rate and buffer sizes under different configurations
are listed in Table II. They have a strong impact on the silicon
size and the I/O bandwidth as will be discussed in Tables IV,

CHENG AND HANG: COMPARISON OF BLOCK-MATCHING ALGORITHMS MAPPED TO SYSTOLIC-ARRAY IMPLEMENTATION 749

TABLE II
(a) IMPLEMENTATION COMPLEXITY (1)

(a)

VI, VIII, and IX. The numbers of “add,” “sub,” “abs,” and
“compare” operations in this table are estimated based on the
SAD operations needed as described in Section II.

2) Three Step Search:We still use the same basic systolic
structure described in the previous subsection to implement
this algorithm. There are SAD operations
to be performed for each block. Therefore, the total number
of required PE operations per second is

(8)

If we choose the one-column architecture, pels
have to be loaded into the processor array between two search
steps, because we do not know which data is to be processed
until the completion of the current step. Thus, the efficiency
of the one-column structure is approximately

(9)

where and are the time of active operations
(in clock cycle) and data preloading (in clock cycle), and
is search steps, all in one block interval. Hence

(10)

Combining the preceding three equations, we obtain

(11)

where . The value of is smaller
than 256 for CCIR-601 and CIF format pictures. Hence, we
can use multiple one-column architectures to save chip area.
The data flow controller in this architecture is complicated and
needs more chip area than that of exhaustive-search because
of the irregular data loading.

Now let us consider the worst case situation of the Type B
buffer. In each search step, we need to evaluate eight or nine
candidate locations and they are aligned in three rows. If the
search step size is fairly large (), these data blocks do not
overlap. In this case, the Type B buffer that holds the entire
search region of a search step does not help in reducing the
input data rate. For simplicity, we fix the processing interval
for calculating each SAD operation, then we only consider
two situations: 1) , Type B buffer has the size of nine

750 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

TABLE II (Continued.)
(b) IMPLEMENTATION COMPLEXITY (2)

(b)

blocks (in Table II), and 2) , it only needs to hold
the search region of the first search step (in Table II). As
the search step gets smaller, the overlapped area among nine
candidate blocks becomes larger. Consequently, the required
data loading rate decreases. The second search step, not the
first step, is the worst case for data loading rate because the
data locations of the first step are fixed and thus can be
preloaded. Based on the assumption that every search step
takes the same amount of computing time, the input data for
the second search step is 1) pels for , and
2) pels, otherwise; where denotes
the least integer greater than or equal to. Because there are

steps for each block, the data rate is roughly
pels per second for , and

pels per second, otherwise. For
the Type C buffer, the worst case is new pels per search
step, and therefore the data rate is pels
per second. The expressions of all the above cases are listed
in Table II.

3) Modified Log Search:For this search scheme, we need
SAD operations per block in the worst case.

The number of PE operations required in one second is thus

(12)

The number of stuffing clocks for data loading in each
search step is the same as that of the three-step search

algorithm. Therefore, its efficiency is

(13)

where . Because
, we thus obtain

(14)

where . The column systolic
architecture is adequate for both CIF and CCIR size pictures.
Although each search step in the modified log search is broken
into two substeps, it would be more convenient and timesaving
to allow the buffer to hold the data needed for the entire search
step rather than for the substep. Then, the analysis of buffer
size and input data rate for this algorithm is similar to that for
the three-step search (Table II).

4) Conjugate Direction Search:This algorithm requires
SAD operations in a block time interval. When the

search range becomes lager, the total amount of computation
may be larger than that of the three-step algorithm. This is due
to the fact that the number of calculations in this algorithm
is on the order and the three-step search is on the

order.

CHENG AND HANG: COMPARISON OF BLOCK-MATCHING ALGORITHMS MAPPED TO SYSTOLIC-ARRAY IMPLEMENTATION 751

Because of the sequential nature of this search algorithm,
that is, the next step cannot start until the completion of the
current step, the inserted stuffing cycles reduce the utilization
of computational processors. In each search step, except for
the first horizontal or vertical step, only one block of new
data are needed. If we break the first horizontal step into three
sequential steps and the first vertical step into two steps, then
the size of the Type B buffer is the same as that of the Type
C buffer, pels. Therefore, the data loading rate would be
identical for the Type B and C buffers. It is, in the worst case,

pels per second.
Now we estimate the PE number, . Because there

are at most search steps for one block, it takes
data loading cycles to move data from

the internal buffer to the processor array. The efficiency of
processor array is thus

