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Abstract
The fluorescence intensity and quadrature spectra from a two-level atom
embedded in a photonic bandgap crystal and resonantly driven by a classical
pump light are calculated. The non-Markovian nature of the problem caused
by the non-uniform distribution of the photonic density of states is handled
by linearizing the generalized optical Bloch equations with the Liouville
operator expansion. Unlike the case in free space, we find that the bandgap
effects will not only modify the fluorescence spectral shape but also cause
squeezing in the in-phase quadrature spectra.

Keywords: fluorescence spectra, photonic bandgap materials,
cavity quantum electrodynamics, squeezing spectra
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1. Introduction

The study of fluorescence spectra from two-level atoms has
been a central topic in quantum optics since the beginning
of quantum mechanics in the 1930s. From the view point
of light scattering, both elastic Rayleigh scattering and
inelastic Raman scattering processes are involved [1] and
thus the fluorescence spectra will have a triplet shape as
first calculated by Mollow [2]. Theoretical calculations of
the fluorescence spectra have been explored [3, 4] and also
verified in experiments [5]. The squeezing phenomena in the
phase-dependent fluorescence spectra of the quadrature field
components were first predicted by Walls and Zoller [6] and
Mandel [7]. It has been theoretically shown that the squeezing
can be found in the out-of-phase quadrature component spectra
under the condition that �2 < 4�2 [8, 9], where � is the
Rabi frequency and � is the atomic decay rate. Squeezed
fluorescence spectra have also been experimentally observed
in an experiment using 174Yb atoms [10].

In recent years the atom–photon interaction in photonic
bandgap materials [11, 12] has been found to exhibit many
interesting new phenomena such as photon–atom bound
states [13], spectral splitting [14], quantum interference

3 Author to whom any correspondence should be addressed.

dark line effect [15], phase control of spontaneous
emission [16], transparency near band edge [17], and single-
atom switching [18]. From the Aulter–Townes spectra
for atoms coupled to a photonic bandgap structure [14]
(or equivalently a frequency-dependent photon density of
states [19]), the modification of the spontaneous emission
caused by the environment (the Purcell effect [20]) can actually
be verified. However, all of the above studies only focused on
the transient behaviour of the atom–photon interactions and to
the best of our knowledge there is still no theoretical treatment
on calculating the steady-state fluorescence spectra in photonic
bandgap crystals.

In the theoretical studies of fluorescence spectra for the
free space case, the Markovian approximation is usually used
to describe the statistical properties of the optical noises.
This is a good assumption for the free space case but is not
applicable for the case of photonic bandgap crystals. This
is because in a photonic bandgap crystal, the propagation of
light is prohibited within a certain range of wavelengths (the
bandgap) due to the lack of available photon states. Because
of the bandgap effects, the distributions of the photonic
density of states (DOS) are typically highly non-uniform near
the bandedge. Such a property has prohibited the direct
applicability of the Markovian approximation to simplify the
derivation for the problem we are going to consider.

1464-4266/04/080715+07$30.00 © 2004 IOP Publishing Ltd Printed in the UK S715

http://stacks.iop.org/JOptB/6/S715


R-K Lee and Y Lai

The aim of this paper is to investigate the properties
of the steady state resonance fluorescence emitted by a
two-level atom embedded in a photonic bandgap crystal
and driven by a classical pumping light. We treat the
photon states in the photonic crystal as the background
reservoir and obtain a set of generalized Bloch equations
for the atomic operators by eliminating the reservoir field
operators. The non-uniform DOS distributions near the
bandedge are modelled by the three-dimensional anisotropic
dispersion relation [21] and the Liouville operator expansion
is used to reduce the two-time atomic operator products
into equal-time atomic operator products. In this way the
nonlinear generalized Bloch equations are reduced into a set
of linear equations with memory function terms caused by
the atom–reservoir interaction. This set of linear equations
can then be easily solved in the frequency domain, and
the resonance fluorescence spectra can be directly obtained
from the correlation functions of the atomic operators in the
frequency domain without applying the quantum regression
theorem. After performing a numerical calculation, we find
that the spectral shape of the fluorescence intensity spectra will
vary with the wavelength offset between the atomic transition
wavelength and the bandedge. More interestingly, squeezing
phenomena are found to be present in the in-phase quadrature
spectra instead of the out-of-phase quadrature spectra.

