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Abstract

In this paper, we shall propose a(t, n) threshold signature with(k, l) threshold-shared verification to be used in a
group-oriented cryptosystem without a shared distribution center (SDC). In this scheme, anyt participants can represent
a group (signing group) to sign a message, and anyk participants can represent another group (verifying group) to verify
the signature. We need no SDC to distribute the public and private keys to all the participants in the two groups. Hence, our
scheme is more practical in real-world applications and more efficient than its predecessors in terms of communication and
computational complexity as well as storage.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Digital signatures play an important role in the
modern electronic society. They have replaced a huge
portion of the paperwork we used to count on by out-
performing it with integrity and authentication. Along
with the rapid advances in computer technology and
the growth of the Internet, various types of digital sig-
natures have been developed to live up to the require-
ments of our daily lives including business activities.
Unlike such traditional digital signature schemes as
RSA [1,19] and DSA[14] where only a single signer
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is allowed to generate a signature for anyone to verify,
threshold signature schemes allowt or more partici-
pants in the signer group to collaboratively generate
a valid signature on behalf of the group, butt − 1 or
fewer participants will not be enough. Anyone can
play the role of a verifier and check the correctness
of the signature by using the group’s public key.

The first (t, n) threshold signature scheme based
on the RSA cryptosystem[19] and Shamir’s secret
sharing[21] was proposed by Desmedt and Frankel
[2]. In 1994, Harn[5] combined a modified ElGamal
signature scheme[21] and Shamir’s secret sharing to
accomplish a(t, n) threshold signature scheme. Later,
more threshold signature schemes and their modifica-
tions were proposed in[6,11] and others. In addition,
in order to trace back to find the signers or to provide
anonymity for the signers, several(t, n) threshold
schemes with traceable or untraceable signers and
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their comments have been proposed in[10,12,23,26]
and other papers.

In 2000, Wang et al.[25] consider a situation where
the documents between business entities need to be
signed and verified. That is, the documents will not
be exposed to any outsider. They bring up a new idea
that the (t, n) threshold signature on behalf of the
signing group should be able to be verified by(k, l)
threshold-shared verification on behalf of the verify-
ing group. In their scheme[25], the shared distribution
center (SDC) is responsible for dividing the signing
group’s and verifying group’s secret keys inton andl
different shadows and the associating the groups’ and
participants’ public keys to the individual groups and
participants, respectively. By using the Lagrange in-
terpolation formula,t participants in the signing group
andk participants in the verifying group have the abil-
ity to compute a common session key shared between
two groups by using their shadows and the opposite
group’s public key. The common session key is used
to ensure the communication between the two groups.
Any t or more participants in the signing group can use
their shadows to generate their individual signatures
and hand over these individual signatures to a clerk.
Then, the clerk can verify theses individual signatures
and combine theset valid individual signatures to gen-
erate a threshold signature on behalf of the signing
group. On the other hand, anyk or more participants
in the verifying group have the ability to collaborate
to verify the threshold signature.

However, Tseng et al.[24] and Hsu et al.[7] have
separately pointed that any adversary can reveal the
signing group’s secret key from two valid threshold
signatures and then forge a threshold signature in
scheme[25] because the common session key is al-
ways the same for different threshold signatures. It
violates the basic definition requirement of the(t, n)
threshold signature with(k, l) threshold-shared veri-
fication. At the same time, Tseng et al.[24] and Hsu
et al.[7] separately proposed their own improved ver-
sions of Wang et al.’s scheme[25]. However, though
the common session key is changed for different
threshold schemes in Tseng et al.’s improved scheme
[24], the common session key is not separately com-
puted by the signing group and the verifying group.
In other words, the common session key generated
by signing group has to be sent to the verifying
group. Anyone who obtains the session key can ver-

ify the threshold signature by using just the signing
group’s public key. This also violates the requirement
upon the (t, n) threshold signature with(k, l)
threshold-shared verification. Furthermore, though
Hsu et al.’s improved scheme[7] can successfully
withstand the attack, their scheme has the following
disadvantages in practice.

(1) The SDC is responsible for initializing the system
and generating parameters.

(2) The SDC takes part in the generation of each
threshold signature and the distribution of fresh
shadows to all the participants.

(3) During the parameter generation phase performed
by the SDC, the distribution of the shadows is not
verifiable against cheating by the SDC.

(4) Each participant in the signing group must keep
two private keys to sign a message.

(5) The signing group and the verifying group cannot
exchange their roles with each other.

