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Neural-Network-Based Delivery Time Estimates
for Prioritized 300-mm Automatic
Material Handling Operations

Da-Yin Liao, Member, IEEE, and Chia-Nan Wang

Abstract—This paper deals with lot delivery estimates in a
300-mm automatic material handling system (AMHS), which is
composed of several intrabay loops. We adopt a neural network
approach to estimate the delivery times for both priority and
regular lots. A network model is developed for each intrabay loop.
Inputs to the proposed neural network model are the combination
of transport requirements, automatic material handling resources,
and ratios of priority lots against regular ones. A discrete-event
simulation model based on the AMHS in a local 300-mm fab is
built. Its outputs are adopted for training the neural network
model with the back propagation method. The outputs of the
neural network model are the expected delivery times of priority
and regular lots in the loop, respectively. For a lot to be trans-
ported, its expected delivery time along a potential delivery path
is estimated by the summation of all the loop delivery times along
the path. A shortest path algorithm is used to find the path with
the shortest delivery time among all the possible delivery paths.
Numerical experiments based on realistic data from a 300-mm fab
indicate that this neural network approach is sound and effective
for the prediction of average delivery times. Both the delivery
times for priority and regular lots get improved. Specially, for the
cases of regular lots, our approach dynamically routes the lots
according to the traffic conditions so that the potential blockings
in busy loops can be avoided. This neural network approach is
applicable to implementing a transport time estimator in dynamic
lot dispatching and fab scheduling functions in realizing fully
automated 300-mm manufacturing.

Index Terms—AMHS, neural network, prioritized service,
300-mm semiconductor manufacturing.

1. INTRODUCTION

HIP makers have been challenged with the potential ad-

vantages and uncertainties of migration to 300-mm wafer
fabrication. The positive side suggests attractive cost benefits,
more reliable product quality, and higher productivity. On the
down side, there are thousands of unknowns to be clarified or
new paradigms yet to be developed before 300-mm manufac-
turing gets ready for mass production. Highly automated mate-
rial handling is one of the biggest concerns to the practitioners.
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Comparing to the operations in 200-mm semiconductor man-
ufacturing, a cost-effective 300-mm fab demands highly auto-
mated operations in both processing and material transfer in
order to optimize equipment utilization and product cycle times.
Due to the increased number of chips from a 300-mm wafer,
the required number of wafers is reduced by a factor of 2.25.
Therefore, a high-mix 300-mm fab has to suffer from higher
varieties of products than a 200-mm fab does. High product
mix leads to more frequent process changes and fine tunes on
process and metrology equipment. Also, it results in frequent
process experiments and inspections as well as frequent pilot or
risk production.

In a wafer fab, a lot will be granted high priority, named Hot
Lot or Super Hot Lot, if either it is going to execute several crit-
ical operations for experiments or inspections on process con-
ditions, or it was born as a pilot or risk lot for process character-
ization or design validation before a new product is released to
production. Hot lots are very important to both fab operations
and product development of IC (Integrated Circuits) designers.
Operations of hot lots can be either preemptive against normal
operations, or capacity-reserved for no-wait manufacturing. In
contemporary 200-mm semiconductor manufacturing, hot lots
are specially handled by human operators in order to reduce
the transport delay between distant processing equipment. It be-
comes very challenging to reduce such delays in a 300-mm auto-
matic transport environment. The dynamics of a 300-mm fab are
very complicated when incorporating automatic material han-
dling systems (AMHS) into the shop floor.

Manufacturing of high priority lots has well-known signifi-
cant impacts on production cycle times as well as throughputs
of regular production [8], [11], [15]. Such an effect is usually
believed to become worse in 300-mm semiconductor manufac-
turing due to highly automated material handling operations in-
volved. Ehteshami et al. [8] conduct object-oriented simulation
experiments of a wafer fabrication model to investigate the im-
pact of hot lots on the cycle time of other lots in the system.
Their simulation results show that as the proportion of hot lots
in the work-in-process (WIP) increases, both the average cycle
time and the corresponding standard deviation for all other lot
types increase as well. They conclude that hot lots induce either
worse services for regular lots or an increase in inventory costs.
Fronckowiak et al. [11] use a simulation tool, ManSim/X, to
analyze the impact for different hot lot distributions for two dif-
ferent products. Narahari and Khan [15] model semiconductor
manufacturing systems as re-entrant lines and study the effect of
hot lots through an approximate analysis of the re-entrant line
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Fig. 1. 300-mm AMHS with OHT loops.

