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Hybrid Compensation Control for Affine
TSK Fuzzy Control Systems

Chih-Ching Hsiao, Shun-Feng Su, Member, IEEE, Tsu-Tian Lee, Fellow, IEEE, and Chen-Chia Chuang

Abstract—The paper proposes a way of designing state feedback
controllers for affine Takagi-Sugeno-Kang (TSK) fuzzy models. In
the approach, by combining two different control design method-
ologies, the proposed controller is designed to compensate all rules
so that the desired control performance can appear in the overall
system. OQur approach treats all fuzzy rules as variations of a nom-
inal rule and such variations are individually dealt with in a Lya-
punov sense. Previous approaches have proposed a similar idea but
the variations are dealt with as a whole in a robust control sense.
As a consequence, when fuzzy rules are distributed in a wide range,
the stability conditions may not be satisfied. In addition, the con-
trol performance of the closed-loop system cannot be anticipated in
those approaches. Various examples were conducted in our study
to demonstrate the effectiveness of the proposed control design ap-
proach. All results illustrate good control performances as desired.

Index Terms—Affine TSK fuzzy model, fuzzy control, hybrid
compensation control.

I. INTRODUCTION

HE STUDY of stable analysis and control design for fuzzy

systems has attracted many researchers recently. In the
control design study, there are two types of control design prob-
lems found in the literature. The first one is to design a fuzzy
controller for a nonlinear or unknown system, and the other
is to find a controller for a fuzzy system. In the former case,
a so-called adaptive fuzzy control is usually used. Generally,
the basic objective of adaptive control is to maintain consis-
tent control performance in the presence of large uncertainties
or unknown variations in plant parameters or structure [1]-[4].
In those papers, some adaptive laws are proposed to guarantee
the stability of the system in the sense of Lyapunov. By com-
bining other learning approaches, or by considering different
control properties, various variations of adaptive fuzzy control
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approaches have been proposed in the literature [5]-[13]. In this
paper, we reported our study on the issue of finding a suitable
controller for a fuzzy system. In this study, the structure and pa-
rameters of the fuzzy controller are fixed and we shall find a
way of designing fuzzy controllers to satisfy requirements.

For the analysis of stability of fuzzy system, based on the Lya-
punov stability criterion, Tanaka and Sugeno (T-S) [14] have
proposed a useful theory for conservatively assuring the sta-
bility of a Takagi-Sugeno-Kang (TSK) or T-S fuzzy model [15].
The theory states that if a common positive definite matrix re-
quired in Riccati equations can be found for all fuzzy rules, the
fuzzy model is stable in the sense of Lyapunov. Thathachar ez al.
[16] also proposed a necessary condition and a sufficient condi-
tion for the stability of fuzzy systems. They showed that under a
formal sufficient condition, a common Lyapunov matrix exists
for all subsystems. It is easy to see that to analytically find such
a matrix is a linear matrix inequality (LMI) problem [17], [41].
Based on the LMI concept, Kim et al. [18] proposed a numer-
ical stability analysis method for singleton-type linguistic fuzzy
control systems. Most of recent fuzzy control design approaches
are to employ the parallel-distributed compensation (PDC) con-
cept [19], in which controllers are designed individually for
fuzzy rules and then stability condition is checked through LMI
to validate the design. Some relaxed LMI stability conditions
are also proposed in [20] and [21]. Parametric uncertainties re-
garding those approaches are dealt with in [22]-[24]. However,
those methods are stability checking approaches instead of de-
sign approaches. When the designed controller cannot satisfy
the stability criterion, another controller is tried. Such a process
is somehow a trial-and-error design procedure. Lam et al. [25]
proposed a designing method that can be used to help solving the
relaxed LMI problem and in the approach, the feedback gains
of the subsystem are determined by using a genetic algorithm,
which can also be viewed as a trial-and-error procedure. An-
other problem rises when the number of rules is large because
it may be difficult to find solutions for LMI in that case. More-
over, since the validation of LMI is only for stability, the control
performance assured in individual rules cannot be anticipated in
the overall system performance under those design approaches.