(15)

and the total number of PE operations required in one second is

(16)

Again . Therefore, can
be derived from the preceding two equations

(17)

where .
5) Alternating Pixel-Decimation Search:In this technique,

each decimation pattern contains 1/4 of the pels in a block.
When the best candidates of all four decimation patterns are
found, four matchings are performed to find the overall
best one. Therefore, it requires SDAD operations
and four SAD operations. Because all the data inside the
search region are used, other than the specific address pattern
generated for moving data from the internal buffer to the
processor array, the internal buffer size and the input data rate
for the Type A buffer are identical to those of the exhaustive
search. For the Type B and C buffers, because only 1/4 of the
pels are used for one decimation pattern, we could complete
one pattern search over the entire search area and then continue
for the next one. In this case, both the input data rate and the
buffer size become 1/4 of those of the exhaustive search as
indicated in Table II.

Again the systolic array structure is used in this algorithm.
The number of PE operations required in one block interval is
roughly 1/4 of the exhaustive search, namely, .
The additional four SAD operations would add another
PE operations. If we store the best candidate of each search
pattern, we may reduce the last four SAD operations down to

PE operations because four SDAD operations (
PE operations) for those candidates have been done already.
The total PE operations required per second is thus

(18)

No stuffing cycles are needed if we first calculate all the
SDAD’s and then four SAD’s in the same sequence order
(e.g., in A, B, C, D sequence) for every block. Then, the
efficiency of the systolic structure is 100%. Because

, we thus obtain

(19)

The value of is larger than 64 for CCIR 601 pictures.
Thus, the 2-D array architecture is employed.

6) Subsamples Motion Field Search with Alternating Pixel-
Decimation Patterns:In this algorithm, we perform the APD
search on the shaded blocks (half of the image blocks) and
then four SAD operations on each white block. Therefore, on
the average, we need
PE operations for every two blocks. In other words, the total
PE operations per second is approximately

(20)

Then, the efficiency of systolic structure in this algorithm
is the same as that of alternating pixel-decimation search.
Consequently, the PE number, , is

(21)

Because the majority of computations are spent on the APD
search, the same buffer sizes in Section III-B-5 for three types
of buffers are adopted. However, the data rate is nearly 1/2
of those in the pure APD search because only a few data are
needed for the white blocks. These values are listed in Table II.

IV. CHIP AREA AND I/O REQUIREMENT

A. Chip Area Estimation

In order to obtain the more exact estimate of chip area,
we have done two levels of simulations and analysis. One is
the behavioral leveland the other is thestructure level. At
the behavioral level, these algorithms are implemented by C-
programs to verify their functionalities. At the structure level,
the architectures of the key components in each algorithm are
implemented using the Verilog hardware description language
(HDL) and then we extract the area information from the
Synopsys design tool. In our setup, the Synopsys tool produces
an optimized gate-level description using a 0.6-m single-poly
double-metal (SPDM) standard cell library.

As discussed earlier, the search range depends on both the
coding system structure and the applications (picture size and
content). In a typical MPEG-2 encoder, the search range can
be empirically decided by [25], where
represents the distance between the target and the reference
pictures. Hence, in the first application for encoding CCIR-
601 pictures, the search range is chosen to be 47 for encoding
P-pictures (distance). The chip area estimates for the
computation kernels in various cases are listed in Table III.
In this table, the meaning ofno. of PE operations, no. of PE

752 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

TABLE III
ESTIMATED AREA OF COMPUTATION CORE FOR CCIR-601 PICTURES

TABLE IV
ESTIMATED AREA OF THE ENTIRE CHIP FOR CCIR-601 PICTURES

nodes, and Architecture Efficiencyare defined in Section III-
B as , , and . The item Chosen comes
from rounding the number up to the nearest integer
of multiples of 16 (or 8) that can fit into the chosen array
architecture. The speed requirement of PE node is obtained by
dividing the number of PE operations () by theChosen PE
entry. The areas of PE, ADD, and CMP are provided by the
Synopsys tool under the clock rate given in theSpeedentry.