model using mean value analysis (MVA). Their simulation re-
sults indicate the significant effect of hot lots on the mean cycle
time, variance of cycle time, and throughput rate of regular lots.
DeJong and Wu [7] adopt the simulation approach to study the
behavior of priority lots in both lot transport and scheduling on
machines. Their results reveal that when introducing a relatively
small number of priority lots to the AMHS system, significant
improvements can be achieved on the delivery performance for
the priority lots. For priority lots, the delivery time improvement
in an intrabay is better than that in an interbay. Bays with high
move volumes and high move request variability will impose
big differences between priority and regular lot delivery times.

Among the proposed solutions to 300-mm AMHS im-
plementation, overhead hoist transport (OHT) is one of the
most promising technologies [2] in realizing transportation
automation in an intrabay, especially good for the operation
environment where both automatic and manual carrier transfer
operations have to exist simultaneously, like foundry man-
ufacturing [14]. A typical OHT loop is usually designated
as a simple directed graph. A 300-mm OHT system can be
considered as a combination of dozens of OHT loops, as shown
in Fig. 1. Note that tool-to-tool transport is possible in 300-mm
AMHS. In this paper, the problems of destination blocking
and temporary storage in stockers are handled by fab material
control system (MCS) and are out of the scope of this paper.
This paper answers the only question of delivery time from one
place to another in AMHS.

There have been many research efforts focused on automatic
material handling systems in both 300-mm interbay and in-
trabay [4], [13], [18], [19], [21], [24]. Most of them present
the design concept, especially on the effective integration of
300-mm fab layout and AMHS. Cardarelli and Pelagagge
[6] develop a simulation tool for design and management
optimization of automatic interbay material handling and
storage systems for large wafer fabs. Generalized probability
density functions fitted on the observation on the monthly
input-relative probability in a wafer fab are used as the sce-
narios to evaluate the dynamics of interbay material handling
and storage systems. Liao and Fu [14] discuss the dynamic
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Fig. 2. Loop-to-loop delivery time estimator.

allocation and dispatching problems in 300-mm AMHS. They
suggest an effective OHT dispatch policy, Modified Nearest
Job First (MNJF), to achieve high throughputs while reducing
the carrier delivery times in a single OHT loop. Bahri ef al. [5]
compare the cost and performance of typical AMHS designs
of either partial or fully unified transport with a conventional
AMHS that utilizes segregated interbay and intrabay transport
systems. Their results indicate that all configurations of direct
tool-to-tool transport have shown improvements over their
segregated counterpart. Simulations of unified versus segre-
gated AMHS show reduced delivery times of 32% and 66% for
normal and hot lots, respectively. In their simulations, lots are
not tracked throughout the fab. Instead, lot creation follows a
from—to pattern between tool groups and stockers.

This paper deals with the estimation to lot delivery times
in 300-mm AMHS. The lot transport time from one location
(origin) to another (destination) in a wafer fab is a major input
to effective fab dispatching and scheduling functions. Reduc-
tion in lot transport times is critical to the production of hot lots
whose cycle times are expected to be minimized. However, the
determination of lot transport time is usually difficult due to the
complicated fab dynamics. Artificial neural networks are one of
the most popular techniques in modeling nonlinear and com-
plex dynamic systems [12], [23]. There have been neural net-
work models used for travel time estimation problems in road
networks [1], [10]. The computation in a neural network is easy
and quickly, as compared to regression methods. This is very
helpful to efficient lot delivery time estimation. Efficient and
correct estimation of lot delivery time is important to 300-mm
shop floor activities like lot dispatching, routing in AMHS, re-
source reservation for hot lots, and so on.

