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Abstract—The pocket implantation effect on drain current
flicker noise in 0.13 m CMOS process based high performance
analog nMOSFETs is investigated. Our result shows that pocket
implantation will significantly degrade device low-frequency noise
primarily because of nonuniform threshold voltage distribution
along the channel. An analytical flicker noise model to account
for a pocket doping effect is proposed. In our model, the local
threshold voltage and the width of the pocket implant region are
extracted from the measured reverse short-channel effect, and
the oxide trap density is extracted from a long-channel device.
Good agreement between our model and the measurement result
is obtained without other fitting parameters.

Index Terms—Flicker noise, modeling, nonuniform threshold
voltage, pocket implant.

I. INTRODUCTION

THE CMOS technology, which possesses the advantage of
low cost, high integration, and low power, is finding more

and more important applications in the area of mixed mode
and RF ICs. As compared with bipolar transistors, CMOS de-
vices exhibit large noise, especially in the low-frequency region
where flicker noise is dominant [1]. Flicker noise will affect the
signal-to-noise ratio in operational amplifiers and in analog/dig-
ital and digital/analog converters. Phase noise of voltage-con-
trolled oscillators originating from flicker noise is another con-
cern for RF applications [2]. In order to reduce low-frequency
noise in analog devices, the physical origin of flicker noise in
today’s CMOS devices should be further explored.

Pocket implantation is necessary in CMOS process to reduce
the subthreshold leakage in logic devices. However, it has some
drawbacks in analog circuits, such as the increase of drain-sub-
strate coupling, poor Early voltage, lower high-frequency
output resistance [3] and increased nonlinearity [4]. Recent
study has shown that pocket implantation will also degrade
drain current flicker noise [3]–[7]. New MOSFET structures,
such as single pocket, asymmetric channel structure, [3], [5]
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and epitaxial channel MOSFETs [6], [7], were proposed to
reduce flicker noise by elimination of pocket implantation.
Although some researchers suspected that the increase of
low-frequency noise in pocket-implanted devices results from
additional oxide trap creation by pocket implantation [7], the
real cause of pocket implantation induced noise degradation
is still not clear. The purpose of this paper is to investigate
pocket implantation effect on flicker noise in nMOSFETs with
various pocket doses and device dimensions. An analytical
flicker noise model taking into account a pocket doping effect
will be proposed.

The input/output nMOSFETs of a 0.13- m CMOS tech-
nology is used in this work. The I/O devices have a 5.8-nm gate
oxide, a gate length from 0.22 to 10 m, and a gate width of 10

m. Two pocket implant doses were used. Due to the statistical
nature of the flicker noise, devices with too small an area may
exhibit a large fluctuation range in noise [8]. In this paper, each
noise measurement data point represents an average of three
to ten devices. The normalized noise power spectrum density

is chosen as a monitor of drain current noise, which
is considered to be a fair index because of the normalization
to the drain current. In addition, charge pumping measurement
is performed to characterize oxide (interface) trap density for
different pocket implant splits.

According to the unified flicker noise model [9], the normal-
ized noise power spectrum density has the following
simple analytic form at very low drain voltages:

(1)

where cm is the attenuation coefficient of the elec-
tron wave function in the oxide [10], is the scattering coeffi-
cient [11], is the number of channel carriers per unit area,
and is the oxide trap density at the Fermi level .
The term in the bracket represents charge number fluc-
tuation and the term is from mobility fluctuation. For nMOS-
FETs at a low gate overdrive bias, is smaller than ,
which means that the number fluctuation mechanism dominates
noise behavior.

II. MEASUREMENT RESULT AND DISCUSSION

Fig. 1 shows the diagram of an nMOSFET with pocket
implantation. Pocket implantation will cause nonuniform
threshold voltage distribution along the channel and may create
additional oxide traps near the source/drain edge. According
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Fig. 1. Diagram of pocket implant-induced nonuniform threshold voltage
distribution along the channel. Regions 1 and 3 are the pocket implant-affected
region and possess a higher threshold voltage. Region 2 represents the rest of
the channel.

Fig. 2. Reverse SCE for low/high pocket doses.

to (1), both nonuniform distribution and oxide trap creation
affect drain current flicker noise. Two pocket implant doses
are compared in this study. The higher pocket dose is about
2.2 times larger than the lower one. Fig. 2 shows the reverse
short-channel effect (RSCE) of nMOSFETs of the two doses.
As expected, the higher pocket implant dose shows a larger
RSCE. The short-channel effect (SCE) becomes dominant for a
gate length below 0.3 m. The measured noise behavior of these
two pocket implant splits is shown in Fig. 3. The comparison is
made at the same gate overdrive voltage ( – ). To avoid the
complication resulting from the SCE in the analysis of noise,
two gate lengths and 10 m) in the RSCE regime
are used for study. The noise is measured in linear operation
regime V) that the inversion charge is not affected by
the drain bias. The noise data point shown in Fig. 3 is obtained
at Hz. For a long-channel device [ m,
Fig. 3(a)], the noise of the two different pocket split devices
is almost the same without regard to a considerably different
pocket dosage. Fig. 3(b) shows the noise in two shorter gate
length m devices with the same pocket split.
The higher pocket dose device apparently exhibits much worse
noise behavior in the entire range of gate bias. Fig. 4 shows the
measured flicker noise versus gate length for the two pocket
dosages. The pocket implant-induced noise degradation is more
significant in a shorter gate length device because the pocket
implant region occupies a larger portion of the channel.