The paper is organized as follows. In section 2 we derive
the generalized optical Bloch equations with noise operators
caused by the surrounding photonic reservoir. In section 3 we
use the anisotropic dispersion relation for modelling the photon
DOS of the three-dimensional photonic bandgap structure, and
based on this model the fluorescence spectra are calculated.
The squeezing in the phase-dependent fluorescence spectra of
a two-level atom both in free space and near a photonic bandgap
is shown in section 4. Finally, a brief conclusion is given in
section 5.

2. Theoretical model

To begin the derivation, the Hamiltonian for the system to be
considered can be written as

H = h̄

2
ωaσz + h̄

∑
k

ωka†
k ak +

�

2
h̄(σ−eiωL t + σ+e−iωL t )

+ h̄
∑

k

(gkσ+ak + g∗
k a†

k σ−). (1)

Here the transition frequency of the atom and the frequency of
the pumping light are denoted by ωa and ωL respectively, a†

k
and ak are the creation and annihilation operators of the photon
states in the photonic bandgap crystals, � is the Rabi-flopping
frequency of the atom under the external pumping light and it
also represents the relative magnitude of the pumping light,
σz ≡ (|2〉〈2| − |1〉〈1|), σ+ ≡ |2〉〈1| = σ

†
− are the usual

Pauli matrices for the two-level atom, and gk is the atom–field
coupling constant. We have used the index k to label different
photon states, and the coupling constant gk can be expressed
as

gk(d̂, �r0) ≡ gk = |d|ωa

√
1

2h̄ε0ωk V
d̂ · E∗

k(�r0). (2)

We have used the notations |d| for the magnitude of the atomic
dipole moment, d̂ for the unit vector along the direction of the

dipole moment, V for the volume of the quantization space,
and ε0 for the Coulomb constant.

Starting from the Hamiltonian, we treat the photon
field operators as the background reservoir and eliminate
their corresponding equations to obtain the following set of
generalized Bloch equations.

σ̇−(t) = i
�

2
σz(t)e

−i�t

+
∫ t

−∞
dt ′ G(t − t ′)σz(t)σ−(t ′) + n−(t) (3)

σ̇+(t) = −i
�

2
σz(t)ei�t

+
∫ t

−∞
dt ′ Gc(t − t ′)σ+(t

′)σz(t) + n+(t) (4)

σ̇z(t) = i�(σ−(t)ei�t − σ+(t)e
−i�t + nz(t)

− 2
∫ t

−∞
dt ′ [G(t − t ′)σ+(t)σ−(t ′)

+ Gc(t − t ′)σ+(t
′)σ−(t)]. (5)

Here � ≡ ωL−ωa and �k ≡ ωa−ωk. The two functions G(τ)

and Gc(τ) are the memory functions of the system caused by
the atom–reservoir interaction and they are defined as G(τ) ≡∑

k |gk|2ei�k τ�(τ), and Gc(τ) ≡ ∑
k |gk |2e−i�k τ�(τ). Here

�(τ) is the Heaviside step function. The three noise operators
n−(t), n+(t), and nz(t) originate from the original photon filed
operator before interaction and are expressed as follows:

n−(t) = i
∑

k

gkei�k tσz(t)ak(−∞) (6)

n+(t) = −i
∑

k

g∗
k e−i�k t a†

k (−∞)σz(t) (7)

nz(t) = −2i
∑

k

gkei�k tσ+(t)ak(−∞)

+ 2i
∑

k

g∗
k e−i�k t a†

k (−∞)σ−(t). (8)

Supposing that the reservoir is in thermal equilibrium, then
the mean and the correlation functions of the reservoir field
operators before interaction will be