Several researchers [21], [26], [27] actually proposed ways of
designing controllers by directly solving LMIs. Gao et al. [26]
and Tanaka et al. [20] used LMIs combined with stable condi-
tions of fuzzy systems to design a stable fuzzy system. When the
control performance is considered, those approaches need to in-
clude performance constraints into LMIs for all fuzzy rules [27].
Korba et al. [28] proposed an extended fuzzy scheduler (EFS)
controller that can guarantee the stability and the tracking per-
formance requirements. The idea is to introduce an additional
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tracking-error state variable into the state variables of the con-
trolled system, and then an extended-state feedback-gain matrix
is design by means of LMIs. Cao et al. [29] also developed a
two-part controller. One part is a state-feedback matrix like that
in [17] and [20] and the other part is to satisfy global stable con-
ditions. Note that in these approaches, the homogeneous fuzzy
systems are considered. Here, “homogeneous” means that the
consequent parts are linear equations without constant terms.
Such fuzzy systems can only represent a certain class of non-
linear systems. Kim et al. [30] proposed a discrete iterative LMI
approach to analyze stability for discrete affine fuzzy systems,
where “affine” means that the consequent parts are linear equa-
tions with constant terms. However, the above approaches may
become infeasible, when the number of rules is large. It is be-
cause the analysis techniques are to find a common positive def-
inite matrix for all subsystems (fuzzy rules) to fulfill the Lya-
punov stability analysis. It is difficult to find such a matrix when
the rule number is large. Sometimes, there does not even exist
such a matrix.

Other approaches also exist that do not make use of the
common Lyapunov matrix validation scheme. Kang et al. [31]
proposed a controller that is inferred by using their consistency
conditions [32], but the desired performance has not yet been
addressed. Kiriakidis et al. [33] viewed a TSK fuzzy model as
a linear system subject to a class of nonlinear uncertainties and
claimed that the computational cost of checking such a stability
criterion is less than that of finding a common Lyapunov
matrix. However, this approach leads to a convex programming
problem and the design procedure is still in a trial-and-error
manner. Feng [34] proposed a sufficient condition, which
leads to a search algorithm for solving a Riccati equation, and
then a state feedback can be designed accordingly for such a
system. Zak [35] also proposed a design algorithm to obtain
a controller, which is separated into two parts to stabilize
the nominal system and variations residing in all fuzzy rules,
respectively. This approach is to treat variations of all rules as
a whole in a robust control sense. For those approaches, when
subsystems are distributed in a wide range, the upper bound of
such variations may become large, and then the stabilization
algorithm may fail. In addition, the control performance of
the closed-loop system cannot be anticipated. In this paper,
we proposed a novel robust control design approach that can
design controllers directly for affine continuous or discrete
time fuzzy systems and the closed-loop performance can be
theoretically anticipated.

This paper is organized as follows. Section II describes the
affine TSK fuzzy model. The proposed controller is introduced
in Section III. Both continuous-time cases and discrete-time
cases are discussed. Section IV shows simulation results for
both continuous and discrete-time examples. Finally, Section V
concludes the paper.

II. CONTROL DESIGN FOR AFFINE TSK Fuzzy MODELS

The considered problem is that a system is described by a
set of fuzzy rules and we want to develop a way of designing
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controllers for such a system. The considered fuzzy models are
first introduced in [14] and the :th rule of a discrete system is

Rulei: IF (k) is X! and- - -and z,, (k) is X!
THEN z,,(k + 1) = a{ +a\z1 (k) +abzo (k) +- - - + a z, (k)
+biu(k) + -+ 0 u(k—m+1) (1)

where (k) = zj_1(k+ 1) forj = 2,...,n, u(k), ..., and
u(k —m+1) are the input and mn past inputs, X are fuzzy sets,
and ag, ai,...,a,,and by, ..., b., areparameters in describing
the input and output relationships in the :th fuzzy rule. Note
that the premise part is only determined by z;(k), z2(k), - . .,
and x,, (k) and is independent to u(k), ..., u(k —m + 1). This
relationship matches the properties of common systems. Be-
sides, the consequence part contains a constant term, a’f]. Such
a fuzzy model is referred to as a class of affine TSK fuzzy
model [30]. The consequence part can be written in a state-space

form as z(k + 1) = A'z(k) + Biu(k) + d*, where z(k) =

[£1(K), ..., za(K)]"
0 1 0 0
0 0 1 0
A= :
0 0 O 1
o b a
B =10,0,...,b,]"
and
d'=|0, cab + byu(k —1) +- -+ b8 u(k—m+1)]T.

