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Abstract—The classical problem of diagnosability is discussed widely and the

diagnosability of many well-known networks have been explored. In this paper, we

consider the diagnosability of a family of networks, called the Matching

Composition Network (MCN); two components are connected by a perfect

matching. The diagnosability of MCN under the comparison model is shown to be

one larger than that of the component, provided some connectivity constraints are

satisfied. Applying our result, the diagnosability of the Hypercube Qn, the Crossed

cube CQn, the Twisted cube TQn, and the Möbius cube MQn can all be proven to

be n, for n � 4. In particular, we show that the diagnosability of the four-

dimensional Hypercube Q4 is 4, which is not previously known.

Index Terms—Diagnosability, t-diagnosable, comparison model, Matching

Composition Network, MM* model.
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1 INTRODUCTION

WITH the rapid development of technology, the need for high-
speed parallel processing systems has been continuously increas-
ing. The reliability of the processors in parallel computing systems
is therefore becoming an important issue. In order to maintain the
reliability of a system, whenever a processor (node) is found faulty,
it should be replaced by a fault-free processor (node). The process
of identifying all the faulty nodes is called the diagnosis of the
system. The maximum number of faulty nodes that the system can
guarantee to identify is called the diagnosability of the system.

In this paper, we consider the diagnosability of the system

under the comparison model, proposed by Malek and Maeng [16],

[17]. The diagnosability of some well-known interconnection

networks under the comparison model has been investigated.

For example, Wang [21], [22] showed that the diagnosability of an

n-dimensional hypercube Qn is n for n � 5 and the diagnosability

of an n-dimensional enhanced hypercube is nþ 1 for n � 6. Fan

[12] proved that the diagnosability of an n-dimensional crossed

cube is n for n � 4. Araki and Shibata [1] proposed that the k-ary

r-dimensional butterfly network BF ðk; rÞ is 2k-diagnosable for k �
2 and r � 5. Besides, the diagnosability of the Hypercubes, the

Crossed cubes, and the Möbius cubes under the PMC diagnostic

model were also studied in [2], [10], [11], [14].
We study the diagnosability of a family of interconnection

networks, called the Matching Composition Networks (MCN),

which can be recursively constructed. MCN includes many well-

known interconnection networks as special cases, such as the

Hypercube Qn, the Crossed cube CQn, the Twisted cube TQn, and

the Möbius cube MQn. Basically, MCN and these mentioned cubes

are all constructed from two graphs G1 and G2 with the same

number of nodes by adding a perfect matching between the nodes

of G1 and G2. We shall call these two graphs G1 and G2 the

components of MCN.

Our main result is the following: Suppose that the number of
nodes in each component is at least tþ 2, the order (which will be
defined subsequently) of each node in Gi is t, and the connectivity
of Gi is also t, i ¼ 1; 2. We prove that the diagnosability of MCN
constructed from G1 and G2 is tþ 1 under the comparison model,
for t � 2. In other words, the diagnosability of MCN is increased
by one as compared with those of the components. Using our
result, it is straightforward to see that the diagnosability of the
Hypercube Qn, the Crossed cube CQn, the Twisted cube TQn, and
the Möbius cube MQn are n for n � 4. Some of these particular
applications are previously known results [12], [22], using rather
lengthy proofs. Our approach unifies these special cases and our
proof is much simpler. We would like to point out that the
diagnosability of the four-dimensional Hypercube Q4 is 4, which is
not previously known [12], [22]. The diagnosability of the Twisted
cube TQn and the Möbius cube MQn, as far as we know, are not
yet resolved until now.

The rest of this paper is organized as follows: Section 2
introduces the comparison model for diagnosis. Section 3 provides
preliminaries. In Section 4, we present the Matching Composition
Network and discuss its diagnosability. We then discuss the
diagnosability of Qn, CQn, TQn, and MQn in Section 5. Finally, our
conclusions are given in Section 6.

2 THE COMPARISON MODEL FOR DIAGNOSIS

For the purpose of self-diagnosis of a given system, several
different models have been proposed in the literature [16], [17],
[18]. Preparata et al. [18] first introduced a model, the so-called
PMC-model, for system level diagnosis in multiprocessor systems.
In this model, it is assumed that a processor can test the faulty or
fault-free status of another processor.

The comparison model, called the MM model, proposed by Maeng
and Malek [16], [17], is considered to be another practical approach
for fault diagnosis in multiprocessor systems. In this approach, the
diagnosis is carried out by sending the same testing task to a pair
fu; vg of processors and comparing their responses. The compar-
ison is performed by a third processor w that has direct
communication links to both processors u and v. The third
processor w is called a comparator of u and v.

