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Anti-control of chaos in rigid body motion
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Abstract

Anti-control of chaos for a rigid body has been studied in the paper. For certain feedback gains, a rigid body can

easily generate chaotic motion. Basic dynamical behaviors, such as symmetry, invariance, dissipativity and existence of

attractor, are also discussed. The transient behaviors of the chaotic system have also been presented as the feedback

gain changed. Of particular interesting is the fact that the chaotic system can generate a complex multi-scroll chaotic

attractor under the appropriate feedback gains. Finally, it was shown that the system could be related to the famous

Lorenz equations and Chen system. In other words, the system can easily display all the dynamical behaviors of the

famous Lorenz equations and Chen system.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

More than 30 years of studying physical phenomena in chaotic dynamics, which has brought us much improved

understanding of the world around us. Most importantly, we have learnt about chaos to a point where we are confident

about the consequences of its presence under certain conditions: whether it is safe of disastrous, useful or useless, etc.

During the last decade, many methods have been proposed to control chaos, i.e., to stabilize the chaotic dynamical

systems to period motion, when chaos is not unwanted or undesirable. Recently, many excellent books were given by

Moon [1], Chen and Dong [2], and Kapitaniak [3]. Moreover, some outstanding reports were presented by EI Naschie

[4] and Kapitaniak [5]. Sometimes chaotic behavior and chaos synchronization are beneficial and desirable in many

applications. For example, chaos is important in secure communication, information processing, liquid mixing, bio-

logical systems, etc. [6–8]. For this purpose, making a nonchaotic dynamical system chaotic or retaining (or enhancing)

the chaos of a chaotic system is called ‘‘anti-control of chaos or chaotification [9,10]’’. Therefore, the anti-control of

chaos is meaningful topic and worth to be investigated.

Scientists and mathematicians have been working on the problem of rigid body motion for over two centuries.

Which has many practical engineering applications such as gyroscopes, satellites, spacecraft and rockets. However, an

analytic solution to the general problem of a rigid body under the influence of arbitrary external torques is far from

complete. In fact, most existing analytic theories were applied to highly idealized cases, such as torque-free or symmetric

bodies. Solutions have been obtained for these and several other special cases by Euler, Jacobi, Poinsot and other

researchers, are reported by Leimanis [11]. Unfortunately these solutions are hardly of practical importance to the

complex problems encountered in spacecraft dynamics and control. Leipnik and Newton [12] found strange attractors
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in rigid body motion. Because of their works, the chaotic dynamics in rigid body motion have been intensively studied

by many researchers [13–17].

In 1963, Lorenz [18] discovered chaos in a simple system of three autonomous ordinary differential equations that has

only quadratic nonlinearities, in order to describe the simplified Rayleigh–B�enard problem. The Lorenz system has seven

terms on the right-hand side, two of which are nonlinear (xz and xy). In 1976, R€osler [19] found a three-dimensional

quadratic autonomous chaotic system, which also has seven terms on the right-hand side, but with only one quadratic

nonlinearity (xz). Recently, Liu and Chen [20] created a new chaotic system. An electronic circuit was also designed to

realize the new system. The system consists of three ordinary differential equations with three quadratic nonlinear terms.

In 1944, Nadolschi [11] showed that the true Euler equations for the motion of a rigid body. In fact, Euler equations of a

rigid body motion are a simple and important three-dimensional autonomous system in classical mechanics. In this

paper, the easier method is proposed to construct a chaotic system by applying linear feedback with certain gains. It is

notable that the system has six terms on the right-hand side, three of which are nonlinear (yz, xz and xy). The following
problem will be investigated: For simple feedback gains, a rigid body whether can easily generate chaotic motion? Next,

basic dynamical behaviors, such as symmetry, invariance, dissipativity and existence of attractor, will also be discussed.

Furthermore, the transient behaviors of the chaotic system will also be studied when the feedback gains changed. Finally,

the relation of the system with the famous Lorenz equations and Chen system [21] will also be discussed.
2. Equations of motion

The Euler equations for motion of a rigid body with principle axes at the center of mass are
I1 _x1 ¼ ðI2 � I3Þx2x3 þM1;
I2 _x2 ¼ ðI3 � I1Þx3x1 þM2;
I3 _x3 ¼ ðI1 � I2Þx1x2 þM3;

8<
: ð1Þ
where I1, I2, I3 are the principal moment of inertias, x1, x2, x3 are the angular velocities about principal axes fixed at the

center of mass and M1, M2, M3 are applied moments. In our case, the applied moments are considered to linear

feedback, so that M ¼ Ax, where
A ¼
a11 0 0

0 a22 0

0 0 a33

2
4

3
5: ð2Þ
Then the equations are represented as
I1 _x1 ¼ ðI2 � I3Þx2x3 þ a11x1;
I2 _x2 ¼ ðI3 � I1Þx3x1 þ a22x2;
I3 _x3 ¼ ðI1 � I2Þx1x2 þ a33x3:

8<
: ð3Þ
Denoting x1 ¼ x, x2 ¼ y, x3 ¼ z, a11=I1 ¼ a, a22=I2 ¼ b, a33=I3 ¼ c, Eq. (3) is rewritten in the form
_x ¼ I2�I3
I1

yzþ ax;

_y ¼ I3�I1
I2

xzþ by;

_z ¼ I1�I2
I3

xy þ cz:

8><
>:

ð4Þ
3. Basic dynamical behaviors and anti-control of chaos

Yielding a possibility for chaos, the equilibrium of the system (4) must be unstable. According to the results of Liu

and Chen [20], the parameters a, b, c must satisfy the following necessary condition such that the system (4) to generate

chaos.
a > 0; b < 0; c < 0 and 0 < a < �ðbþ cÞ: ð5Þ
It is noted that condition (5) is just one of three cases. The other two cases would be obtained similar results owing to

the symmetry of system (4). It is notable that the system (4) has six terms on the right-hand side, three of which are

nonlinear ðyz; xz; xyÞ. On the other hand, the parameters I1, I2 and I3 need to satisfy
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I2 � I3
I1

< 0;
I3 � I1
I2

> 0;
I1 � I2
I3

> 0 i:e:; I3 > I1 > I2 ð6Þ
or
I2 � I3
I1

> 0;
I3 � I1
I2

< 0;
I1 � I2
I3

< 0 i:e:; I2 > I1 > I3: ð7Þ
By suitable variables transformation, the same results could be obtained for the system (4) with conditions (6) and

(7). So we can just study the case with conditions (5) and (6). For simplicity, assume that I3 ¼ 3I0, I1 ¼ 2I0,
I2 ¼ I0ðI3 > I1 > I2Þ, and then the system (4) could be rewritten as
_x ¼ �yzþ ax;
_y ¼ xzþ by;

_z ¼ ð1=3Þxy þ cz:

8><
>:

ð8Þ
It is note that the invariance of the system under the transforms ðx; y; zÞ ! ðx;�y;�zÞ, ðx; y; zÞ ! ð�x; y;�zÞ, and
ðx; y; zÞ ! ð�x;�y; zÞ. That is, the system (4) is symmetrical about three coordinate axes x, y, z, respectively. Further,
these symmetries persist for all values of the system parameters. This chaotic system is robust to various small per-

turbations due to its highly symmetric structure.

Furthermore, the system (8), it is noticed that
r � V ¼ o _x
ox

þ o _y
oy

þ o_z
oz

¼ aþ bþ c: ð9Þ
From Eq. (5), it is clear that aþ bþ c < 0, so the system (8) is dissipative, with an exponential contraction rate:
dV
dt

¼ ðaþ bþ cÞV : ð10Þ
That is, a volume element V0 is contracted by the flow into a volume element V0eðaþbþcÞt in time t. This means that each

volume containing the system trajectory tend to zero as t ! 1 at an exponential rate, aþ bþ c. Therefore, all system
orbits ultimately are confined to a specific subset of zero volume, and the asymptotic motion settles onto an attractor.

The phase portrait is the evolution of a set of trajectories emanating from various initial conditions in the state space.

When the solution reaches steady state, the transient behavior disappears. By numerical integration method, the phase

portrait of the system, Eq. (8), is plotted in Fig. 1 for a ¼ 5, b ¼ �10, c ¼ �3:8. Clearly, the motion is chaotic and

symmetric about an axis. With the others feedback gains, the strange attractors are shown in Figs. 2–4. So we can easily

make the motion of a rigid body chaotic via choosing suitable feedback gains.

By numerical results, the system (8) exhibits both strange attractors and limit cycles for certain choices of a, b, c. As

illustrated in Fig. 4, for a ¼ 3, b ¼ �5, c ¼ �1:0, there are two strange attractors for the system (8) with the initial

conditions ð0:2; 0:2; 0:2Þ and ð0:2;�0:2;�0:2Þ displayed in Fig. 5(a) and (b). There are also two limit cycles for the

system (8) with the initial conditions ð0:2;�0:2; 0:2Þ and ð0:2; 0:2;�0:2Þ shown in Fig. 5(c) and (d).
4. Transient behavior analysis

In previous section, we construct a chaotic system easily and successfully. Now, attention is shifted to transient

behavior analysis of this chaotic system as the feedback gain changed. A set of parameters satisfying the aforemen-

tioned conditions are: a ¼ 5, b ¼ �10, c ¼ �3:8. The corresponding transient and steady states of the system (8) is

shown in Fig. 6. The trajectory starts from initial condition ð0:2; 0:2; 0:2Þ and converges to strange attractor stepwise by

several loops. Furthermore, when c is varied, some interesting phenomena can be observed, as shown in Figs. 7 and 8.