Let p4/(2;(k)) be the membership degree of the x;(k) in the
fuzzy set X]L Then the overall system can be inferred as

:I?(k + 1) = ZwiA’ix(]{;) + ZmB‘u(k) + Zwidi )
i=1 i=1 i=1

where 7 is the rule number

wi = | T it (00 /S | TT (i (k)
j=1

=1 \j=1

with0 <w; <1,and Y., w; = 1.
For a continuous TSK fuzzy model system, the ith rule is of the
form

Rule i : IF z1(t) is X} and --- and z,(t) is X
THEN i, (t) = af) + a{z1(t) + ahza(t)
4o ab (1) + biu(t) 3)

where z;(t) = 4;_1(t) for j = 2,...,n with £,_1(t) is the
time derivative of =;_1(¢). Then, the consequence part can also
be written as @(t) = A'z(t) + B'u(t) + d’, where z(t) =
[1(),...,2.(t)]T, A® and B® are the same as those in the dis-
crete case, and d* = [0,0, ..., a}]”. Similarly, the related items
for a continuous affine TSK fuzzy model can be defined.

In the literature, based on the Lyapunov theorem, several de-
sign approaches have been proposed to design stable controllers
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for homogenous fuzzy models; i.e., the constant vector is ab-
sent in (2). One of the most commonly used approaches is the
parallel distributed compensation (PDC) control [19], [36], in
which fuzzy controllers share the same premise parts with the
considered fuzzy systems. The sufficient conditions for the sta-
bility of the closed-loop system are summarized in [20]. It is
required that the stability of the overall system be checked by
solving LMIs [17]. If the common Lyapunov matrix cannot be
found, another design is tried. It should be noted that the number
of inequalities to be solved is r(r 4+ 1)/2. It can be found that
when the rule number is large, it may be very difficult to solve
those inequalities.

As mentioned earlier, there is another kind of approach
[33], [35] in which a controller is defined for the nominal
system of fuzzy rules first, and then the deviations from this
nominal system existing in all rules are dealt with in a robust
control fashion. Our approach shared the same idea as this
kind of approach. The nominal system can be defined as
Ag € conv(A',...,A") and By € conv(B',...,B"), where
conv(A, ... A") = (Y wi AT rw; > 0,30 w; =1} is

a convex hull defined by the set of vertex matrices A', .. ., and
A" and a similar convex hull is defined for conv(B!, ..., B").
Let

0o 1 --- 0

Ao = S
“lo o 1

al a al

and Bg = [0, ...,bo]T. The formation of A and By can be ar-

bitrary as long as they are stabilizable. Usually, a simple arith-
metic average is taken; that is, a] = (Max{a%} + Min{a}})/2

and by = (Max{bﬁ} + Min{b}})/2. The differences between
(A", BY) and (Ao, Bo) are

0 0 e 0
A = Al — Ay = Do

0 0 0

a4 az; A
Bi=B'—By=10,...,b]" )

where aj; = aé» —aYand b; = b} — bo. Then, the system (2) can

be rewritten as
x(k+1) = Z w; Alz(k) + Z w; Biu(k) + Z w;d'
i=1 i=1 i=1

=(Ag+AA)x(k)+(Bo+AB)u(k)+ > wid (5)
i=1
where AA = >0, w;A; and AB = Y. w; B;. Similarly,
with the same definition as above, a continuous affine TSK
fuzzy model can be written as

ﬂﬂ:@%+A@dﬂ+U%+AmMﬂ+§in ©6)

Note that A A and A B are regarded as uncertainties in this kind
of approaches.
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III. HYBRID COMPENSATION CONTROL DESIGN FOR
AFFINE TSK Fuzzy SYSTEMS

The design idea is to design a controller for each local model
under the idea of PDC control [19], [36], in which fuzzy con-
trollers share the same premise parts with the considered fuzzy
systems. Then, the ith control rule can be written as

Rule s : IF z is X{ and --- and z,, istL fori=1
THEN u = F(a) i=1,...,7.