〈ak(−∞)〉R = 〈a†
k (−∞)〉R = 0 (9)

〈ak(−∞)ak′ (−∞)〉R = 0 (10)

〈a†
k (−∞)a†

k′ (−∞)〉R = 0 (11)

〈a†
k (−∞)ak′ (−∞)〉R = n̄kδkk′ (12)

〈ak(−∞)a†
k′ (−∞)〉R = (n̄k + 1)δkk′ . (13)

Here n̄k is the mean quantum numbers of the reservoir modes
under thermal equilibrium. Using the statistical characteristics
of the reservoir field operators, it can easily be shown that the
three noise operators n−(t), n+(t), and nz(t) are zero mean
with their correlation functions given below:

〈n−(t)〉R = 〈n+(t)〉R = 〈nz(t)〉R = 0

〈n−(t)n−(t ′)〉R = 〈n+(t)n+(t
′)〉R = 0

〈n−(t)n+(t
′)〉R =

∑
k

|gk|2(n̄k + 1)ei�k (t−t ′)〈σz(t)σz(t
′)〉

〈n+(t)n−(t ′)〉R =
∑

k

|gk|2n̄ke−i�k (t−t ′)〈σz(t)σz(t
′)〉

〈nz(t)nz(t
′)〉R = 4

∑
k

|gk|2[(n̄k + 1)ei�k (t−t ′)〈σ+(t)σ−(t ′)〉

+ n̄ke−i�k (t−t ′)〈σ−(t)σ+(t
′)〉].
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Since in general the correlation functions of these noise
operators are not delta-correlated with time (non-Markovian),
we cannot directly use the Born–Markovian approximation to
solve the problem. One can see that the correlation functions
depend not only on the photon density of states, but also on
the correlations of the atomic operators. Equations (3)–(5) are
called the generalized optical Bloch equations and will serve
as the starting point for our further derivation.

3. Fluorescence spectra

To actually evaluate the memory functions as well as the
correlation functions of the noise operators, one needs to
know the spectral distribution of the photonic density of states.
Although in general the DOS of photonic bandgap crystals is
very complicated and also varies with the geometrical structure
and the dielectric constants of the material, it is still possible
to approximately model the DOS near the bandedge with a
simple formula. According to the results from the full vectorial
numerical calculation, the DOS near the bandgap for three-
dimensional photonic crystals increases from zero and behaves
more like the anisotropic model proposed in the literature [21].
To be more specific, for a three-dimensional photonic bandgap
crystal, if the wavevector that corresponds to the bandedge
is ki

0, then the dispersion relation in the anisotropic model
is described by the following form: ωk = ωc + A|k −
ki

0|2, where A is a model dependent constant and ωc is the
bandedge frequency. Based on this dispersion relation, the
corresponding DOS is given by D(ω) = 1

A3/2

√
ω − ωc�(ω −

ωc). The memory functions under this anisotropic model also
can be derived as

G̃(ω) = β3/2 −i√
ωc +

√
ωc − ωa − ω

(14)

G̃c(ω) = β3/2 i√
ωc +

√
ωc − ωa + ω

(15)

where β3/2 = ω2
a d2

6h̄ε0π A3/2 η, and we have used the space average

coupling strength η ≡ 3
8π

∫
d� |d̂ · E|2 in the derivation.

From figure 1, the spectrum of the memory function G(ω)

is non-uniform and asymmetric as we expect. When the
frequency is far from the bandedge frequency ωc, the memory
function is a pure real function which corresponds to the decay
rate of the atom. When the frequency is below the bandedge
frequency, the memory function becomes pure imaginary,
indicating the inhibition of the spontaneous emission inside the
bandgap. And in between the memory function is a complex
function, of which the real part is related to the decay process
and the imaginary part is related to the oscillation process.
The spectrum for another memory function Gc(ω) is also
similar. All the frequency parameters used in the calculation
are expressed in terms of the normalized frequency unit β

defined above, and are labelled in the figure. The normalized
frequency unit β corresponds to but is not exactly equal to the
decay rate of the excited atom, �, in the case of free space.
In fact, if we define the memory functions of free space as
delta-functions, i.e.