In this design, we choose a two-port internal buffer to
increase the PE utilization efficiency. The buffer size and
access time requirement are determined by the chosen system
architecture. However, the two-port memory module is not
included in our ASIC library. Hence, an area estimation model
of two-port memory proposed by Chang [26] is adopted to
generate the entries in Table IV. When the chosen is

larger than the block size, the 2-D systolic structure (Fig. 5)
is then used. In the 2-D structure, the current block data can
be preloaded into each PE; therefore, the current block buffer
can be eliminated. It cannot be eliminated in the 1-D structure.
But in either case, we always need the reference block buffer
(the Type A, B, or C buffer), which is often much bigger.

A list of areas of the critical elements in various block-
matching algorithms is shown in Table IV. At the end of
this table, the total chip area, specified by (4), is the
combination of the computation kernel, the internal buffer,
and the data mapper. It is interesting to see that the area of
the internal buffer may be larger than that of the computation
core. For easy comparison, the total area using different
types of buffers are listed. The systolic architecture may
be an inadequate choice for the conjugate direction search

CHENG AND HANG: COMPARISON OF BLOCK-MATCHING ALGORITHMS MAPPED TO SYSTOLIC-ARRAY IMPLEMENTATION 753

TABLE V
ESTIMATED AREA OF COMPUTATION CORE FOR CIF PICTURES WITH SEARCH RANGE = 7 PELS

TABLE VI
ESTIMATED AREA OF THE ENTIRE CHIP FOR CIF PICTURES WITH SEARCH RANGE = 7 PELS

algorithm because its pipeline efficiency is lower than 50%.
From Table IV, we find that the chip area of the full-search
algorithm is approximately ten times larger than that of the
other algorithms for CCIR 601 pictures. If the chip area is our
only concern, the three-step search and modified-log search
have about the same chip area and seem to be the preferred
choices. Although Type B or C buffers require smaller chip
area, they demand a higher I/O bandwidth (to be discussed
in the next section), we may be forced to chose the Type A
buffer configuration, which has the advantages of a smaller
I/O bandwidth and a simpler address generator.

In the second design, we estimate chip area for a smaller
picture (CIF format) and slow motion application. Since only
I-picture and P-picture are used in low-resolution video coder
(H.261), two search ranges are tested: 7 and 15. Tables V and
VII show the areas of the key elements in the computational

kernel for CIF pictures at two search ranges. Because one PE is
sufficient for fast search algorithms, their efficiency is 100%.
The estimated chip areas are listed in Tables VI and VIII.
Because the I/O bandwidth limitation is not severe in this case,
Type B or C buffers could be reasonable choices in this case.
We find that the conjugate direction search has a somewhat
lower chip area. However, the conjugate direction search often
has the lowest image quality (Section V). Therefore, the other
fast searches are also good candidates. For a search range of
7 pels, the chip areas for all algorithms are quite close.

From the above results, we find that the buffer portion is
the dominant factor in chip area for the sequential searches
particularly for small size pictures. In contrast, the area of
the computation core dominates the entire chip area for the
exhaustive type of searches (including APD and SAPD) par-
ticularly for large size pictures. Therefore, if the picture size

754 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

TABLE VII
ESTIMATED AREA OF COMPUTATION CORE FOR CIF PICTURES WITH SEARCH RANGE = 15 PELS

TABLE VIII
ESTIMATED AREA OF THE ENTIRE CHIP FOR CIF PICTURES WITH SEARCH RANGE = 15 PELS

and/or search range are huge, the three-step search and the
modified-log search have about the same chip area and are
the preferred choices. We like to emphasize again that our
estimates of chip area are rough and the architecture used here
is not tuned to a particular algorithm, although it may happen
to be a better implementation of certain algorithms. Therefore,
the analysis here provides only the global picture and overall
tendency rather than the accurate and final specifications. For
the same reason, we did not perform the same analysis on
many different size pictures and other search ranges since we
can already see the advantages and disadvantages of these
search algorithms through some representative cases.