If the comparator is fault-free, a disagreement between the two
responses is an indication of the existence of a faulty processor. To
gain as much knowledge as possible about the faulty status of the
system, it was assumed that a comparison is performed by each
processor for each pair of distinct neighbors with which it can
communicate directly. This special case of theMM-model is referred
to as the MM*-model. Sengupta and Dahbura [20] studied the MM-
model and the MM*-model, gave a characterization of diagnosable
systems under the comparison approach, and proposed a poly-
nomial time algorithm to determine faulty processors under MM*-
model. In this paper, we study the diagnosability of MCN (which
will be defined subsequently) under the MM*-model.

In the study of multiprocessor systems, the topology of
networks is usually represented by a graph G ¼ ðV ;EÞ, where
each node v 2 V represents a processor and each edge ðu; vÞ 2 E

represents a communication link. The diagnosis by comparison
approach can be modeled by a labeled multigraph, called the
comparison graph, M ¼ ðV ; CÞ, where V is the set of all processors
and C is the set of labeled edges. A labeled edge ðu; vÞw 2 C, with w

being a label on the edge, connects u and v, which implies that
processors u and v are being compared by w. Under the
MM-model, processor w is a comparator for processors u and v

only if ðw; uÞ 2 E and ðw; vÞ 2 E. The MM*-model is a special case
of the MM model; it is assumed that each processor w such that
ðw; uÞ 2 E and ðw; vÞ 2 E is a comparator for the pair of processors
u and v. The comparison graph M ¼ ðV ; CÞ of a given system can
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be a multigraph for the same pair of nodes may be compared by

several different comparators.
For ðu; vÞw 2 C, the output of comparator w of u and v is

denoted by rððu; vÞwÞ, a disagreement of the outputs is denoted by

the comparison results rððu; vÞwÞ ¼ 1, whereas an agreement is

denoted by rððu; vÞwÞ ¼ 0.
In this paper, in order to be consistent with the MM model, we

have the following assumptions [20]:

1. All faults are permanent;
2. A faulty processor produces incorrect outputs for each of

its given testing tasks;
3. The output of a comparison performed by a faulty

processor is unreliable; and
4. Two faulty processors with the same input do not produce

the same output.

Therefore, if the comparator w is fault-free and rððu; vÞwÞ ¼ 0,

then u and v are both fault-free. If rððu; vÞwÞ ¼ 1, then at least one of

u, v, and w must be faulty. The set of all comparison results of a

multicomputer system that are analyzed together to determine the

faulty processors is called a syndrome of the system.
For a given syndrome �, a subset of nodes F � V is said to be

consistent with � if syndrome � can be produced from the situation

that all nodes in F are faulty and all nodes in V � F are fault-free.

Because a faulty comparator can lead to unreliable results, a given

set F of faulty nodes may produce different syndromes. Let

��ðF Þ ¼ f� j � is consistent with Fg.
Two distinct sets S1; S2 � V are said to be indistinguishable if and

only if ��ðS1Þ
T
��ðS2Þ 6¼ �; otherwise, S1; S2 are said to be

distinguishable. A system is said to be t-diagnosable if, for every

syndrome, there is a unique set of faulty nodes that could produce

the syndrome, provided the number of faulty nodes does not

exceed t.

3 PRELIMINARIES

We need some definitions and previous results for further

discussion. Let G ¼ ðV ;EÞ be a graph, if there are ambiguities,

we shall write the node set V as V ðGÞ and edge set E as EðGÞ.
Assume U � V ðGÞ. G½U� denotes the subgraph of G induced by the

node subset U of G and �UU ¼ V ðGÞ � U .
The vertex connectivity (simply abbreviated as connectivity) of a

network G ¼ ðV ;EÞ, denoted by �ðGÞ or �, is the minimum

number of vertices whose removal leaves the remaining graph

disconnected or trivial. Assume that V1 and V2 are two disjoint

nonempty subsets of V ðGÞ. The neighborhood set of V1 in V2, denoted

by NðV2; V1Þ, is defined as fx 2 V2 j there exists a node y 2 V1 such

that ðx; yÞ 2 EðGÞg. A vertex cover of G is a subset K � V ðGÞ such
that every edge of EðGÞ has at least one end vertex in K. A vertex

cover set with the minimum cardinality is called a minimum vertex

cover.
Given a graph G, let M be the comparison graph of G. For a

node v 2 V ðGÞ, we define Xv to be the set of nodes fu j ðv; uÞ 2
EðGÞg

S
fu j ðv; uÞw 2 EðMÞ for some wg and Yv to be the set of

edges fðu;wÞ j u;w 2 Xv and ðv; uÞw 2 EðMÞg. In [20], the order

graph of node v is defined as Gv ¼ ðXv; YvÞ and the order of the

node v, denoted by orderGðvÞ, is defined to be the cardinality of a

minimum vertex cover of Gv. Let U � V ðGÞ, we use T ðG;UÞ to

denote the set fv j ðu; vÞw 2 EðMÞ and w; u 2 U; v 2 �UUg. We observe

that T ðG;UÞ ¼ Nð �UU;UÞ if G½U � is connected and jUj > 1. This

observation can be extended to the following lemma.