∑
k |gk |2e±i�k t = �δ(t), then the relation

between the normalized frequency of the anisotropic model
near the photonic bandgap and the free space decay rate can
be estimated from equation (14) with ωc 	 ωa.

� ≈ β3/2/
√

ωa. (16)

ω/β

ab
s[

G
(ω

)]

ar
g

[G
(ω

)]
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Figure 1. Amplitude and phase spectra of the memory function
G(ω) with bandedge frequency ωc = 100β. The memory function
is non-uniform around the bandedge and becomes pure imaginary
inside the bandgap.

From this estimation, the value of the normalized frequency β

will be in the range of 0.01� < β < 100� [18].
The generalized Bloch equations are a set of nonlinear

operator equations and they cannot be solved easily. To
overcome this difficulty, we introduce the following Liouville
operator expansion:

σi j (t) = e−iL(t−t ′)σi j (t
′)

=
∞∑

n=0

[−i(t − t ′)]n

n!
Lnσi j (t

′). (17)

Here the Liouville superoperator L is defined as Lnσi j (t ′) =
h̄n[[· · · [σi j (t ′), H ], H ], . . . , H ]. If the atom we consider is
with a longer lifetime and the pumping is not extremely high,
which is the usual case in the optical domain, then the timescale
of the atomic evolution will be longer than the timescale of
the memory functions. Therefore under such assumptions
it should be legitimate to simply apply the zeroth-order
perturbation term (zeroth-order Born approximation) [18].
This is equivalent to using the equal-time operator products
to replace the two-time operator products. With these
approximations and by using the identities of Pauli matrices,
the generalized optical Bloch equations can be reduced into
the following form:

σ̇−(t) = i
�

2
σz(t)e−i�t −

∫ t

−∞
dt ′ G(t − t ′)σ−(t ′) + n−(t)

(18)

σ̇+(t) = −i
�

2
σz(t)ei�t −

∫ t

−∞
dt ′ Gc(t − t ′)σ+(t

′) + n+(t)

(19)

σ̇z(t) = i�(σ−(t)ei�t − σ+(t)e
−i�t )

−
∫ t

−∞
dt ′ [G(t − t ′) + Gc(t − t ′)](1 + σz(t

′)) + nz(t).

(20)

The approximation we have used should be valid as
long as the timescale of the memory function is still much
shorter than the timescale of the atomic response (i.e., the

S717



R-K Lee and Y Lai

inverse of the Rabi frequency and the decay rate). It can
be easily checked that the full-width-half-maximum (FWHM)
bandwidth of the memory functions in equations (14) and (15)
are 4ωc. For a bandgap in the optical domain, the order
of ωc is about 1014–1015 Hz, and the typical lifetime of the
atom is from 10−3 to 10−9 s, which is much longer than the
response time of the memory functions. However, in contrast
to the Markovian approximation, we do not approximate the
memory function by a δ-function, but instead still keep its
finite response characteristics in order to include the effects
due to the non-uniform density of states near the bandedge.
Although such a simple approximation includes only one
portion of the non-Markovian nature of the problem, it should
still be quite valid for the fluorescence spectrum calculation
considered in the present work, since here the memory function
timescale is typically much shorter than the atomic response
timescale. We have also checked the validity of the zeroth-
order approximation used here by carrying out the derivation
in which the first-order expansion term is also included (first-
order Born approximation) [22]. In the numerical examples to
be presented later we choose ωc = 100β and � = 0.25β to
illustrate the fluorescence spectra clearly by setting the Rabi
frequency to be somewhat larger than the atomic decay rate,
but still much smaller than the inverse of the response time
of the memory functions. The zeroth-order Liouville operator
expansion we have used should be quite accurate within such
a parameter range. The results for higher ωc/β ratios exhibit
qualitatively similar behaviour.