Thus, the overall fuzzy controller is u = Y.._; w;Fi(z). In
our study, a novel design approach, which consists of two parts
of controllers to stabilize the nominal system and variations re-
siding in all rules, respectively, is proposed. The propose feed-
back control law can be written as

uw= Gz + Gc(x) @)

where G is to control the nominal system with the desired con-
trol performance and G () is to compensate the variations in
all rules individually. In the following, we shall introduce how
the above control law is obtained. This type of control laws is
called the hybrid compensation control (HCC) in our study. The
control law proposed in [33] is referred to as the nominal com-
pensation control (NCC) and the PDC controller [19], [36] is
called the distributed compensation control (DCC). [35] also
proposed a similar controller, in which the second part is to
treat those variations as a whole instead of individually in a ro-
bust control sense. If those subsystems are distributed in a wide
range, the required norm bound conditions may not be satis-
fied. In that case, the design algorithm will fail. This can be
seen in our example shown later. For the proposed HCC, it is
not required to find a common Lyapunov matrix for all sub-
systems. This advantage greatly increases the applicability of
our approach, especially when the rule number of the system is
large.

As mentioned earlier, A A and A B [in (5) for the discrete case
or in (6) for the continuous case] are regarded as uncertainties
in our approach. For those terms, the following assumptions are
made.

Al) The nominal part of the system (5) or (6) is stabilizable.

A2) Uncertainties may vary with time within a prescribed
bounded set.

A3) Thereexistsal xXn vector a, a scalar bsuchthat AA =

Boa and AB = bB,.

Those assumptions are also used in [37] and [38] in dealing with
uncertainties in the system matrix and input channels. In our
case, since those uncertainties are in fact the summation of the
deviations of all rules, it is easy to see that those assumptions can
easily be satisfied. This can be verified in our control design for
various systems. The control law designing methods for discrete
and continuous TSK fuzzy models are derived in the following
two subsections.

A. Discrete-Time Case

Consider a discrete TSK fuzzy model described by (5). Let
the control input be (7), where G = [g1 g2 gn ] is to
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stabilize the nominal model in (5) and G¢ () is to compensate
the variations of all rules. Substituting (7) into (5), we have

x(k 4+ 1) = (Ag + BoG)z(k) 4+ Bo(ax(k) + bGe(x) + d)

where a = iy kidg with
ai=[(a1i+big1)/bo, (a2i+big2)/bo, - (ani+ bign)/bo]
b~: Z;:l k;b; withb; = 1 + (bz/bNo), d = 22:1 k;d; with
d; = d'/bo, and h(z) = az(t) + bGc(z) + d. In order to
let the system be stable, there must exist symmetry positive
definite matrices P and @ such that ZOTPZO - P = —-Q.
Define V(2(k)) = 2T (k)Px(k) and we have

AV (x(k)) = —2T (k)Qu(k) + h(w)[ah(w) + 20()]
where @ = B PBy, B(z) = BY PAgx(k). It is easy to verify
that when h(z)[ah(z) + 20] < 0, the system is stable. Since

h(z) = axz(t) + IN)Gc(Jz) + d, if the compensation part is set as
Gc(z) = —(az(k) + d)/b, then h(x) = 0. Hence, we have

> wid;
=1

. 5 > w;d;
Gel(x) = _a:v(k)-i—d G

= — —X
b walb7

(k) ©)

We then have the following theorem.

Theorem 1: Suppose that the chosen nominal system matrix
(Ag, By) for the discrete fuzzy model system (1) is stabilizable.
Then, the closed-loop system driven by the control law (7) is
asymptotically stable in the large, where G is the stable state-
feedback gain for the nominal model and G (x) is given by (9).

Proof: With the compensation part of the control law in

(9), the equation h(z) = 0 holds. Thus, the closed-loop system
(8) becomes

x(k+1) = (Ao + BoG)x (k). (10)

Since (Ag, By) is stabilizable, it proves the Theorem. Q.E.D.

From Theorem 1, we can also conclude the following
lemmas.

Lemma 1: The behavior of the discrete fuzzy model (1) con-
trolled by the control law (7) is the same as the closed-loop nom-
inal model (10).

The closed-loop system is a linear system (nominal model)
whose eigenvalues can be arbitrarily assigned by the state-feed-
back gain GG. Hence, we can employ various stability design
approaches, such as pole-placement, linear optimal control or
other design techniques in designing controllers for the nom-
inal model.

Lemma 2: Consider the fuzzy model system (1) without the
constant term. Suppose that the eigenvalues assigned for each
subsystem are the same as that for the nominal model. Then the
state feedback gain of the ith subsystem is

F=G-% (11)
b;
where 2 = 1,...,r, and F;, and G are the state feedback gains

of the +th subsystem and of the nominal model, respectively.
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Itis easy to verify this lemma by simply substituting the feed-
back gain into rules.