Lemma 1. Let U be a subset of V ðGÞ and G½Ui�, 1 � i � k, be the

connected components of the subgraph G½U � such that U ¼
Sk

i¼1 Ui.

Then, T ðG;UÞ ¼
Sk

i¼1fNð �UU;UiÞ j jUij > 1g.

In Fig. 1, takingQ3 as an example, we have T ðG;UÞ ¼ f4; 5; 6; 7g,
where U ¼ f0; 1; 2; 3g.

The next lemma follows directly from the definition of

connectivity of G.

Lemma 2 [10]. Let G be a connected graph and U be a subset of V ðGÞ.
Then, jNð �UU;UÞj � �ðGÞ if j �UU j � �ðGÞ and Nð �UU;UÞ ¼ �UU if

j �UUj < �ðGÞ.

There are several different ways to verify a system to be

t-diagnosable under the comparison approach. In this paper, we

need three theorems given by Sengupta and Dahbura [20]. The first

two are necessary and sufficient conditions for ensuring distin-

guishability, the third one is a sufficient condition for verifying a

system to be t-diagnosable.

Theorem 1 [20]. For any S1; S2 where S1; S2 � V and S1 6¼ S2, ðS1; S2Þ
is a distinguishable pair if and only if at least one of the following

conditions is satisfied (see Fig. 2):

1. 9i; k 2 V � S1 � S2 and 9j 2 ðS1 � S2Þ
S
ðS2 � S1Þ such

that ði; jÞk 2 C,
2. 9i; j 2 S1 � S2 and 9k 2 V � S1 � S2 such that ði; jÞk 2 C,

or
3. 9i; j 2 S2 � S1 and 9k 2 V � S1 � S2 such that ði; jÞk 2 C.

Theorem 2 [20]. A system is t-diagnosable if and only if each node has

order at least t and, for each distinct pair of sets S1; S2 � V such that

jS1j ¼ jS2j ¼ t, at least one of the conditions of Theorem 1 is satisfied.

Theorem 3 [20]. A system G with N nodes is t-diagnosable if

1. N � 2tþ 1;
2. orderGðvÞ � t for every node v in G;
3. jT ðG;UÞj > p for each U � V ðGÞ such that jU j ¼ N � 2tþ

p and 0 � p � t� 1.

According to the above three theorems, we observe that

Condition 3 of Theorem 3 restricts G, satisfying the first condition

of Theorem 1, and ignores Conditions 2 and 3. Hence, we present a

hybrid theorem to test whether a system is t-diagnosable.

Theorem 4. A system G with N nodes is t-diagnosable if

1. N � 2tþ 1;
2. orderGðvÞ � t for every node v in G;
3. for any two distinct subsets S1, S2 � V ðGÞ such that jS1j ¼

jS2j ¼ t either

a. jT ðG;UÞj > p, where U ¼ V ðGÞ � ðS1

S
S2Þ, and

jS1

T
S2j ¼ p or

b. the pair ðS1; S2Þ satisfies Condition 2 or 3 of Theorem 1.
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Fig. 1. An example for T ðG;UÞ of Q3.

Fig. 2. Description of distinguishability for Theorem 1.



Proof. Conditions 1 and 2 are the same as Conditions 1 and 2 of
Theorem 3. Consider Condition 3a. S1 and S2 are two distinct
subsets of V ðGÞ with jS1j ¼ jS2j ¼ t, U ¼ V ðGÞ � ðS1

S
S2Þ, and

jS1

T
S2j ¼ p. Then, 0 � p � t� 1 and jUj ¼ N � 2tþ p. If

jT ðG;UÞj > p, it implies that the pair ðS1; S2Þ satisfies
Condition 1 of Theorem 1. Combining Conditions 3a and 3b,
by Theorems 1 and 2, this theorem follows. tu

4 DIAGNOSABILITY OF MATCHING COMPOSITION

NETWORKS

Now, we define the Matching Composition Network (MCN) as
follows: Let G1 and G2 be two graphs with the same number of
nodes. Let L be an arbitrary perfect matching between the nodes of
G1 and G2, i.e., L is a set of edges connecting the nodes of G1 and
G2 in a one to one fashion; the resulting composition graph is
called a Matching Composition Network (MCN). For convenience, G1

and G2 are called the components of the MCN. Formally, we use the
notation GðG1; G2;LÞ to denote an MCN, which has node set