We adopt a neural network approach for prediction of ex-
pected loop-to-loop delivery times of both priority and regular
lots, as depicted in Fig. 2. A neural-network model is built for
each OHT loop. Inputs for the proposed neural network model
are the transport requirements, automatic material handling re-
sources of the loop, and ratio of priority lots in the population. A
discrete-event simulation model is built for the automatic mate-
rial handling functions in a 300-mm fab. Its outputs are used
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for training the neural network. We adopt the back propaga-
tion method as our training mechanism. The delivery of a lot
from its origin to the destination may travel through one or more
loops. As lot delivery within a loop is independent of those of
the other loops, the average delivery time along a loop-to-loop
delivery path can be calculated by adding all the delivery times
of each loop along the path. The most efficient delivery of a
lot should move along the path with the shortest delivery time.
Given the estimates of lot delivery times in each loop, the path
with shortest delivery time can be determined by solving an in-
teger programming problem in polynomial computation time.
Numerical experiments based on realistic data from a 300-mm
fab are conducted to demonstrate the effectiveness of this neural
network approach on the prediction of lot delivery times.

The remainder of this paper is organized as follows. Section II
presents the neural network model for an OHT loop. Section III
describes the discrete-event simulation model of prioritized
OHT operations. Numerical experiments of the neural network
model are conducted in Section IV. Section V develops the
algorithm to generate the shortest delivery time path between
the starting and destination loops. Finally, conclusions are
made in Section VI with some future research directions.

II. NEURAL NETWORK MODEL FOR AN OHT LooP

The dynamics of an OHT intrabay loop are a nonlinear func-
tion of transport requirements, number of OHT vehicles, ratio
of priority lots against regular ones, number of loadports, and so
on. Fig. 3 demonstrates an example of our simulation study on
the average delivery time performance against various loading
ratios (transport requirements/capacity of design specification)
and different OHT numbers, where |V| denotes the number of
OHT vehicles.

Computer simulation is one of the techniques that can be suc-
cessfully applied for analyzing a complex system like AMHS.
However, it becomes too time-consuming for practical appli-
cations. In this paper, we propose a neural network approach
where a delivery time predictor is built based on an artificial
neural network model. The neural network model is trained

off-line with a discrete-event simulation model where the dy-
namics of an OHT loop are simulated. The trained neural net-
work model is then adopted as a delivery time estimator which
provides an estimate of lot delivery time to fab dispatching and
scheduling systems. This neural network delivery time estimator
accepts the information of transport loading ratio and priority
ratio from fab scheduling/dispatching systems, and the number
of OHT vehicles from AMHS. Therefore, instead of being un-
known or just with a guess, a better estimation on transport de-
lays in a 300-mm AMHS can be incorporated in generating fab
schedules and dispatching decisions. Fig. 4 shows the schematic
diagram which demonstrates our neural network approach.

A neural network represents a connection of basic processing
units (referred to as neurons) that are capable of processing in-
formation in response to external inputs [12], [23]. Neurons in
the network are organized in layers. Each neuron of a layer is
connected to at least one neuron of another layer in a mesh-like
structure. The connection of neurons across layers provides the
channel for the transmission of information between neurons.
There are three distinct layers characterized in a neural net-
work: the input layer, the hidden layer(s), and the output layer.
The development of a neural network model is sometimes with
heuristics and the development methods usually depend on the
problem itself to be modeled. In this paper, we use a three-layer
model for the lot delivery time estimator. The proposed neural
network model consists of one input layer, one hidden layer,
and one output layer, as shown in Fig. 5. The inputs to the 3-3-2
neural network include loading ratio, priority ratio, and number
of vehicles. Its outputs are expected delivery times of priority
and regular lots, respectively.