B. Chip I/O Configurations

The number of I/O pads is one major factor in chip
fabrication cost. There are roughly three types of I/O pins:

is the bus width connected to the external memory,
and are the pads for control signal

and power supply. Although the values of and
may depend on the system architecture, there are

no simple rules to estimate them. Often, they do not vary
very much. (It was reported [11] that they are around 28.)
We now only look into the bandwidth requirement due to
input data. There are two approaches in calculating the I/O
bandwidth requirement. We could assume a minimum external
memory access time (decided by the available DRAM, say)
and then calculate the minimum bus width, . Or,
we first assume the value, and then calculate the
maximum allowable memory access time. In Table IX, the
latter approach is taken and we assume that equals
to . The necessary input data speeds in various cases are
calculated based upon the discussions in Section III-B. For
example, for the CCIR picture application, if the Type B buffer

CHENG AND HANG: COMPARISON OF BLOCK-MATCHING ALGORITHMS MAPPED TO SYSTOLIC-ARRAY IMPLEMENTATION 755

TABLE IX
EXTERNAL MEMORY ACCESSTIME REQUIREMENT

Fig. 10. PSNR performance of motion estimation algorithms on the CCIR
Football sequence.

is chosen and the external memory bus width is 64 (),
this table tells us that the external memory access time must be
less than ns for the full (exhaustive) search.
A larger access time implies an easier situation that either we
could find a slower speed DRAM to meet our requirement
or we could reduce the memory bus width (smaller). As
one may expect, the Type A buffer is preferred at the cost of
a larger internal buffer. Practically, if the ordinary low cost
DRAM is used as the external memory with an access time
of 60 ns and the bus width () is around 60 too, then the
entries less than in Table IX are not acceptable. That is,
the Type A buffer is nearly the only choice for CCIR pictures
with a search range of 47. On the other hand, ifis greater
than 20, all three types of buffers can be used for CIF pictures
with a search range of 15 or less. One additional remark is
that in the case that the motion estimator is a part of a video
encoder chip, it may not own completely the I/O pins, but its
bandwidth requirements usually have a strong impact on the
entire chip—the motion estimator is often the most demanding
unit on data access.

Fig. 11. PSNR performance of motion estimation algorithms for the CCIR
Bus sequence.

Fig. 12. PSNR performance of motion estimation algorithms on the CIF
Table Tennissequence, search range = 7 pels.

V. PICTURE QUALITY

Since different block-matching algorithms are used, their
image qualities are not identical. Although peak signal-to-noise
ratio (PSNR) may not be a good measure for the subjective
image quality, it can still be used as an indicator for quality
comparison. The PSNR is defined as the ratio of the peak
signal power (255) to the mean square motion estimation
errors. Several sequences have been tested. Limited by space,
only three of them are reported here. Another measure of the
effectiveness of a motion estimation algorithm is the number of
bits necessary to transmit the estimation errors. For simplicity,
we calculate only the first-order entropy [3].

Figs. 10 and 11 show the motion estimation errors of
the CCIR 601 image sequencesFootball and Bus. Only the
processed picture frames are displayed in the figures. In this
simulation, the search range is 47 for P-pictures and 15 for B-
pictures. Figs. 12 and 13 show the results of two 10-frames/s

756 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

Fig. 13. PSNR performance of motion estimation algorithms on the CIF
Miss Americansequence, search range = 15 pels.

CIF image sequencesTable Tennisand Miss Americawith
a search range of 7 and 15, respectively. Except for the
first frame, the rest are all P-pictures. It is clear that the
full search algorithm outperforms all the other algorithms.
The three-step search and the modified log search are lower
by roughly 1 dB in PSNR. Their PSNR values in all four
sequences are very close to each other. Similar trends are
shown in the entropy results, Figs. 14 and 15. In general, the
pixel-decimation technique (APD) has a better performance
on slowly moving pictures (such asTable TennisandBus) but
has a poorer performance on fast moving pictures (such as
Football). The conjugate direction search has a PSNR quite
a bit lower than that of the other search algorithms. Hence,
unless there is a significant advantage in hardware cost, the
conjugate direction search is not preferred from the image
quality viewpoint. One may note that in order to match the
video coding standards in which the block is 1616, the
so-calledsubblockin the original SAPD [24] is now 16 16
rather than 8 8. The larger subblock size slightly reduces
its performance. If the picture quality is our major concern,
the exhaustive search is the best choice. However, for large
size pictures and/or large search ranges, the three-step and the
modified-log searches have a much lower hardware cost and
only a somewhat lower picture quality.