V ðGðG1; G2;LÞÞ ¼ V ðG1Þ
[

V ðG2Þ

and edge set EðGðG1; G2;LÞÞ ¼ EðG1Þ [ EðG2Þ [ L. See Fig. 3.
What we have in mind is the following: Let G1 and G2 be two

t-connected networks with the same number of nodes and
orderGi

ðvÞ � t for every node v in Gi, where i ¼ 1; 2, and let L be
an arbitrary perfect matching between the nodes of G1 and G2.
Then, the degree of any node v in GðG1; G2;LÞ as compared with
that of node v in Gi, i ¼ 1; 2, is increased by one. We expect that the
diagnosability of GðG1; G2;LÞ is also increased to tþ 1. For
example, the Hypercube Qnþ1 is constructed from two copies of
Qn by adding a perfect matching between the two and the
diagnosability is increased from n to nþ 1 for n � 5. Other
examples, such as the Twisted cube TQnþ1, the Crossed cube
CQnþ1, and the Möbius cube MQnþ1, are all constructed
recursively using the same method as above.

Theorem 5. Let G1 and G2 be two networks with the same number of

nodes and t be a positive integer. Suppose that orderGi
ðvÞ � t for

every node v in Gi, where i ¼ 1; 2. Then, orderGðG1 ;G2;LÞðvÞ � tþ 1

for node v in GðG1; G2;LÞ.
Proof. See Fig. 3. Let v be a node of GðG1; G2;LÞ. Without loss of

generality, we assume that v 2 V ðG1Þ, v0 2 V ðG2Þ, and
ðv; v0Þ 2 L. Of course, node v0 is connected to at least one other
node v00 in V ðG2Þ. Let Gðv;G1Þ and Gðv;GðG1; G2;LÞÞ be the
order graph of v in graph G1 and GðG1; G2;LÞ, respectively. We
observe that Gðv;G1Þ is a proper subgraph ofGðv;GðG1; G2;LÞÞ,
both v0 and v00 are in the latter, none of them in the former, and
ðv0; v00Þ is an edge in Gðv;GðG1; G2;LÞÞ. Therefore, every vertex
cover of the order graph Gðv;GðG1; G2;LÞÞ contains a vertex
cover of the order graph Gðv;G1Þ. Besides, any vertex cover of
Gðv;GðG1; G2;LÞÞ has to include at least one of v0 and v00. Thus,
orderGðG1 ;G2;LÞðvÞ � orderGi

ðvÞ þ 1 for any node v in Gi, i ¼ 1; 2.
This completes the proof. tu

We need the following lemma later in Theorem 6.

Lemma 3. Let G be a t-connected network, jV ðGÞj � tþ 2 and
orderGðvÞ � t for every node v in G, where t � 2. Suppose that U
is a subset of nodes of V ðGÞ with j �UU j � t. Then, T ðG;UÞ ¼ �UU .

Proof. By assumption j �UUj � t and �ðGÞ � t, we prove the lemma by
two cases; the first for j �UU j < �ðGÞ and the second for j �UU j ¼ �ðGÞ.

If j �UUj < �ðGÞ, the induced graph G½U � is connected. By
Lemma 1, T ðG;UÞ ¼ Nð �UU;UÞ. By Lemma 2, Nð �UU;UÞ ¼ �UU . This
case holds.

Suppose that j �UUj ¼ �ðGÞ. We observe that, adding any node v
of �UU to U , the induced subgraph G½U

S
fvg� forms a connected

graph. It implies that every node v of �UU is adjacent to every
connected components of G½U �. We claim that the subgraph
induced by U contains a connected component A with
cardinality at least two (see Fig. 4a). Then, the connected
component A is adjacent to all nodes in �UU and, so, T ðG;UÞ ¼ �UU .

Now, we prove the claim. Suppose, on the contrary, that
every connected component of the subgraph induced by U is an
isolated node. Let v be an arbitrary node in �UU and let Gv ¼
ðXv; YvÞ be the order graph of v in G. Then, �UU � fvg is a vertex
cover of Gv because every connected component of G½U� is an
isolated node. Since j �UUj � t, we have j �UU � fvgj � t� 1. There-
fore, even if the induced graph G½ �UU � fvg� is a complete graph
(see Fig. 4b), the cardinality of a minimum vertex cover of the
order graph Gv is at most t� 1. However, this contradicts the
hypothesis of orderGðvÞ � t for every node v in G. So, G½U � has a
connected component A with cardinality at least two. This
proves the claim, and the lemma follows. tu

We are now ready to state and prove the following theorem
about the diagnosability of Matching Composition Network under
the comparison model. As an illustration, the conditions of the
following theorem are applicable to some well-known interconnec-
tion networks, such as Qn, CQn, TQn, and MQn for n ¼ t � 3.