Theoretically the fluorescence spectrum can be calculated
by taking the Fourier transform of the first-order correlation
function of the atomic dipole moment operator. By using a
Fourier transform, we can directly solve these modified optical
Bloch equations as follows:

M(ω) · �X (ω) = �X0(ω) (21)

where

M(ω)

=
( −i(ω + �) + G̃(ω) 0 −i �

2

0 −i(ω − �) + G̃c(ω) i �
2

−i� i� −iω + G̃(ω) + G̃c(ω)

)

�X (ω) =
(

σ̃−(ω + �)

σ̃+(ω − �)

σ̃z(ω)

)
, and

�X0(ω) =
( ñ−(ω + �)

ñ+(ω − �)

−2π[G̃(ω) + G̃c(ω)]δ(ω) + ñz(ω)

)

and ñ−(ω), ñ+(ω), ñz(ω), G̃(ω), and G̃c(ω) are Fourier
transforms of n−(t), n+(t), nz(t), G(t), and Gc(t), respectively.
The solutions of equation (21) are

σ̃−(ω + �) = {(2gωhω + �2)ñ′−ω + �2ñ′
+ω

+ igω�ñz(ω) − i2πgω�G̃ ′
ωδ(ω)}

× {�2( fω + gω) + 2 fωgωhω}−1 (22)

σ̃+(ω − �) = {�2ñ′−ω + (2 fωhω + �2)ñ′
+ω

− i fω�ñz(ω) + i2π fω�G̃ ′
ωδ(ω)}

× {�2( fω + gω) + 2 fωgωhω}−1 (23)

σ̃z(ω) = {2igω�ñ′−ω − 2i fω�ñ′
+ω

+ 2 fω gωñz(ω) − 4π fω gωG̃ ′
ωδ(ω)}

× {�2( fω + gω) + 2 fωgωhω}−1. (24)

Here we have used the following shorthand notations:

fω = f (ω) ≡ −iω − i� + G̃(ω)

gω = g(ω) ≡ −iω + i� + G̃c(ω)

hω = h(ω) ≡ −iω + G̃(ω) + G̃c(ω)

ñ′±ω = ñ′±(ω) ≡ ñ±(ω ∓ �)

G̃ ′
ω = G̃ ′(ω) ≡ G̃(ω) + G̃c(ω).

Because the two-time correlation function of the atomic
dipole is proportional to the first-order coherence function
g(1)(τ) [23] of the radiated photon field and the fluorescence
spectrum can be obtained by taking the Fourier transform of
the first-order coherence function, one has

S(ω) =
∫ ∞

−∞
dτ g(1)(τ)eiωτ ∝ 〈σ̃+(ω)σ̃−(−ω)〉R. (25)

In this way the fluorescence spectrum can be easily determined
after determining the noise correlation functions. By using
the anisotropic model from equations (14), (15), the noise
correlation functions near a photonic bandgap reservoir are
given as

〈ñ−(ω1)ñ+(−ω2)〉R = π N(ω1)�(ω1 + ωa − ωc)δ(ω1 − ω2)

(26)

〈ñz(ω1)ñz(−ω2)〉R = N(ω1)[4πδ(ω1 − ω2)

+ 〈σ̃z(ω1 − ω2)〉R] · �(ω1 + ωa − ωc) (27)

〈ñz(ω1)ñ−(−ω2)〉R = 0 (28)

〈ñ−(ω1)ñz(−ω2)〉R

= N(ω1)〈σ̃−(ω1 − ω2)〉R�(ω1 + ωa − ωc) (29)

〈ñz(ω1)ñ+(−ω2)〉R

= N(ω1)〈σ̃+(ω1 − ω2)〉R�(ω1 + ωa − ωc) (30)

〈ñ+(ω1)ñz(−ω2)〉R = 0 (31)

with

N(ω) ≡ 4β3/2

√
ωa + ω − ωc

ωa + ω
. (32)

It can be easily seen from the above correlation functions that
the statistics of the quantum noises of the photonic bandgap
reservoir are not only colour noises but also exhibit bandgap
behaviour.