In 2001, Miyazaki and Takaragi[13] proposed an-
other application for smart cards in threshold signature
schemes. Consider(2,3) threshold signature schemes.
A signer divides his/her private key into three pieces
on his/her three smart cards. Then, he/she puts one of
these cards in a strongbox as a kind of backup and usu-
ally uses the other two cards to sign a message. When
one of the two usually used cards is lost, the method
can prevent anyone who gets the lost card from forging
the signer’s signature, and the signer can issue his/her
signature with the backup card. To keep within the re-
striction of storage and computation in a smart key,
Miyazaki and Takaragi[13] realized a(t, n) threshold
signature scheme based on the elliptic curve discrete
logarithm problem (ECDLP). It is more efficient in
view of communication and computational complex-
ity as well as storage than previous schemes[16].

In this paper, we will modify Miyazaki and
Takaragi’s(t, n) threshold signature scheme and make
it meet the requirement of(k, l) threshold-shared ver-
ification. Because there is no SDC in our system, it is
more practical and efficient in real-world applications
than Hsu et al.’s scheme[7]. Moreover, our scheme
can be extended so that the signature generated by
the signing group can be verified by some special
verifiers’ collaboration in the verifying group.

The remainder of our paper is organized as follows.
In Sections 2 and 3, we propose a new scheme and
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show the correctness of the proposed scheme, respec-
tively. In Section 4, we shall analyze the security of
our scheme. InSection 5, we shall compare the com-
munication and computational complexity as well as
the storage of our scheme with those of Hsu et al.’s
scheme. InSection 6, there will be some discussions.
Finally, we shall present our conclusion inSection 7.

2. Our proposed scheme

In order to give a clear picture, we begin with
defining the following notations. The notationGs =
{us1, us2, . . . , usn} is defined as the signing group
of n signers, andgs (|gs| = t ≤ n) is any subset of
size t in Gs. The notationGv = {uv1, uv2, . . . , uvl}
is defined as the verifying group ofl verifiers, andgv
(|gv| = k ≤ l) is any subset of sizek in Gv. The nota-
tions IDsi and IDvi and denoted as the identities ofusi
anduvi, respectively. Anyt usi ∈ gs can representGs,
and anyk uvi ∈ gv can authenticateGs’s signature.
The scheme is comprised of four phases: (1)Key Gen-
eration Phase, (2) Individual Signature Generating
and Verifying Phase, (3) Threshold Signature Gener-
ating and Encrypting Phase, and (4)Decrypting and
Threshold Signature Verifying Phase. Details of these
phases will be stated in the following subsections.

2.1. Key generation phase

Pedersen’s distributed key generation scheme[18]
based on verifiable secret sharing[4,17] is performed
in this phase. Here, we shall separately show how each
usi in Gs and eachuvi in Gv to generate his/her private
key, public key, and group public key. We will use the
following notations:

Es/Ev two elliptic curves,
ps/pv two odd prime numbers,
Fps/Fpv finite fields ofps andpv elements,

respectively,
αs/αv base points onEs andEv, respectively,
qs/qv orders ofαs andαv separately in

Es andEv, which are odd primes.

Eachusi in Gs performs the following steps:

Step 1. Randomly choose an integerdsi.
Step 2. Randomly choose a(t − 1)th degree poly-

nomialfsi(x) overZqs such thatfsi(x) = fsi,0 +

fsi,1x + · · · + fsi,t−1x
t−1, wherefsi,0, fsi,1, . . . ,

andfsi,t−1 are inZqs. And fsi(0) = fsi,0 = dsi.
Then, sendfsi(IDsj) to usj (∀j �= i) in Gs over
a secret channel and broadcast the check values
fsi,lαs (l = 1,2, . . . , t − 1) to all the other par-
ticipants inGs.

After receiving fsi(IDsj) from usi, eachusj
verifies the validity of it by the following verifi-
cation equation:

fsi(IDsj)αs
?=
t−1∑
l=0

(IDsj)
l(fsi,lαs). (1)

If Eq. (1) does not hold, rejectusi. Otherwise,
each participant inGs continues to perform the
following steps:

Step 3. Compute his/her private keyKsi =∑n
j=1 fsj(IDsi).

Step 4. ComputeGs’s public keyQs = ∑n
j=1 fsj,0αs

and his/her public keyQsi = Ksiαs.