In (9), if b¢s are the same sign in all rules that implies b#0.
In most of existing approaches, b#0is always assumed. When
bt changes sign among rules for some i € {1,...,7}, b may
be near 0 or equal to 0. If such a situation occurs, it means that
in a transition instant, the input can hardly change the system
states. In other words, the system becomes uncontrollable. We
think b = 0 is only a transition state and usually, the system can
still work well without this assumption. In our implementation,
a threshold ¢ is used to avoid large input values for such situa-
tions. As shown in Example 1, when b} changes signs among
rules, the control input transits from large negative values to
large positive values. By using a threshold, the input is limited
to a reasonable range and the system still works well. We further
analyze such a case in the following. If b = 0, it means that the
inferred system is z(k 4+ 1) = Az(k). It is an unforced system,
and no matter what input is, the system behavior is uncontrol-
lable. If the current uncontrollable state is an equilibrium state
of z(k + 1) = Az(k), then there is no way of moving out this
uncontrollable state. This is rarely the case and it is the problem
of the system and is not caused by our control law. If not, the
system will transit and then it is easy to find that b # 0 because
the system state is changed.

B. Continuous-Time Case

Similarly, we can derive the control law for continuous-time
systems. The control law (7) is also used for a continuous TSK
fuzzy model system (6). Since Ay is Hurwitz stable, there exist
symmetry positive definite matrices PP and @) such that ZOTP +
PTAy = —Q.Let V(z) = 7 (t)Px(t), and we have

V(z) = —z7(t)Qx(t) + 2h(x) BE Px(t).
Obviously, if the inequality 2h(x)BI Pz(t) < 0 holds, the

system is asymptotically stable. We let 2h(z)BE Px(t) = 0;
ie., h(z) = ax(t) + bGc(z) + d = 0. Therefore

Y ki S kid;
Golz) = _‘m(tg* L 3 o — WP
b by
1; 7';

Clearly, (12) is the same as that for the discrete case; i.e., (9).
In other words, Theorem 1 can also work for continuous fuzzy
models. Consequently, Lemmas I and 2 also work for contin-
uous fuzzy models.

Finally, the proposed HCC design method is summarized as
follows.

Step 1) Select a stabilizable central rule as the nominal fuzzy
model and calculate the variations for all subsystems
by (3).

Find a state feedback matrix G such that the nom-
inal fuzzy model in (8) is assigned the desired eigen-
values. Such a G can be designed by various tech-
niques to provide specified system behaviors.

Get the compensation part G¢(x) by using (8) and

9).

Step 2)

Step 3)
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Fig. 1. Responses of using various controllers for the system in Example 1.

IV. DESIGN EXAMPLES

In this section, various examples are considered to illustrate
good design performance of the proposed HCC design scheme.

Example 1: Consider an unstable continuous model, in
which there are two rules in the model and the system matrices
are

0 1 0
A= {—0.588 2.718]  Br= [0.603}

0, 1 | ©
—0.361 2256 |7 727 | —1.12]|"

Define the nominal system matrices as

Ay =

0 1
Ag=1/2(A1 + As) = {_0_4745 2.487}

0

—0.2611 |”

Let the desired eigenvalues are [—0.5+ 7, —0.5—7]
and then G = [2.9703 13.3558]. Define Q = I, we have
v = 23.4183 > 1[33] for NCC. Such a design cannot guarantee
the stability of the system. Using our HCC approach, the com-
pensation parts are a; = [—9.3957 —45.087], by = —2.3096
and a; = [9.3369 44.8226], by = 4.8298. Suppose that
the same eigenvalues are assigned for all subsystem (DCC).
From Lemma 2, we obtain F; = [—1.0978 —6.1658] and
F, =[-0.7937 —2.9071]. The solution for LMIs cannot be
obtained for this case. In other words, the stability condition is
not satisfied, and the controllers for all rules must be redesigned
in the PDC approach. Fig. 1 shows the response of the three
closed-loop systems for the initial condition z = [1 0].
Simulations confirm the above assertions. Now, consider the
approach in [35], since the norm bound of uncertainties is
bigger than 1, that approach fails in this case. It should be noted
that in this example b; changes signs among rules. We can find
that the control input transits from large negative values to
large positive values as shown in Fig. 2. By using a threshold,
the input is limited to a reasonable range.

and By = 1/2(B; + Bs) = [
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Fig.2. Control input by using the proposed HCC for the system in Example 1.