This neural network is first trained off-line to learn the dy-
namics of an intrabay AMHS which is mimicked by a discrete-
event simulation model. During the learning stage, several pre-
defined scenarios are presented to the network as the inputs.
For each scenario, the network computes the predicted outputs
based on the inputs. The same scenario is also conducted in
the AMHS simulation model where the reference outputs are
generated. The difference between the computed and the refer-
ence outputs is then calculated. The back propagation method is
adopted to train the network by updating its weights so that the
resulting differences are minimized. To avoid diverging on the
network outputs, bounds for the neural network outputs are de-
termined by a threshold limiter. In this paper, we adopt the sig-
moid function of the following equation as the threshold limiter
of the neural network:

1

T v W

f(z)

Note that f(z) saturates at 0 and +1 when z approaches nega-
tive and positive infinity, respectively. However, f(z) holds ap-
proximately linear in most of the input space. Such a nonlin-
earity is commonly adopted for the threshold functions [17].

III. SIMULATION OF PRIORITIZED OHT OPERATIONS
A. OHT Intrabay Simulation Model

In order to provide the reference outputs for the neural net-
work model to learn with, a discrete-event simulation model is
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Fig. 4. Neural-network-based delivery time estimates for an OHT loop.
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Layer Layer Layer OBJECTS DEFINED IN THE 300-mm OHT SIMULATION MODEL
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development capability with characteristics of hierarchy, inher-
itance and concurrency. Some of the objects are provided in the
package, from which users can modify them into user-defined
objects for their specific applications. Table I demonstrates
some of the objects defined in our 300-mm OHT simulation
model.

Fig. 6 depicts an example of the OHT intrabay model in our
AMHS simulation system. This OHT intrabay loop is 79.4 me-
ters long and there are two stockers and 22 pieces of equip-
ment. The operating speed of each OHT vehicle is 2 meters per
second. It takes 16 s for an OHT vehicle to load or to unload a
front-opening unified pod (FOUP) at a loadport. The capacity of
design specification in this intrabay loop is 200 moves per hour,
where a move is defined as the completion of transport of a lot in
the loop. The following assumptions are made in the simulation.

ES&( 10ut, Stk20ut

Delivery time record

Record deliver time

OHT

OHT vehicle

= eliver trend
AAIOHT

Track

OHT track

|ETrack

A1) As the time of acceleration and deceleration of OHT
vehicles are relatively small, they are thus neglected.

A2)

There are no failures and maintenance activities on all

the vehicles during the simulation horizon. Note that
as an OHT loop is a unidirectional circular loop, any
failure or maintenance of an OHT vehicle in the loop
may cause the entire loop not to function properly. It is
meaningless to estimate delivery times in a holdup.

A3)

Since we are interested in the effects on the perfor-

mance of the OHT system, the from-to relationship be-
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Fig. 6. An OHT intrabay simulation model.

tween two processing units is adopted, instead of con-
sidering the whole process flow of a semiconductor
product.

A4) The inter-arrival time of transport requests is
probabilistic and is assumed to be of exponential
distribution.

AS5) Unidirectional loadports are adopted. That is, a load-

port is either for loading or for unloading. Once a lot is
loaded in a loadport, it is transferred immediately. We
assume no occupation in a loading loadport. On the
other hand, once a lot is transferred to a loadport for
unloading, there will be no further transport requests
to this loadport before this lot completes its unloading.

B. Prioritized OHT Dispatching

OHT dispatching deals with the assignment of a lot to an
empty OHT vehicle. The dispatched OHT is reserved to the lot
once it is dispatched, and becomes empty again after completing
the transport of this lot. Our objective of OHT dispatching is to
minimize lot delivery times in both their mean and variance. A
lot with higher priority should dominate those lots with lower
priority. Among a given set of transport lots, an empty OHT will
be reserved first for the lot with the highest priority. Observing
the empirical human operations for carrying high priority prod-
ucts and considering the effect and limitation from OHT trans-
portation, we propose the following OHT dispatching rule to ex-
pedite the movement of the highest priority lot in order to avoid
any possible blocking due to the transportation of regular lots.

Preemptive Highest Priority Job First (PHP) Policy: Given
a set of lots ready for and waiting to be transferred by OHT ve-
hicles in an OHT loop, an empty OHT is dispatched to the lot
of the highest priority. The transportation of this OHT vehicle
is preemptive. That is, once an empty OHT is dispatched to the
highest priority lot, any other ongoing and preemptive transport
operations that may block the transportation of this OHT ve-
hicle in the loop will be suspended until this highest priority lot
completes its operations in the loop.