Similarly, eachuvi in Gv performs the above steps.
The result of performing those steps is listed in the
following: Kvi = ∑l

j=1 fvj(IDvi) andQvi = Kviαv
are separatelyuvi’s private key and public key; and
Qv = ∑l

j=1 fvj,0αv is Gv’s public key.
In summary, the system parameters are:

• Public information ofGs and Gv: Es/Ev, αs/αv,
Qs/Qv, qs/qv,

• Public information ofusi in Gs and uvi in Gv:
Qsi/Qvi, IDsi/IDvi,

• Secret information ofusi in Gs and uvi in Gv:
Ksi/Kvi.

2.2. Individual signature generating and verifying
phase

According to our security policy, anyt usi in Gs can
represent the signing group to sign a message based
on the Nyberg–Rueppel signature scheme[15]. The
participants can sign a message independently and si-
multaneously in this phase. Without loss of generality,
assume thatt participantsus1, us2, . . . , ust in gs are
to sign a messagem. Eachusi performs the following
steps:

Step 1. Compute a valueesi as

esi = Ksiasi, (2)
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whereasi = ∏
j∈Gs,j �=i(IDsj/(IDsj − IDsi)).

Step 2. Randomly choose an integerwi, where 1≤
wi ≤ qs − 1. Then, computeRsi as

Rsi = wiαs (3)

and broadcast it to the other participants ings.
Step 3. Compute a point(X, Y) as

(X, Y) =
∑
i∈gs

Rsi =
∑
i∈gs

wiαs. (4)

Step 4. Compute the individual signature{r, si} as

r = X − h(m)modqs, (5)

si = esir + wi modqs. (6)

To verify the correctness of the individual signa-
ture si, a participant may be randomly selected
from Gs as a designated clerk. Except for ver-
ifying the individual signature, generating the
threshold signature and encrypting the message,
the clerk does not have any secret knowledge of
the system.

Upon receiving the individual signature, the clerk
usesusi’s public keyQsi and a base pointαs to verify
the individual signature as follows:

Rsi
?=siαs − rasiQsi. (7)

If Eq. (7)holds, the individual signature{r, si} on mes-
sagem is valid.

2.3. Threshold signature generating and encrypting
phase

In this phase, the clerk combinest valid individual
signatures{r, si} into a threshold signature{r, s} and
encryptsm by using the elliptic curve ElGamal cryp-
tosystem[22] as follows:

Step 1. Compute the signatures as

s =
∑
i∈gs

si modqs, (8)

{r, s} is a group signature on messagem.
Step 2. Expressm as thex-coordinate of a pointPm

on Ev [8]. Then, choose a random integerwc,
where 1≤ wc ≤ qv − 1.

Step 3. ComputeB and the ciphertextC as

B = wcαv modqv,

C = Pm + wcQv modqv. (9)

Step 4. Transfer{r, s} and (B,C) to the verifying
groupGv.

2.4. Decrypting and threshold signature verifying
phase

To verify the signature{r, s}, anyk uvi in Gv can co-
operate to decrypt the ciphertextC to obtain message
m and authenticate the validity of the signature. With-
out loss of generality, assume that each ofk partici-
pantsuv1, uv2, . . . , uvk in gv wants to use his/her own
private keyKvi to collaboratively recover the message
and authenticate the signature by performing the fol-
lowing steps:

Step 1. Compute a valueevi as

evi = BKviavi, (10)

where avi = ∏
j∈Gv,j �=i(IDvj/(IDvj − IDvi)).

Next, transferevi to a clerk randomly selected
from Gv.

Step 2. The clerk computes a pointPm as

Pm = C −
∑
i∈gv

evi (11)

and recoverm from thex-coordinate ofPm.
Step 3. ComputeX̂-coordinate as

X̂ = r + h(m)modqs (12)

and compute the correspondingŶ -coordinate on
Es.

The signature can be verified by using the signing
group’s public keyQs and the base pointαs as follows:

(X̂, Ŷ )
?=sαs − rQs. (13)

If Eq. (13)holds, the signature{r, s} on messagem is
valid.

3. The correctness of our proposed scheme

The correctness of the proposed scheme is shown
in the following theorems.
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Theorem 3.1. Any participantusj in Gs can verify
fsi(IDsj) distributed byusi in Eq. (1).

Proof. According to fsi,lαs (l = 1,2, . . . , t − 1)
broadcasted byusi, Eq. (1)can be rewritten as follows:

fsi(IDsj)αs =
t−1∑
l=0

(IDsj)
l(fsi,lαs)

= (IDsj)
0fsi,0αs + (IDsj)

1fsi,1αs + · · ·
+(IDsj)

t−1fsi,t−1αs.