Based on the above formula, in figure 2 we plot the
resonance fluorescence spectra at a constant Rabi frequency
when the atomic transition frequencies ωa are far from (dashed
curve) and near (solid curve) the bandedge frequency ωc,
respectively. The evolution of the resonance fluorescence
spectra with different offsets between the transition frequency
and the bandedge frequency is also plotted in figure 3. When
the atomic transition frequency is far away from the bandedge
(ωa  ωc), the normal resonance fluorescence spectrum of
Mollow’s triplets with three Lorentzian profiles is obtained
just as expected [2]. The contribution from the elastic Rayleigh
scattering in the centre part (which is a delta-function with zero
detuning frequency) has been ignored and only the contribution
from the inelastic Raman scattering (the three peaked profiles)
are considered here. It can be noted that the separation of each
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Figure 2. Comparison of resonance fluorescence spectra far from
the bandedge (dashed curve, ωa − ωc = 1000β) and near the
bandedge (solid curve ωa − ωc = �); � = 0.25β, ωc = 100β.

Figure 3. Evolution of the resonance fluorescence spectrum near
the bandedge at constant Rabi frequency: � = 0.25β, ωc = 100β.

adjacent peak is determined by the Rabi frequency as in the case
of free space, and the linewidth of each peak is proportional to
the decay rate of the atom. In the studied case we have set the
Rabi frequency to be somewhat larger than the atomic decay
rate so that the Mollow triplets are well separated.

When the atomic transition frequency moves towards the
bandedge, the profiles due to incoherent scattering processes
become increasingly sharp because there are successively
fewer DOS available. The narrowing of the fluorescence
spectra also indicates a smaller decay rate due to the forbidden
effect of the bandgap. The profile in the lower frequency is
not only suppressed but also becomes asymmetrical due to
the existence of the bandgap. It should also be noted that the
peak in the higher frequency is significantly enhanced, as can
be clearly seen in the figure. Eventually the peak in the lower
frequency will be totally suppressed when the atomic transition

Figure 4. Resonance fluorescence quadrature spectra in free space.
Solid curve: in-phase, S1(ω); dashed curve: out-of-phase, S2(ω)
with � = 1.0�, � = 1.0.

frequency moves more towards the bandedge. At this time the
resonance fluorescence spectrum now only has two peaks.

4. Fluorescence squeezing spectra

The noise spectra of a two-level atom driven by a classical
pumping light can also exhibit non-classical phenomena
(squeezing spectra) if the phase-dependent fluorescence
spectra are measured. To observe squeezing in the phase-
dependent fluorescence spectra, one needs to calculate the
fluorescence spectra for the quadrature field components.
Theoretically the quadrature field operator in the θ phase angle
is defined as

Êθ (t) = eiθ Ê (+)(t) + e−iθ Ê (−)(t). (33)

The two cases corresponding to θ = 0 and π/2 represent
the in-phase and out-of-phase components of the electric field,
respectively. The spectra for the quadrature fields can be
obtained by calculating the following normal order variance:

Sθ (ω) ≡ 〈Ẽθ (ω), Ẽθ (−ω)〉
= � 1

4 [〈σ̃−(ω)σ̃−(−ω)〉e−2iθ + 〈σ̃+(ω)σ̃−(−ω)〉
+ 〈σ̃+(−ω)σ̃−(ω)〉 + 〈σ̃+(−ω)σ̃+(ω)〉e2iθ ] (34)

where the correlation functions have been renormalized with
the total outgoing flux and � is the decay rate of the two-level
atom [8, 9].

In the free space case, the in-phase quadrature S1(ω)

produces the central peak of the Mollow’s triplet while the out-
of-phase quadrature S2(ω) produces the two side-peaks when
the separation of the two sidebands is large. When the Rabi
frequency is small (small driving field), �2 < 4�2, squeezing
can be observed in the out-of-phase quadrature spectra, as
shown in figure 4. In the literature it has been reported that
the squeezing in the phase-dependent fluorescence spectra for
two-level atoms in free space can also been found at a phase
near ±45◦ if the lifetime of the atoms is long when compared
to the interaction time [10]. Zhao et al [24] have used a thin-
sample theory to analyse the fluorescence squeezing spectra
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Figure 5. Resonance fluorescence quadrature spectra near the
bandedge. Solid curve: in-phase, S1(ω); dashed curve:
out-of-phase, S2(ω) with ωc = 100β and � = 0.25β.

from the 1S0 → 3P1 transition line of 174Yb atoms, for which
the lifetime is 875 ns.