Example 2: Consider a nonlinear discrete system in [39]
y(k)y(k =Dy (k=2)u(k—1)(y(k=2) - 1) +u(k)
14+y(k=2)*+y(k—1)? '

The TSK fuzzy model of such a system is derived in [31] and
shown as follows:

y(k+1)=

R' :TF x5(k) is Al and x1(k) is B1
THEN z5(k+1)=0.08 + 0.974x5(k) + 0.333z2(k)
—0.279x1 (k) +0.494u(k)—0.468u(k —1)
R?:TF 5(k) is Al and z (k) is B2
THEN 2z3(k+1)=0.021 — 0.03z3(k) + 0.058z2(k)
—0.12721(k)+0.419u(k)+0.029u(k —1)
R? :TF 5(k) is A2 and z (k) is C1
THEN z3(k+1)=0.004 — 0.173z3(k) 4+ 0.211z2(k)
+0.009z1 (k)+0.619u(k)+0.111u(k—1)
R*:TF z5(k) is A2 and 1 (k) is C2
THEN z3(k+1)=0.002 — 0.012z3(k) 4+ 0.005z2 (k)
+0.007z1 (k) +0.977u(k)+0.007u(k—1)
R’ :TF z5(k) is A2 and 1 (k) is C3
THEN z3(k+1)=0.003 — 0.099z3(k) 4+ 0.011z2(k)
—0.02z1(k)+0.587u(k)+0.058u(k—1)
R® :IF 25(k) is A3 and @1 (k) is D1
THEN 2z3(k+1)= — 0.003 — 0.062z3(k) + 0.01z5(k)
—0.19221(k)4+0.38u(k)+0.079u(k—1)
R" :TF z5(k) is A3 and z (k) is D2
THEN z3(k+1)= — 0.112 + 0.131z3(k) — 0.001z2(k)
+0.14421 (k) +0.382u(k)—0.138u(k—1)
where z3(k) = y(k), z2(k) = z3(k — 1), and 21 (k) = zo(k —
1). Define the state vector x = [#; 2 23] and the mem-
bership functions are the same as those used in [31]. It can be
found that the rule number is 7, LMI kinds of approaches may

have difficulties in solving it. Now, the optimum control de-
sign is used. The considered cost function is of the form J =
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Yoo w1 (k)Qx(k) + u” (k) Ru(k)]. Two situations are tested
here

10 0 0
MHJ;: Q=0 0 0| andR=1
|0 0 0
[10 —-10 ©
and(I) J: Q= [-10 10 0| and R=1.
| 0 0 0
0 1 0
Design Case (I): Ay = 0 0 1
—0.0675 0.166 0.4005
and
0
By = 0
0.6792
It is easy to verify that (Ag,By) is stabilizable.
By minimizing J;, the required -eigenvalues are

[—0.1123 4+ 0.2661j
and then the
G = [0.1288
pensation parts are

—0.1123 — 0.26615 0.2392]
state-feedback gain is
—0.2881 —0.5682]. The com-

by = 0.7273
by = 0.6169

by = 0.9114
by = 1.4385
bs = 0.8643
be = 0.5595
by = 0.5624.

[—0.3465
[0.237

[0.1012
[0.1662
[
[
[

0.3244 0.9993],
—0.0486  —0.4162],
0.0918 —0.7941],
—0.3634 —0.8565]
—0.1891 —0.6583]
—0.1028 —0.4307],
—0.1198 —0.1482],

o
I

1
a

a ’
as 0.0525

—-0.24

0.2551

?

=K
o

a
2

as

a4
6

ar

Design  Case the  cost

become

(II): By  minimizing
function Jo, the desired eigenvalues
[—0.0059 4+ 0.14587 —0.0059 — 0.1458; 0.766].  Thus,
the state feedback gain is G = [0.123 —0.263 0.521]
and the compensation parts are a; = [—0.35 0.32 0.70]
a; = [0.24 —0.06 —0.83], a3 = [0.11 0.09 —0.90]
as = [0.16 —-0.35 —0.38],a5 = [0.05 —0.19 —0.81]
ag = [-0.24 —-0.11 -0.91]
a; = [026 —0.13 —0.62], and by,..., and br
are the same as those in case (I).