In order to study the impact due to this prioritized rule, a
rule without differentiating lot priorities, Nearest Job First (NJF)
rule, is adopted for comparisons. The NJF rule dispatches a ve-
hicle to its nearest waiting lot. It utilizes the straightforward idea
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of first meet, first serve and has been suggested as a good dis-
patching rule in many automatic guided vehicles (AGV) appli-
cations [9], [22].

C. Simulation Model Verification

The developed simulation model is first verified by unit
testing. Input and output interfaces, local data structure, and
boundary conditions of each defined object in Table I are tested
to ensure the information properly flowing into and out of each
object under test. Integration testing is then followed to verify
the correct movements of OHT vehicles and loading/unloading
operations of lots. Logic accuracy of dispatching rules is also
tested in the integration testing. We conduct both the unit and
integration testing by using very simple examples and tracing
the activities of lots and OHT vehicles step by step. Field data
with only regular lots from a local 300-mm fab are used for our
validation testing to validate the correctness of delivery time
performance in the simulation model.

D. Numerical Experiments of the OHT Intrabay Simulation
Model

Observing the dynamics of an OHT intrabay system, we
found that there are three dominating factors that affect the
performance of the OHT system. They are loading ratio, pop-
ulation of priority lots, and number of OHT vehicles in the
OHT intrabay loop. These factors are considered in our design
of experiments. In order to highlight the effect of the priori-
tized rules on resource contention, we designate systems with
heavy loads. Two loading ratios, 100% and 90% of the design
specification, are used in the simulation. As the increasing
high-priority population will impose long time delays on the
regular jobs drastically, two distributions of high-priority lots,
2% and 8%, are selected for the tests. In addition, if we increase
the number of OHT vehicles, the resulting system performance
usually improves. In the simulation study, we consider two
configurations of the OHT numbers, 4 and 6 OHT vehicles in
the loop, respectively. Eight simulation experiments are then
conducted based on the scenarios for these three controls. Lot
delivery time, the time from the creation of a transport request
for a lot to its completion, is considered as the performance
measure. For each simulation experiment, we take the statistics
of 1000 runs with different initial values of random number
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TABLE 1II
EXPERIMENT RESULTS IN LOT DELIVERY TIME (IN SECONDS)

System Configuration NJF PHP
Priority Regular

Loading | Priority #of Mean Standard Mean Standard Mean Standard

Ratio Ratio | OHTs Deviation Deviation Deviation
90% 2% 4 97 10 73 27 96 20
90% 8% 4 96 10 74 35 106 21
100% 2% 4 102 10 74 23 105 18
100% 8% 4 102 10 73 33 112 20
90% 2% 6 85 9 71 34 87 17
90% 8% 6 87 9 74 36 89 19
100% 2% [3 86 9 74 37 87 18
100% 8% 6 87 9 74 38 90 21
Average 93 10 73 33 97 19

seeds. The simulation horizon is set to one day long in time
unit of seconds. That is, there are 4800 transport requests
during the simulation horizon. All the statistics are calculated
only after 0.5 simulation hour of each simulation run. Table II
demonstrates the simulation results.

In order to clarify the differences between the PHP and NJF
rules on the delivery time performance of priority and regular
lots, we adopt the analysis of variance procedures to test whether
these results are relatively similar or homogeneous. We have the
null hypothesis

Hy: No difference in the delivery times for priority lots;
versus the alternative hypothesis
H,: At least two of the delivery times differ.

The t-value for testing the cases of priority lots is 13.49,
which implies that the null hypothesis Hj is rejected. That is,
the performance results from PHP and NJF are statistically dif-
ferent for priority lots. On the other hand, the ¢-value for testing
the cases of regular lots is —1.57, which implies we cannot re-
ject the null hypothesis, Hy: no difference in the delivery times
for regular lots. Therefore, there is no significant difference be-
tween PHP and NJF for regular lots.