Theorem 6. For t � 2, let G1 and G2 be two graphs with the same
number of nodes N , where N � tþ 2. Suppose that orderGi

ðvÞ � t
for every node v in Gi and the connectivity �ðGiÞ � t, where i ¼ 1; 2.
Then, MCN GðG1; G2;LÞ is ðtþ 1Þ-diagnosable.

Proof. Since jV ðG1Þj ¼ jV ðG2Þj ¼ N , 2N � 2ðtþ 2Þ > 2ðtþ 1Þ þ 1.
By Theorem 5, orderGðG1 ;G2;LÞðvÞ � tþ 1 for any node v in
GðG1; G2;LÞ. It remains to prove that GðG1; G2;LÞ satisfies
Condition 3 of Theorem 4.

Let S1 and S2 be two distinct subsets of V ðGÞ with the same
number tþ 1 of nodes and let jS1

T
S2j ¼ p, then 0 � p � t. In

order to prove this theorem, we will prove that S1 and S2 are
distinguishable, i.e., this pair ðS1; S2Þ satisfies either Condition
3a or 3b of Theorem 4.

Let G ¼ GðG1; G2;LÞ and U ¼ V ðGÞ � ðS1

S
S2Þ, then

jUj ¼ 2N � 2ðtþ 1Þ þ p. L e t U ¼ U1

S
U2 w i t h Ui ¼

U
T
V ðGiÞ and �UUi ¼ V ðGiÞ � Ui, i ¼ 1; 2. Without loss of

generality, we assume that jU1j � jU2j. Let j �UU1j ¼ n1,
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Fig. 3. An example of GðG1; G2;LÞ.

Fig. 4. An example of the T ðG;UÞ when jUj ¼ t. (a) G. (b) v is connected to A.



j �UU2j ¼ n2, n1 þ n2 ¼ 2ðtþ 1Þ � p, a n d n1 � n2. S i n c e

0 � n1 � 2ðtþ1Þ�p
2 , the maximum value of n1 is equal to tþ 1

when p ¼ 0 and n2 ¼ tþ 1. According to different values of n1

and n2, we divide the proof into two cases. The first case is

n2 � t, which implies n1 � t. The second case is n2 > t and this

case is further divided into three subcases n1 < t, n1 ¼ t, and

n1 > t.
Case 1: n1 � t and n2 � t.
By Lemma 3, we have

jT ðG;UÞj � jT ðG1; U1Þj þ jT ðG2; U2Þj ¼ j �UU1j þ j �UU2j
¼ n1 þ n2 ¼ 2ðtþ 1Þ � p:

We know that 0 < p � t, jT ðG;UÞj � 2ðtþ 1Þ � p > p, and

Condition 3a of Theorem 4 is satisfied.
Case 2: n2 > t.
We discuss the case according to the following three

subcases, 2a) n1 < t, 2b) n1 ¼ t, and 2c) n1 > t.
Subcase 2a: n1 < t.
Since �ðG1Þ � t and j �UU1j ¼ n1 < t, G½U1� is connected. By

Lemmas 1 and 2, T ðG1; U1Þ ¼ Nð �UU1; U1Þ ¼ n1. There are n1 and
n2 nodes in �UU1 and �UU2, respectively, and n2 ¼ 2tþ 2� p� n1

(see Fig. 5). If all the nodes in �UU1 are adjacent to some n1 nodes
in �UU2, there are still at least n2 � n1 ¼ 2tþ 2� p� 2n1 nodes in
�UU2 such that each of them is adjacent to some node in U1 under
the matching L. So,

jT ðG;UÞj � jT ðG1; U1Þj þ ðn2 � n1Þ ¼ n1 þ ðn2 � n1Þ ¼ n2:

Because n2 > t � p, the proof of this subcase is complete.
Subcase 2b: n1 ¼ t.
We know that n1 þ n2 ¼ 2ðtþ 1Þ � p, 0 � p � t, n2 > t, and

n1 ¼ t, the only two valid values for n2 are tþ 1 and tþ 2.
n2 ¼ tþ 1 implies p ¼ 1, and n2 ¼ tþ 2 implies p ¼ 0. By
Lemma 3, jT ðG1; U1Þj ¼ j �UU1j ¼ t � 2 > p for p ¼ 0 or 1. Then,
the subcase holds.