The simulation results are shown in Fig. 3 for the initiate state
(1, =1, 1). It can be found that the overall system can indeed
have good control performance as expected.

Example3: Consider the problem of balancing an inverted
pendulum on a cart. The dynamic equations are [40]

.i?l =2
2.
. gsin(zy) — Gmeasin@e) g eo(zy)u
To —
2 4 — aml cos?(z1)

where z1 and x» are the angle of the pendulum from the vertical
and the angle velocity, m is the mass of the pendulum, M is the
mass of the cart, a = 1/(m + M), g = 9.8 m/s? is the gravity
constant, 2/ is the length of the pendulum, and u is the force
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Fig. 3.

State trajectories of the nonlinear discrete system in Example 2.

applied to the cart. Similarto [17],m = 2.0 kg and M = 8.0 kg.
The fuzzy model can be approximated as [17]

R! :TF z; is about 0 THEN %z = Az + Biu
2. : T T
R? :IF z1 is about % 5 (|x1| < 2)

where

A = [g/(zu/so— aml) H
By = [_a/(zu/g - aml)]
A= [Qg/<7r<4l/30— amlf®)) (1’]

b= [—aﬂ/(4l/§ - amzm)]

and 3 = cos(88°). The design specification is considered as no
overshoot with the rising time 2 s.
We select the nominal fuzzy model as
0 1
Ao = [13.3271 0}
and

0
Bo = [—0.0918}

It is easy to verify that (Ag, By). is stabilizable. For the given
specifications, the required two pole locations are (—2, —2).
Then, we have G = [188.8267 43.5911]. From (8), the com-
pensation parts are

a; =[131.0811 40.2407], l~)1 =1.9231

dy =[—134.8203 —41.1039], by = 0.0571.
The controller is used for the initial conditions (z1,22) =
(80°,0°/s). For the same desired pole locations, the PDC

approach in [17] and the approach in [35] are also considered.
The simulation results are shown in Fig. 4 and corresponding
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Fig. 4. Angle responses of using various controllers for the system
Example 3.

n

TABLE 1
RISE-TIMES OF ZAK’S, PDC AND HCC FOR EXAMPLE 3
Zak’s PDC HCC HCC
Poles at (-2 —2)| Poles at (-2 —2) | Poles at (-2 —2) | Poles at (-5 -5)
0.75 sec 1.31 sec 0.74 sec

Rise-time 3 sec

rise-time are listed in Table I. It can be found that our approach
is the nearest one. Moreover, when the rise-time is 0.75 sec,
the required two poles are about (—5, —5). By using our HCC
approach, the simulation result and the rise-time are also shown
in Fig. 4 and in Table I, respectively. It is clearly that HCC
could achieve such a specification.

Since our approach is to directly compensate the uncertain-
ties, robustness again parameter changes is an important issue.
Nevertheless, our approach is derived in a Lyapunov control
fashion. The obtained controller is always stable under a cer-
tain range of uncertainty. Thus, if a parameter slightly changes,
we believe the proposed controller is robust. Fig. 5 shows the
simulation results of changing m (the mass of the pendulum),
M (the mass of the cart) and [ (the length of the pendulum),
respectively, within £10%, and without redesigning the con-
trollers (two poles are located at (—2, —2)). It is evident that the
responses of using our controller are only slightly changed even
though the direct compensation is implemented. For the other
two approaches, the changes are much less in our simulation.
It is because those two approaches do not directly compensate
those uncertainties and as a consequence, the effects of param-
eter changes are small.

V. CONCLUSIONS

In this paper, we have proposed a method of designing
controllers for affine TSK fuzzy models. In this approach, the
controller is separated into two parts. The first one is to move
the eigenvalues of the central rule to the desired locations. The
second one is to individually compensate the variations residing
in all rules. The design procedure is simple and effective. The
stability analysis becomes the Lyapunov theorem for linear
systems. Such an approach not only can result in the use of var-
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Fig. 5. Angle responses of using the same HCC for the system with various

parameter variations in Example 3.

ious control design techniques but also can guarantee desired
performance of the closed- loop system. Various examples are
conducted in the paper. Some of them even cannot be solved by
other existing approaches. All results illustrated good control
performances as desired.
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