For example, with c ¼ �0:38, the trajectory went through three scrolls before it reaches steady state. Besides, the multi-

scroll chaotic attractor is also found. As c ¼ �0:038, the trajectory formed an umbrella shape is displayed in Fig. 8. It

swirls into the center ð0; 0; 48Þ from initial condition ð0:2; 0:2; 0:2Þ, and then converges to strange attractor directly

along a straight path.

By above results, the transient behaviors of this chaotic system with the different feedback gains are conspicuously

unlike. We believe that if parameters a and b are varied some interesting phenomena will also be presented. This task

will leave the reader as an exercise.



Fig. 1. The strange attractor of the system with a ¼ 5, b ¼ �10, c ¼ �3:8.

Fig. 2. The strange attractor of the system with a ¼ 5, b ¼ �10, c ¼ �0:38.
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Fig. 3. The strange attractor of the system with a ¼ 5, b ¼ �10, c ¼ �0:038.

Fig. 4. The strange attractor of the system with a ¼ 3, b ¼ �5, c ¼ �1:0.
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Fig. 5. For a ¼ 5, b ¼ �10, c ¼ �3:8, the attractor for the system with initial conditions: (a) ð0:2; 0:2; 0:2Þ; (b) ð0:2;�0:2;�0:2Þ; (c)
ð0:2;�0:2; 0:2Þ; (d) ð0:2; 0:2;�0:2Þ.

Fig. 6. The transient behavior of the system with a ¼ 5, b ¼ �10, c ¼ �3:8.
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Fig. 7. The transient behavior of the system with a ¼ 5, b ¼ �10,c ¼ �0:38.

Fig. 8. The transient behavior of the system with a ¼ 5, b ¼ �10, c ¼ �0:038.
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5. Two special cases

If the applied moments of the Euler equations (1) are reconsidered to M ¼ Ax, where
A ¼
a11 a12 0

a21 a22 0

0 0 a33

2
4

3
5: ð11Þ
Then the system can be related to two special cases such as the Lorenz equations and Chen system.
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(a) Case 1:

If ½I1; I2; I3� ¼ ½2I0; I0; I0� and a12 ¼ �a11, Eq. (1) can be rewritten as follows:
_x ¼ a11
2I0

ðy � xÞ;
_y ¼ a21

I0
xþ a22

I0
y � xz;

_z ¼ xy þ a33
I0
z:

8><
>:

ð12Þ
The system (12) with a11 ¼ 20I0, a21 ¼ 28I0, a22 ¼ �I0, a33 ¼ �8I0=3 would become the famous Lorenz equations,

i.e., the rigid body motion is chaotic.

(b) Case 2:

If ½I1; I2; I3� ¼ ½2I0; I0; I0�, a12 ¼ �a11 and a21
I2
¼ a22

I2
� a11

I1
, Eq. (1) is rewritten as follows:
_x ¼ a11
2I0

ðy � xÞ;
_y ¼ ða22I0 � a11

2I0
Þx� xzþ a22

I0
y;

_z ¼ xy þ a33
I0
z:

8><
>:

ð13Þ
The system (13) with a11 ¼ 70I0, a22 ¼ 28I0 and a33 ¼ �3I0, is related to Chen system and it is chaotic.

From the above analysis, it has found that the Euler equations not only exhibits chaotic motions but also the system

can display all the dynamical behaviors of the Lorenz equations and Chen system by easily appropriate choice the

feedback gains.
6. Conclusions

A simple method has been proposed for anti-control of chaos of a rigid body motion. The chaotic motion of the

system has been obtained easily by choosing suitable feedback gains. Basic dynamical behaviors, such as symmetry,

invariance, dissipativity and existence of attractor, have also been issued. By applying numerical simulation, the system

exhibits both strange attractors and limit cycles for certain choices of the parameters. Besides, the transient behaviors of

the chaotic system depending on the feedback gains have also been studied. It has also been found that the system can

generate a complex multi-scroll chaotic attractor under the appropriate feedback gains. Finally, it was shown that the

system could be related to the famous Lorenz equations and Chen system. In other words, the system can easily display

all the dynamical behaviors of the famous Lorenz equations and Chen system. This paper has brought us much im-

proved understanding of a rigid body motion.
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