Subcase 2c: n1 > t.
Observing that 0 � n1 � 2ðtþ1Þ�p

2 , where 0 � p � t and
n2 � n1 > t, so n1 ¼ n2 ¼ tþ 1. It also implies p ¼ 0. Here, we
will prove that the subcase satisfies either Condition 3a or
Condition 3b of Theorem 4.

First, if the subgraph induced by U contains a connected
component A1 with cardinality at least two (see Fig. 6), then it
must be adjacent to some node in �UU . Thus, we know that
jT ðG;UÞj > 0 ¼ p and Condition 3a of Theorem 4 is satisfied.

Otherwise, every connected component of U contains a
single node only. By Theorem 1, we know that S1 and S2 are
distinguishable if there exists a path hu1 ! u ! u2i such that
u 2 U , and u1; u2 2 S1 � S2 or u1; u2 2 S2 � S1. If p ¼ 0, it
implies S1

T
S2 ¼ �, any node u in G½U � with degree more than

two must be connected to at least two nodes in S1 or S2 (see
Fig. 6). By Theorem 5, orderGðG1 ;G2;LÞðvÞ � tþ 1 for every node v
in GðG1; G2;LÞ, therefore degðvÞ � tþ 1 for every node v in
GðG1; G2;LÞ. Since t � 2, Condition 3b of Theorem 4 is satisfied.

Hence, the subcase holds and the theorem follows. tu

By Theorem 3 and Theorem 6, we have the following corollary.

Corollary 1. Let G1 and G2 be two graphs with the same number of

nodes N . Suppose that both G1 and G2 are t-diagnosable and have

connectivity �ðG1Þ ¼ �ðG2Þ � t, where t � 2. Then, MCN

GðG1; G2;LÞ is ðtþ 1Þ-diagnosable.

5 APPLICATIONS

In this section, we demonstrate the usefulness of our proposed

construction scheme for some well-known networks. For example,

the diagnosability of the Hypercube Qn [19], the Crossed cube CQn

[6], [7], [8], the Twisted cube TQn [9], [13], and the Möbius cube

MQn [5] can all be proven to be n, for n � 4.
The Hypercube is a popular topology for interconnection

networks. The Crossed cube, the Twisted cube, and the Möbius

cube are variations of the Hypercube. For each of these cubes,

an n-dimensional cube can be constructed from two copies of

ðn� 1Þ-dimensional subcubes by adding a perfect matching

between the two subcubes. The main difference is that each of

these cubes has various perfect matching between its subcubes. An

n-dimensional cube has 2n nodes, connectivity n, and each node

has the same degree n. In the following, we briefly state the

recursive definitions of these cubes and prove that they are all

n-diagnosable.
The nodes of these n-dimensional cubes are usually represented

by the n-bit binary strings. A binary string u of length n will be

written as u ¼ un�1un�2un�3 . . . u0, where ui 2 f0; 1g, 0 � i � n� 1.

The classical n-dimensional Hypercubes Qn is recursively defined

as follows.

Definition 1. Let n � 1 be an integer. The Hypercube Qn of dimension n

has 2n nodes. Q1 is a complete graph with two nodes labeled by 0 and

1, respectively. For n � 2, an n-dimensional Hypercube Qn is

obtained by taking two copies of ðn� 1Þ-dimensional subcubes

Qn�1, denoted by Q0
n�1 and Q1

n�1. For each v 2 V ðQnÞ, insert a 0 to

the front of ðn� 1Þ-bit binary string for v in Q0
n�1 and a 1 to the front

of ðn� 1Þ-bit binary string for v in Q1
n�1. There are 2n�1 edges

between Q0
n�1 and Q1

n�1 as follows:

Let V ðQ0
n�1Þ ¼ f0un�2un�3 . . .u0 : ui ¼ 0 or 1g and V ðQ1

n�1Þ ¼
f1vn�2vn�3 . . . v0 : vi ¼ 0 or 1g, where 0 � i � n� 2. A node u ¼
0un�2un�3 . . . u0 of V ðQ0

n�1Þ is joined to a node v ¼ 1vn�2vn�3 . . . v0
of V ðQ1

n�1Þ if and only if ui ¼ vi for 0 � i � n� 2.

In [22], Wang has proven that the diagnosability of hypercube-

structured multiprocessor systems under the comparison model is

n when n � 5. However, the diagnosability of Q4 is not known to

be 4. Using our Theorem 6, we can strengthen the result as follows.

Theorem 7. The Hypercube Qn is n-diagnosable for n � 4.