The situations are different for the case of photonic
bandgap crystals. When the transition frequency is near the
bandedge of the photonic crystals, the bandgap effects modify
the fluorescence intensity spectrum and cause asymmetric
spectral profiles, as we have seen in figure 2. As shown in
figure 5, for the case of photonic bandgap crystals, the in-
phase quadrature not only contributes to the central component
but also to the two sidebands. The out-of-phase quadrature
still only contributes to the two sidebands as in the case of
free space. Moreover, we find both sidebands of the in-phase
quadrature now exhibit squeezing even when �2 > 4�2.
In the above calculation all the quadrature noise spectra are
normalized with respect to the decay rate of the atom, �,
as shown in equation (34). For the case of free space, the
decay rate � is frequency independent due to the white noise
reservoir. However, for photonic crystals, the decay rate will be
modified according to the offset between the atomic transition
frequency and the bandedge frequency. According to the
works in [14, 18], the spontaneous emission rate of a two-
level atom near the bandedge contains non-exponential terms.
For simplicity we have used the following formula to estimate
the decay rate of the atom:

� ≈ Re[G̃(ω = 0)] = β3/2

√
ωa − ωc

ωa
. (35)

In figure 6, we plot the evolution of the in-phase quadrature
spectra for different frequency (wavelength) offset. One can
see that the higher frequency peak exhibits larger squeezing as
well as larger fluorescence intensity when the offset frequency
approaches the bandedge frequency.

In the literature, the in-phase quadrature squeezing of
the resonance fluorescence from a laser-dressed two-level
atom inside a cavity has been predicted based on the secular
approximation [25]. Expressions for both the in-phase and
out-of-phase quadrature spectra are derived and expressed
in terms of the semiclassical density matrix elements under

Figure 6. The evolution of in-phase quadrature spectra near the
bandedge with ωc = 100β and � = 0.25β.

the dressed state picture. Qualitatively speaking, under the
dressed state picture, they found that the Rabi sidebands will
exhibit in-phase quadrature squeezing when ρ−− is somewhat
larger than ρ++, where ρ++ and ρ−− are the populations of the
semiclassical dressed states |+〉 and |−〉. They also found that
one can tune the cavity frequency as well as the driving laser
frequency detuning to control the populations of the dressed
states and produce squeezing or anti-squeezing in the in-
phase quadrature. For our case of photonic bandgap crystals,
the |−〉 → |+〉 transition (the lower frequency sideband) is
suppressed when the atom is near the bandedge and the |+〉 →
|−〉 transition (the higher frequency sideband) is enhanced.
Intuitively this will also make the ρ−− larger than ρ++ and
thus produce in-phase quadrature squeezing in both the Rabi
sidebands. Of course the analyses in [25] cannot be directly
applied to the case considered here. However, we believe that
the physical mechanism of producing the in-phase quadrature
squeezing should be similar. It will also be very interesting to
carry out similar analyses based on the secular approximation
for the case of photonic bandgap crystals in the future.

5. Conclusions

In conclusion, by introducing the Liouville operator expansion,
we have successfully overcome some of the difficulties
associated with the non-Markovian nature of the problem
caused by the non-uniform distribution of the photon states
in a photonic bandgap crystal. Our calculated results have
indicated that the resonance fluorescence spectra near a
photonic bandgap can exhibit interesting behaviour including
the suppression and enhancement of the Mollow’s triplet peaks,
and the squeezing phenomena in the in-phase quadrature
spectra. It will be very interesting to see if one can actually
verify these predictions experimentally.
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