For the same reason, any participantuvj in Gv can
verify fvi(IDvj), which is distributed byuvi. �

Theorem 3.2. The message m encrypted inEq. (9)
can be decrypted by k participants inGs in Eq. (11).

Proof. According toEqs. (9) and (10), we can rewrite
Eq. (11)as follows:

Pm = C −
∑
i∈gv

evi = C −
∑
i∈gv

BKviavi

= C − B




∑
i∈gv

Kvi

∏

j ∈ Gv
j �= i

IDvj

IDvj − IDvi



.

By using the Lagrange formula, with the knowledge of
k pairs of(IDvi, Kvi), the uniquedv can be determined
as follows:

dv =
∑
i∈gv

Kvi

∏

j ∈ Gv
j �= i

IDvj

IDvj − IDvi
.

Thus,

C − B




∑
i∈gv

Kvi

∏

j ∈ Gv
j �= i

IDvj

IDvj − IDvi




= C − Bdv

= C − wcαvdv = Pm + wcQv − wcQv = Pm.

Then,m is represented by thex-coordinate ofPm.
Therefore, the message can be recovered byk partic-
ipants inGv. �

Theorem 3.3. The individual signatures can be veri-
fied by the clerk inEq. (7).

Proof. According to Eq. (3), we can rewrite the
left-hand side ofEq. (7)as follows:

Rsi = wiαs.

From Eq. (6), the right-hand side ofEq. (7) can be
rewritten as follows:

siαs − rasiQsi = (esir + wi)αs − rasiKsiαs

= (Ksiasir + wi)αs − rasiKsiαs

= wiαs.

Therefore, the correctness ofEq. (7) can be
verified. �

Theorem 3.4. The proposed scheme is a(t, n) thresh-
old signature scheme with(k, l) threshold-shared
verification.

Proof. According toEqs. (2), (6) and (8), the signa-
ture s in Eq. (13)can be rewritten as follows:

s =
∑
i∈gs

si modqs =
∑
i∈gs

(esir + wi)modqs

=
∑
i∈gs

Ksi

∏

j ∈ Gs
j �= i

IDsj

IDsj − IDsi
r + wi modqs.

By using the Lagrange formula,

∑
i∈gs

Ksi

∏

j ∈ Gs
j �= i

IDsj

IDsj − IDsi
r + wi

= dsr +
∑
i∈gs

wi modqs.

Thus, we can rewrite the right-hand side ofEq. (13)
as follows:

sαs − rQs =

dsr +

∑
i∈gs

wi


αs − rdsαs =

∑
i∈gs

wiαs.

FromEq. (4),
∑
i∈gs

wiαs =
∑
i∈gs

Rsi = (X, Y).
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Because ofEq. (5), we can obtainX̂-coordinate in
Eq. (12)and the correspondinĝY -coordinate onEs.
Therefore, the correctness ofEq. (13)can be verified.
In this case,{r, s} must be a signature generated byt

signers inGs. On the other hand, onlyk verifiers in
Gv can cooperate to recover the messagem (proved
in Theorem 3.1), and then they have the ability to
computeEq. (12) and verify the signature{r, s} in
Eq. (13). �

4. Security analysis

The security level of the proposed(t, n) threshold
signature scheme with(k, l) threshold-shared verifica-
tion is the same as that of Miyazaki and Takaragi’s
scheme[13], which is based on the intractability of the
ECDLP. An adversary who intends to reveal a secret
key from its corresponding public key will have to face
ECDLP. In the rest of this section, several possible at-
tacks will be raised and fought against to demonstrate
the security of our scheme.

• Attack 1. The participantusi in Gs tries to distribute
a fakefsi(IDsj)

′ to usj (∀i �= i) in Gs that can pass
the verification ofEq. (1).
◦ Analysis of Attack 1. Obviously, if the check val-

uesfsi,lαs (l = 1,2, . . . , t − 1) are announced
to be genuine, the polynomialfsi(x) remains the
same as it was when generated before. Therefore,
any fakefsi(IDsj)

′ cannot successfully pass the
verification ofEq. (1). For the same reason, the
participantuvi in Gv also cannot distribute a fake
fvi(IDvj)

′ to uvj (∀i �= i) in Gv.
• Attack 2. An adversary tries to revealGs’s secret

key from the known public keyQs.
◦ Analysis of Attack 2. The difficulty is equiva-

lent to solving ECDLP. Moreover, the polyno-
mial fsi(x) and the integerdsi are kept secret by
usi. Therefore, the adversary cannot revealGv’s
secret key from the known public keyQv.