Proof. We observe that Q3 is 3-connected, orderQ3
ðvÞ ¼ 3 for every

node v in Q3, and the number of nodes of Q3 is 8, 8 � tþ 2 ¼ 5

for t ¼ 3. It is well-known that Q4 can be constructed from two

copies of Q3 by adding a perfect matching between these two

copies. Therefore, by Theorem 6, Q4 is 4-diagnosable.
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Fig. 5. Illustration of Subcase 2a of Theorem 6.
Fig. 6. An example of Subcase 2c of Theorem 6.



Then, the proof is by induction on n. We have shown that Q4

is 4-diagnosable. Assume that it is true for n ¼ m� 1.
Considering n ¼ m, Qm is obtained from two copies G1, G2 of
Qm�1 by adding a perfect matching joining corresponding
nodes in G1 and G2. It is well-known that Qm�1 is ðm� 1Þ-
connected. By Corollary 1, Qm is m-diagnosable. This completes
the induction proof. tu

However, Q3 is not 3-diagnosable. In Fig. 7, there is a Q3, let

S1 ¼ f0; 5; 7g and S2 ¼ f2; 5; 7g. Then, by Theorem 1, S1 and S2 are

not distinguishable, as shown in Fig. 7.
As we observe, most of the related results on diagnosability of

multiprocessors systems [12], [22] are based on a sufficient

theorem, namely, Theorem 3. Not satisfying this sufficient

condition, such as in the case of Q4, does not necessarily imply

that the network is not 4-diagnosable. Therefore, we propose a

hybrid condition, 3a and 3b of Theorem 4, to check the

diagnosability of multiprocessor systems under the comparison

model. It is more powerful to use. Applying our Theorem 4 and

Theorem 6, we show that the diagnosability of Q4 is indeed 4.
The following is the recursive definition of the n-dimensional

Crossed cube CQn.

Definition 2 [6]. The Crossed cube CQ1 is a complete graph with two

nodes labeled by 0 and 1, respectively. For n � 2, an n-dimensional

Crossed cube CQn consists of two ðn� 1Þ-dimensional sub-Crossed

cubes, CQ0
n�1 and CQ1

n�1, and a perfect matching between the nodes

of CQ0
n�1 and CQ1

n�1 according to the following rule:

L e t V ðCQ0
n�1Þ ¼ f0un�2un�3 . . .u0 : ui ¼ 0 or 1g a n d

V ðCQ1
n�1Þ ¼ f1vn�2vn�3 . . . v0 : vi ¼ 0 or 1g. T h e n o d e u ¼

0un�2un�3 . . .u0 2 V ðCQ0
n�1Þ and the node v ¼ 1vn�2vn�3 . . . v0 2

V ðCQ1
n�1Þ are adjacent in CQn if and only if

1. un�2 ¼ vn�2 if n is even and
2. ðu2iþ1u2i; v2iþ1v2iÞ 2 fð00; 00Þ; ð10; 10Þ; ð01; 11Þ; ð11; 01Þg,

for 0 � i < bn�1
2 c.

Hilbers et al. [13] defined the Twisted cubes using the parity

f un c t i o n . L e t u ¼ un�1un�2 . . .u0, wh e r e ui 2 f0; 1g and

0 � i � n� 1, t h e p a r i t y f u n c t i o n i s d e f i n e d a s

PiðuÞ ¼ ui
L

ui�1

L
� � �

L
u0, where

L
is the exclusive-or operation.

Definition 3 [13]. The Twisted cube TQ1 is a complete graph with two

nodes, 0 and 1. Let n be an odd integer and n � 3. The nodes of an

n-dimensional Twisted cube TQn are decomposed into four sets S0;0,

S0;1, S1;0 and S1;1. The set Si;j consists of those nodes u ¼
un�1un�2 . . . u0 w i t h un�1 ¼ i a n d un�2 ¼ j, w h e r e

ði; jÞ 2 fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg. The induced subgraph of Si;j in

TQn is isomorphic to TQn�2. Edges which connect these four ðn�
2Þ-dimensional subtwisted cubes can be described as follows: Any

nod e un�1un�2 . . .u0 wi t h Pn�3ðuÞ ¼ 0 i s c onn e c t e d t o

un�1un�2 . . . u0 and un�1un�2 . . .u0; and to un�1un�2 . . .u0 and

un�1un�2 . . . u0, if Pn�3ðuÞ ¼ 1.

As stated in [13], for even integer n, the Twisted cube TQn can

also be defined recursively in a similar way starting from TQ2,

where TQ2 is isomorphic to Q2. In order to see the recursive

structure of the Twisted cube, we review the classical definition of

the Cartesian product.

Definition 4. The Cartesian product of G and H, written G	H, is the

graph with vertex V ðGÞ 	 V ðHÞ specified by putting hu; vi adjacent
to hu0; v0i if and only if 1) u ¼ u0 and ðv; v0Þ 2 EðHÞ, or 2) v ¼ v0 and

ðu; u0Þ 2 EðGÞ.