In all of the test scenarios, the PHP rule does expedite the
delivery times of priority lots. However, longer delivery times
of regular lots are incurred in both mean and standard devia-
tion. In average, the mean delivery time of priority lots can be
reduced by 22% by the PHP rule. The PHP rule is thus con-
sidered effective in reducing lot delivery times of priority lots
with acceptable time delay on regular lots with in average 5%
of increase. In these scenarios, the average theoretical lot de-
livery time (= loading time 4 travel time 4 unloading time, the
ultimate delivery time without suffering any transport delay) is
51.8 s. That is, the average transport delay is 73 —51.8 = 21.2s
for the priority lots applied with the PHP rule. These transport
delays are caused by the waiting times before an empty OHT
picks up the priority lot.

IV. NUMERICAL EXPERIMENTS OF THE
NEURAL NETWORK MODEL

In order to generate reference targets to train the 3-3-2
neural network, more simulation studies are conducted with
the number of OHT vehicles ranging from 3 to 6, with loading
ratios ranging from 90% to 100%, and with priority ratio

TABLE III
AVERAGE LOT DELIVERY TIMES IN THE SIMULATION RESULTS
Configuration 3 OHTs 4 OHTs 5 OHTs 6 OHTs
Loading | Priority |Regular (Priority |Regular |Priority| Regular |Priority [Regular [Priority
Ratio

90% 2% 168 76 96 73 90 68 87 71

4% 178 76 102 72 91 71 87 70

6% 196 77 102 73 92 73 88 71

8% 220 80 106 74 92 70 89 74

10% 247 81 109 75 95 73 91 71

92.5% 2% 196 78 101 71 89 69 87 68

4% 236 79 105 73 90 73 88 70

6% 249 81 106 72 92 69 90 72

8% 292 79 109 72 93 70 89 70

10% 360 81 113 75 95 71 90 71

95% 2% 245 77 102 69 90 70 86 68

4% 250 77 105 73 91 71 89 69

6% 385 80 110 73 93 71 90 69

8% X 81 111 73 95 72 91 72

10% X 83 112 74 99 73 92 72

97.5% 2% 320 75 104 72 91 70 86 71

4% 402 78 111 73 92 71 89 71

6% X 85 112 73 95 72 89 71

8% X 85 116 74 96 70 91 71

10% X 83 123 76 97 73 92 72

100% 2% X 87 105 74 92 71 87 74

4% X 81 111 73 93 72 89 70

6% X 83 112 73 94 72 90 70

8% X 81 112 73 97 72 90 74

10% X 83 124 74 100 72 92 72

Remark: X indicates that the case diverges.

ranging from 2% to 10%, respectively. The simulation results
of average lot delivery times are listed in Table III. Among
these scenarios, results of 100 tested scenarios are then selected
to serve as the target outputs for the neural network training
process. The back propagation method is conducted with sig-
moid activation for 50 000 cycles. Test patterns of 40 scenarios
in Table III, different from those selected for training, are used
to test the effectiveness of the trained neural network model.
We adopt the package of QNET [20] to develop the neural
network model. Table IV presents the parameters used for
training the neural network. The resultant weights of the trained
neurons are listed in Table V. Both the root mean square (RMS)
errors of the sets of training and testing patterns converge after
16000 iterations, as depicted in Fig. 7 and 8. The compar-
isons between the network outputs and the training targets are
shown in Fig. 9. Note that both measures of network outputs
and training targets have been normalized by the formula of
(data value — the smallest)/(the largest — the smallest). All
these results indicate that the neural network model provides
accurate estimates of the simulation outputs.

V. NEURAL-NETWORK-BASED DELIVERY TIME ESTIMATOR

As the delivery of lots within an OHT intrabay loop is inde-
pendent of those of the other loops, the expected delivery time
along the delivery path of a lot is the summation of the delivery
times of each loop in the path. Assume that there are . OHT
intrabay loops in a fab. Let w; and w; denote the estimate of lot
delivery times in loops 7 and j, respectively. Both w; and w; are