• Attack 3. An adversary tries to revealusi’s secret
keyKsi from the known public keyQsi.
◦ Analysis of Attack 3. As with Attack 2, the ad-

versary will have to face the difficulty of solving
ECDLP. Moreover, whatusi uses is a secret chan-
nel. Therefore, the adversary cannot revealuvi’s
secret keyKvi from the known public keyQvi.

• Attack 4. An adversary tries to forge an individ-
ual signature to pass the verification ofEq. (12)or
forge a threshold signature to pass the verification
of Eq. (13).
◦ Analysis of Attack 4. The security of the individ-

ual signatures and threshold signatures generated
are provided by the Nyberg–Rueppel signature
scheme[15]. If the adversary tries to forge an
individual signature to pass the verification of
Eq. (12), he/she first chooses a random integer
w′
i within 1 ≤ w′

i ≤ qs − 1 and broadcasts
R′

si = w′
iαs. Without knowingusi’s secret key

Ksi, the adversary will face the difficulty of gen-
erating a valid individual signatures′i in Eq. (6)
to pass the verification ofEq. (12). Further-
more, the adversary will obtain the sum point
(X, Y) = ∑

j∈gs,j �=i Rsj + R′
si. Without know-

ing usi’s secret keyKsi, the adversary will face
the difficulty of generating a valid individual
signatures′i to satisfy the following equation:

(X̂, Ŷ ) =




∑

j ∈ gs
j �= i

sj + s′i



αs − rQs.

On the other hand, without knowingGs’s secret
key ds, it is extremely difficult to forge a thresh-
old signature to pass the verification ofEq. (13).

• Attack 5. An adversary tries to recoverm from
(B,C).
◦ Analysis of Attack 5. The difficulty is equivalent

to breaking the elliptic curve ElGamal cryptosys-
tem.

5. Comparisons

In this section, we shall compare the communica-
tion and computational complexity as well as storage
of our scheme with those of Hsu et al.’s scheme[7]
based on discrete logarithm problem (DLP). In their
scheme, SDC first prepares three polynomials. Two of
these polynomials are with(t−1) degree and for gen-
erating group signatures. The other is with(k−1) de-
gree and for verifying group signatures. In our scheme,
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Table 1
The number of parameters held by each participant

usi in Gs uvi in Gv

Public
values

Private
values

Public
values

Private
values

Hsu et al.’s scheme 3 2 2 1
Our scheme 2 1 2 1

after executing key generation phase, only one poly-
nomial is separately used in the signing and verifying
group signatures. Moreover, the public and private
parameters distributed by SDC are not verifiable in
their scheme (see[7] for detail). Hence, we compare
the numbers of public and private parameters held by
each participant in the signing group and verifying
group, respectively, after the key generation phase.

From Table 1, we learn that the number of public
and private parameters held byusi in Gs in our scheme
are smaller than those in Hsu et al.’s scheme. Further-
more, in Hsu et al.’s scheme, one of the private pa-
rameters kept byusi in Gs has to be redistributed from
SDC over a secret channel for generating each thresh-
old signature. The associated public parameter of that
secret parameter will be republished. Due to fact that
each participant in the signing group and verifying
group has different amount of private keys, the signing
group and the verifying group cannot exchange their
roles with each other.

An elliptic curveE(Fp) with a point α ∈ E(Fp)

whose order is a 160-bit prime offers approximately
the same level of security as DSA with a 1024-bit
modulusp [9]. Hsu et al. employ the modified El-
Gamal signature scheme[3], and we assume that the
modulusP is around 1024-bit in their scheme. To
analyze the computation complexity, we first define
the following notations.TEC: the time for computing
kα; TElGamal: the time for computingak modp. The
authors of[9,20,27] have pointed out that comput-
ing kα requires an average of 29 1024-bit modular
multiplications and computingak modp by doing
repeated multiplications requires an average of 240
1024-bit modular multiplications. Thus, computing
kα can be expected to be about eight times faster than
computingak modp, i.e., 8TEC = TElGamal.