VI. CONCLUSIONS

The purpose of this study is not to propose a VLSI ar-
chitecture for implementing a specific BMA, but to evaluate
various block-matching algorithms from the viewpoints of
both VLSI design and compression efficiency. A procedure
is suggested to assist VLSI designers to choose a good block-
matching algorithm adequate for their particular applications.
Our assessment on BMA in this paper is based on silicon
area, I/O requirement, and image quality. A universal systolic
arrays structure is used to realize all the BMA candidates.
A distinct feature in our study is to look into the effect of
different sizes of the on-chip memory. Although we did not

Fig. 14. Entropy performance of motion estimation algorithms on the CCIR
Football sequence.

Fig. 15. Entropy performance of motion estimation algorithms on the CIF
Miss Americansequence, search range = 15 pels.

complete the layout of each realization, the key elements in
the hardware have been implemented using Verilog language
and their silicon areas are extracted with the help of Synopsys
tool based on a 0.6-m SPDM standard cell library.

Examples of applications at CIF and CCIR-601 picture
resolutions are examined. In summary, we found that the
relative performance in chip area and I/O bandwidth between
various algorithms is strongly picture size- and search range-
dependent. For small pictures (CIF, for example) and slow mo-
tion (small search range), all the BMA’s under consideration
are on a par. However, for larger picture sizes (CCIR-601) and
fast motion, certain fast search algorithms have the advantage
of a significantly smaller chip area. For a specific algorithm,
one may tune the hardware structure to achieve an even
more economical design. Nevertheless, we have conducted a
comprehensive study on estimating the complexity of various
motion estimation algorithms, their chip area, data bandwidth,

CHENG AND HANG: COMPARISON OF BLOCK-MATCHING ALGORITHMS MAPPED TO SYSTOLIC-ARRAY IMPLEMENTATION 757

and image quality. This analysis should be able to provide
useful guidelines to the system designers in choosing a suitable
high-level algorithm for VLSI implementation.

REFERENCES

[1] K. Kucukcaker and A. C. Parker, “A methodology and design tools to
support system-level VLSI design,” Univ. Southern California, Dept.
Electrical Eng.-Syst., Tech. Rep., June 1994.

[2] H. G. Musmann, P. Pirsch, and H.-J. Grallert, “Advances in picture
coding,” Proc. IEEE,vol. 73, pp. 523–548, Apr. 1985.

[3] A. N. Netravali and B. G. Haskell,Digital Pictures: Representation,
Compression and Standards.New York: Plenum, 1995.

[4] A. M. Tekalp, Digital Video Processing. Upper Saddle River, NJ:
Prentice Hall, 1995.

[5] H.-M. Hang and Y.-M. Chou, “Motion estimation for image sequence
compression,” inHandbook of Visual Communications,H.-M. Hang and
J. W. Woods, Eds. San Diego, CA: Academic, 1995.

[6] K. R. Rao and J. J. Hwang,Techniques and Standards for Image, Video,
and Audio Coding. Upper Saddle River, NJ: Prentice Hall, 1996.

[7] T. Akari et al., “Video DSP architecture for MPEG2 codec,” inProc.
ICASSP’94. IEEE Press, 1994, vol. 2, pp. 417–420.

[8] T. Inoue et al., “Programmable vision processor/control for flexible
implementation of current and future image compression standards,”
IEEE Micro, vol. 12, pp. 33–39, Oct. 1992.

[9] J. Goodenoughet al., “A general purpose, single chip video signal
processing (VSP) architecture for image processing, coding and com-
puter vision,” in IEE Colloquium on Parallel Architectures for Image
Processing,1994, pp. 1/1–1/4.

[10] P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI architectures for video
compression—A survey,”Proc. IEEE,vol. 83, no. 2, pp. 220–246, Feb.
1995.

[11] K. M. Yang, M. T. Sun, and L. Wu, “A family of VLSI design for the
motion compensation block-matching algorithm,”IEEE Trans. Circuits
Syst.,vol. 36, pp. 269–277, Oct. 1989.

[12] L. De Vos and M. Stegherr, “Parameterizable VLSI architectures for the
full-search block-matching algorithm,”IEEE Trans. Circuits Syst.,vol.
36, pp. 1309–1316, Oct. 1989.