It is known that the n-dimensional hypercube can be defined as

Qn ¼ Qn�1 	K2 when n � 2, where K2 is the complete graph with

two nodes.
In additions, the connectivity of the network G	H is listed as

follows:

Lemma 4 [4]. �ðG	HÞ � �ðGÞ þ �ðHÞ.

In Definition 3, let TQ0
n�1 (TQ

1
n�1, respectively) be the subgraph

of TQn induced by S0;0
S
S1;0 (S1;1

S
S0;1, respectively). It follows

directly from the definition that both TQ0
n�1 and TQ1

n�1 are

isomorphic to the Cartesian product TQn�2 	K2. Then, TQn is

constructed from TQ0
n�1 and TQ1

n�1 by joining them with a

particular perfect matching. The connectivity of TQn is n [3].

Replacing n by n� 2, the connectivity of TQn�2 is n� 2. So, by

Lemma 4, both TQ0
n�1 and TQ1

n�1 are ðn� 1Þ-connected.
By Theorem 6, we observe that both TQ0

4 and TQ1
4 are

4-diagnosable. Then, byCorollary 1,TQ5 is 5-diagnosable. Applying

induction on n, suppose that TQn�2 is ðn� 2Þ-diagnosable, by

Corollary 1, both TQ0
n�1 and TQ1

n�1 are ðn� 1Þ-diagnosable. Then,
we can prove that TQn is n-diagnosable by induction.

Now, we present the definition of the Möbius cubes MQn [5].

There are two types of MQn, namely, 0�MQn and 1�MQn.

Definition 5 [5]. 0�MQ1 and 1�MQ1 are both the complete

graph on two nodes whose labels are 0 and 1. For n � 2, both

0�MQn and 1�MQn contain one 0-type sub-Möbius cube

MQ0
n�1 and one 1-type sub-Möbius cube MQ1

n�1. The first bit of

every node of MQ0
n�1 is 0 and the first bit of every node of

MQ1
n�1 is 1. For two nodes u ¼ 0un�2un�3 . . . u0 2 V ðMQ0

n�1Þ
and v ¼ 1vn�2vn�3 . . . v0 2 V ðMQ1

n�1Þ,

1. u connects to v in 0�MQn if and only if ui ¼ vi, for every i,
0 � i � n� 2,

2. u connects to v in 1�MQn if and only if ui ¼ vi, for every i,
0 � i � n� 2.

It is known [11], [15] that the Crossed cube CQn and the Möbius

cube MQn are both n-connected. By Theorem 5, we can prove that

the order of each node in these two cubes is n. We observe that the

two cubes are both constructed recursively using a similar way

satisfying the requirements of Theorem 6 and Corollary 1.

Therefore, we can prove that CQn and MQn are both

n-diagnosable for n � 4. Then, we list the following three

theorems.

Theorem 8 [12]. The Crossed cube CQn is n-diagnosable for n � 4.

Theorem 9. The Twisted cube TQn is n-diagnosable for n � 4.

Theorem 10. The Möbius cube MQn is n-diagnosable for n � 4.

6 CONCLUSIONS

In this paper, we propose a sufficient theorem to verify the

diagnosability of multiprocessor systems under the comparison-

based model. The conditions of this theorem include all the cases

of the original necessary and sufficient condition stated in

Theorem 1. Therefore, it is more suitable for verifying the

diagnosability of a system. Then, we propose a family of

interconnection networks which are recursively constructed, called

the Matching Composition Networks.
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Fig. 7. S1 ¼ f0; 5; 7g and S2 ¼ f2; 5; 7g are not distinguishable.



Each member GðG1; G2;LÞ of this family is constructed from a
pair G1 and G2 of lower dimensional networks with the same
number of nodes, joining by a perfect matching L between the two.
Applying Theorem 6 in this paper, we show that the diagnosability
of GðG1; G2;LÞ is one larger than those of the G1 and G2, provided
some regular conditions, as stated in Theorem 6, are satisfied.
Many well-known interconnection networks, such as the Hyper-

cubes Qn, the Crossed cubes CQn, the Twisted cubes TQn, and the
Möbious cubes MQn, belong to our proposed family.

We note here that these special cases all satisfy the condition of
Theorem 6 for n � 4. Thus, their diagnosabilities are n, for n � 4. In
particular, the diagnosability of the 4-dimensional Hypercube Q4 is
4. Also, Theorems 9 and 10 are proposed for the first time to
describe the diagnosability of the Twisted cube TQn and the
Möbious cubes MQn.
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