According toTable 2, it is obvious that our scheme
is more efficient than Hsu et al.’s scheme. Though we
have to encrypt the message, our scheme is still faster

Table 2
Computational complexities of Hsu et al.’s scheme and our scheme

Individual signature
generating and
verifying

Group signature
generating and
verifying

Hsu et al.’s
scheme

3tTElGamal t + 3TElGamal

Our scheme 4tTEC (for computing
Eqs. (2), (3) and (7))

t + 4TEC (for computing
Eqs. (9), (10) and (13))

by 20t and 7t + 20 1024-bit modular multiplications
than Hsu et al.’s scheme in the individual signature
generating and verifying process and in the group sig-
nature generating and verifying process, respectively.
On the other hand, consider the pre-computations. In
Hsu et al.’s scheme, each participant inGs should
wait for a fresh secret parameter to generate indi-
vidual signature, and each participant inGv should
wait for a fresh public parameter to verify a thresh-
old signature.Table 3shows that our scheme is much
more efficient than Hsu et al.’s scheme with respect
to pre-computations.

An elliptic curveE(Fp) with a point α ∈ E(Fp)

whose order is a 160-bit prime offers approximately
the same level of security as the modified ElGamal
signature scheme[3] with a 1024-bit modulusP , and
the prime divisorq of P − 1 is 160-bit in Hsu et al.’s
scheme. Here, we compare the data transferred inside
the group and between two groups in our scheme and
in Hsu et al.’s scheme. The notations are defined as
follows: usi �→ usj: the communication fromusi to
usj (i �= j) in gs; usi �→ clerk: the communication
from usi to clerk inGs (assume that the clerk is not
selected ings); Gs �→ Gv: the communication from
Gs to Gv; uvi �→ clerk: the communication fromuvi
to clerk inGv.

Table 3
Computational complexities of Hsu et al.’s scheme and our scheme
with respect to pre-computations

Individual signature
generating and
verifying

Group signature
generating and
verifying

Hsu et al.’s
scheme

6tTElGamal t + 3TElGamal

Our scheme 2TEC (for
computing
Eq. (7))

4TEC (for
computing
Eqs. (9) and (13))
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Table 4
The communications of Hsu et al.’s scheme and our scheme

usi �→ usj usi �→ clerk Gs �→ Gv uvi �→ clerk

Hsu et al.’s scheme t − 1 × 1024-bit 3t × 160-bit 2× 160-bit k × 1024-bit
Our scheme t − 1 × 160-bit 3t × 160-bit 4× 160-bit k × 160-bit

According toTable 4, it is obvious that the total
communication load in our scheme is less than that
in Hsu et al.’s scheme. However, the communication
demand betweenGs andGv in our scheme is two times
larger than that in Hsu et al.’s scheme because there
is no SDC to distribute the session keys between two
groups in advance in our scheme. Our scheme needs
to transfer the signature{r, s} and encrypted message
(B,C) to the verifying group.

6. Discussions

In this section, we shall discuss some special cases
in our scheme will probably encounter. First, if the
clerk selected from the signing group does not encrypt
the message by using the verifying group’s public key,
anyone can play the role of a verifier to verify the
signature. For the same reason, the clerk can encrypt
the message by using the public keys of some special
participants in the verifying group, and then only those
participants can collaboratively recover the message
and then verify the signature. For example, suppose
the clerk encrypts the messagem by usinguv1’s and
uv2’s public keys inEq. (9)as follows:

C = Pm + wc(Qv1 +Qv2)modqv.

Then,uv1 anduv2 separately computeev1 andev2 as
follows:

ev1 = BKv1, ev2 = BKv2.

The messagem can be recovered by the following
equation (Eq. (11)):

Pm = C −
2∑
i=1

evi = Pm + wc(Qv1 +Qv2)

−B(Kv1 +Kv2) = Pm + wc(Qv1 +Qv2)

−wcαv(Kv1 +Kv2) = Pm.

After the recovery of the messagem, the signa-
ture {r, s} can be verified. In the above descrip-

tion, our scheme provides another type of(k, l)
threshold-shared verification.

On the other hand, the participants in the signing
group and those in the verifying group employ dif-
ferent system parameters (elliptic curves, base points,
etc.) in our proposed scheme. In fact, each partici-
pant in the signing group and the verifying group can
employ the same system parameters to perform four
phases in our scheme. It does not harm the security of
our scheme.

7. Conclusion

In this paper, we have added the requirement of
(k, l) threshold-shared verification to Miyazaki and
Takaragi’s scheme, and the security of our new scheme
is based on the ECDLP. In addition, the communi-
cation and computational complexity as well as stor-
age of our scheme turn out superior to those of Hsu
et al.’s scheme. Besides, without the SDC, our scheme
is more practical in real-world applications.
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