[13] S. H. Nam, J. S. Beak, and M. K. Lee, “Flexible VLSI architecture
of full search motion estimation for video applications,”IEEE Trans.
Consumer Electron.,vol. 40, May 1994.

[14] A. Costaet al., “A VLSI architecture for hierarchical motion estima-
tion,” IEEE Trans. Consumer Electron.,vol. 41, May 1995.

[15] H.-K. Junget al., “A VLSI architecture for the alternative subsampling-
based block matching algorithm,”IEEE Trans. Consumer Electron.,vol.
41, pp. 231–238, May. 1995.

[16] L. De Vos and M. Sch¨obinger, “Efficient architecture of a programmable
block matching processor,” inIntel. Conf. Application-Specific Array
Processors,Oct. 1993, pp. 560–571.

[17] Y. S. Jehng, L. G. Chen, and T. D. Chiuh, “An efficient and simple
VLSI architecture for motion estimation algorithms,”IEEE Trans. Signal
Processing,vol. 41, pp. 889–899, Feb. 1993.

[18] H.-D. Lin et al., “A programmable motion estimator for a class of
hierarchical algorithms,” inVLSI Signal Processing VIII. New York:
IEEE Press, 1995.

[19] T. Komarek and P. Pirsch, “Array architectures for block matching
algorithms,”IEEE Trans. Circuits Syst.,vol. 36, pp. 269–277, Oct. 1989.

[20] R. Aravind et al., “Image and video standards,” inHandbook of Visual
Communications,H.-M. Hang and J. W. Woods, Eds. San Diego, CA:
Academic, 1995.

[21] T. Koga et al., “Motion-compensated interframe coding for video
conferencing,” inProc. Nat. Telecommunications Conf.,New Orleans,
LA, Nov. 1981, pp. G5.3.1–G5.3.5.

[22] S. Kappagantula and K. R. Rao, “Motion compensated predictive in-
terframe coding,”IEEE Trans. Commun.vol. COM-33, pp. 1011–1015,
Sept. 1985.

[23] R. Srinivasan and K. R. Rao, “Predictive coding based on efficient
motion estimation,”IEEE Trans. Commun.,vol. COM-33, pp. 888–896,
Sept. 1985.

[24] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block
motion vectors,”IEEE Trans. Circuits Syst. Video Technol.,vol. 3, pp.
148–157, Apr. 1993.

[25] A. Puri, R. Aravind, and B. Haskell, “Adaptive frame/field motion
compensated video coding,”Signal Processing: Image Commun.,vol.
5, pp. 39–58, 1993.

[26] T. S. Chang, “On-chip memory module designs for video signal pro-
cessing,” Master thesis, Institute of Electronics Engineering, National
Chiao-Tung University, Hsinchu, Taiwan, R.O.C., June 1995.

Sheu-Chih Chengreceived the B.S. degree in elec-
tronics engineering from National Taiwan Indus-
trial Technology, Taipei, Taiwan, in 1989 and the
M.S. degree from National Chiao Tung University,
Hsinchu, Taiwan, in 1991. He is currently working
toward the Ph.D. degree in electronics engineering
at National Chiao Tung University.

His research interests are video coding and VLSI
design for signal processing.

Hsueh-Ming Hang (S79–M’80–SM’91) received
the B.S. and M.S. degrees from National Chiao
Tung University, Hsinchu, Taiwan, in 1978 and
1980, respectively, and the Ph.D. degree in electrical
engineering from Rensselaer Polytechnic Institute,
Troy, NY, in 1984.

From 1984 to 1991, he was with AT&T Bell
Laboratories, Holmdel, NJ. He joined the Electron-
ics Engineering Department of National Chiao Tung
University, Hsinchu, Taiwan, in December 1991.

Dr. Hang was a Conference Co-Chair of the
Symposium on Visual Communications and Image Processing (VCIP), 1993,
and the Program Chair of the same conference in 1995. He guest co-edited
two Optical Engineeringspecial issues on Visual Communications and Image
Processing in July 1991 and July 1993. He was an Associate Editor of IEEE
TRANSACTIONS ON IMAGE PROCESSING from 1992 to 1994 and a co-editor
of the bookHandbook of Visual Communications(Academic Press, 1995).
He is currently an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY and an Editor ofJournal of Visual
Communication and Image Representation(Academic Press). He is a member
of Sigma Xi.