Fig. 3. Normalized noise power spectrum density versus gate overdrive
voltage (V –V ) for low/high pocket doses. The noise is measured in the linear
regime. (a) nMOS (W=L = 10=10 �m), and all data points are averaged
from three devices. (b) nMOS (W=L = 10=0:32 �m), and all data points are
averaged from ten devices.

Fig. 4. Normalized noise power spectrum density versus gate length for
low/high pocket doses. The noise is measured at the same gate overdrive
voltage.

Previous work attributed the severe noise degradation in a
pocket-implanted device to more oxide trap creation due to
pocket implant [12]. In order to clarify this point, we measured
the charge pumping current for the two pocket splits. Nearly
the same result is obtained in Fig. 5 with extracted interface
trap density about cm . This implies that the
two implant splits yield almost the same trap density in gate
oxide. Thus, the more severe noise degradation in the higher
pocket dose device in Fig. 3(b) cannot be explained simply
by implant caused oxide trap creation. Rather, a nonuniform



1264 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 51, NO. 8, AUGUST 2004

Fig. 5. Charge pumping current versus the high level of gate pulse (V ) in
charge pumping measurement for low/high pocket doses.

threshold voltage distribution along the channel resulting from
pocket implant should be responsible for the observed noise
degradation. A simple analytic model is proposed to explain a
nonuniform threshold voltage effect on noise degradation.

III. NOISE MODELING INCLUDING POCKET IMPLANT

In our model, the channel of an nMOSFET is divided into
three regions, as suggested in [13], [14]. Regions 1 and 3 in
Fig. 1 represent a pocket region, where the local threshold
voltage ( ) is increased due to pocket implantation. Region 2
represents the rest of the channel and possesses a lower . In
our model, the is divided into three terms by introducing
the nonuniform distribution into the term. At a rela-
tively low gate overdrive bias, the mobility fluctuation term in
(1) can be neglected. In addition, since the oxide (interface)
trap density is not affected by pocket implantation process, a
uniform distribution of oxide trap density along the channel is
assumed. Based on these assumptions, (1) can be reduced to

(2)

where and represent conducting charge density in region
1 and region 3, which are modulated by pocket implant dosage.
In the long-channel devices m , the noise compo-
nent arising from the pocket implantation regions is relatively
small. This argument is evident from Fig. 3(a) that the noise
is nearly the same for different pocket splits in long-channel
devices. In other words, the second term in (2), i.e., re-
gion, is dominant in a long-channel device. From the measured
noise and threshold voltage in a long-channel device, the oxide
trap density can be extracted. The result is shown in
Table I. The measured and calculated results of noise level in a
long-channel device are shown in Fig. 6. Good agreement be-
tween our model and measurement result is achieved in a low

TABLE I
VALUES OF POCKET REGION LENGTH, THRESHOLD VOLTAGE AND OXIDE

TRAP DENSITY FOR LOW/HIGH POCKET DOSES

Fig. 6. Comparison of calculated and measured noise results for nMOS with
W=L = 10=10 �m. (a) Low pocket dose. (b) High pocket dose.

gate overdrive voltage regime where the number fluctuation is
dominant.

For noise calculation in short-channel devices, the respective
parameters in the pocket region must be extracted first. The ef-
fective channel length is about m, which
is evaluated from the shift and ratio method [15]. The width and
the local of the pocket regions can be extracted from the mea-
sured RSCE by using the method in [16] and [17]. The extracted
parameters used in our model are given in Table I. The measured
and calculated results in 0.32 m devices are shown in Fig. 7.
No other fitting parameters are used.

It should be remarked that a small difference between mod-
eled and measured results is noticed in Figs. 6 and 7 at a higher
gate overdrive bias. The reason is that the mobility fluctuation
mechanism plays a part in drain current noise at a high
gate overdrive bias.
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Fig. 7. Comparison of calculated and measured noise results for nMOS with
W=L = 10 �m=0:32 �m. (a) Low pocket dose. (b) High pocket dose.

IV. CONCLUSION

Pocket implantation effect on drain current flicker noise in
nMOSFETs is investigated. The result shows that nonuniform
threshold voltage distribution along the channel caused by
pocket implantation is responsible for flicker noise degradation
in a short-channel device. This effect will become more signif-
icant as channel length is further reduced. A simple analytical
noise model including pocket implantation effect for various
gate length devices has been developed and can be easily
implemented into a circuit simulator.
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