330 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 17, NO. 3, AUGUST 2004

TABLE IV
TRAINING PARAMETERS OF THE NEURAL NETWORK MODEL

Function/Parameter Value
Training Method Back Propagation
Number of Layers 3
Input Layer Nodes 3
Input Layer Transfer Function Linear
Hidden Layer 1 Nodes 3
Hidden Layer 1 Transfer Function Sigmoid
Output Layer Nodes 2
Output Layer Transfer Function Sigmoid
Iterations 50000
Training Patterns 100
Testing Patterns 40
Training RMS Error 0.0386100
Training Correlation 0.974929
Testing RMS Error 0.039220
Testing Correlation 0.983577
Learn Rate 0.150000
Momentum Factor 0.850000

generated by the neural networks of loops ¢ and j, respectively.
The path of shortest delivery time, starting from loop s to loop
f, can be determined by solving the following integer program-
ming problem (P):

L L
1
Minimize Z Z (5(’LUL + wj)xij

Tij

(P)

subject to
L
D wg =1, )
j=1
L
> wip =1, (3)
i=1
L L
inkzzl“kj; Vk # s and f, 4)
i=1 j=1
x;j=1or0, Vi#j, (5)
Tij :07 if Tij ¢ 1:{7 (6)

where z;; is the decision variable indicating the selection of
the directly-connected path from loop ¢ to loop j, and R is the
collection of directly-connected paths which are defined in the
routing table of Fig. 2. Problem (P) can be solved by integer pro-
gramming techniques in polynomial computational time [16].
We adopt Dijkstra’s shortest path algorithm [3] to solve Problem
(P). We implement the Shortest Delivery Time Path (SDTP) al-
gorithm in C language, with its pseudo code listed in Table VI.
In order to demonstrate the ability of finding the path of the
shortest delivery time, consider the following testing case where

TABLE V
RESULTANT WEIGHTS AFTER TRAINING
Connection Node Weight
From To
1 4 1.16976
1 5 4.59572
1 6 -2.78809
2 4 -6.47795
2 5 -0.21034
2 6 18.76053
3 4 -1.74859
3 5 -5.36069
3 6 3.47815
4 7 0.13508
4 8 2.65252
5 7 -3.61648
5 8 1.54068
6 7 1.88680
6 8 -2.57542
020_- —T T —TTT T T T T T T T T T T T
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Fig. 7. Training set RMS error.
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Fig. 8. Testing set RMS error.

lots are transported among loops in the shaded area of Fig. 1.
We designate 1,000 lots (40 priority and 960 regular lots) to
be transported from L1 to L3. There are two possible paths for
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TABLE VI
SHORTEST DELIVERY TIME PATH (SDTP) ALGORITHM

SDTP(RoutingTuble, LoopDeliveryTime, StartLoop, FinishLoop)
// Assumption: There exists at least one path from StartLoop to FinishLoop
// Initialization
construct a graph G =(V,E), where ve V[G] and ee E[G]: RoutingTable
for vertices u,ve V|[G]
do w(u,v) < 0.5(LoopDeliveryTime of u) + 0.5(LoopDeliveryTime of v)
for each vertexv e V'[G]
do d[v]« oo
plv]l« NIL
d|[StartLoop] < 0
R«0
0 «V[G]
// Finding the shortest delivery time path from StartLoop to FinishLoop
while O =0 and FinishLoope R
do u « GET-MIN(Q)
0« 0-{u
R« RU{u}
for each vertex ve Adj[u]
if  dlu]>d[v]+w(u,v)
then d[v] < dlul+ w(u,v)
plvl<u

/I Get the vertex with minimum d[v]

// Output the path from FinishLoop backward to StartLoop
v « FinishLoop
output v
while ( p[v]# NIL)
do output p[v]
v« plv]
// End of SDTP

lots to travel from L1 and L3, namely Path A and Path B, as
described below:

PathA: L1 =12= L3 and PathB: L1 = L4 = L3.

Table VII lists the estimate of delivery time in each loop, which
is predicted by the neural network model for each loop. The
traffic condition in L2 is designated very busy, while the traffic

TABLE VII
ESTIMATE OF LOOP DELIVERY TIMES FROM
THE NEURAL NETWORK ESTIMATOR

L1 L2 L3 L4
Mean Loop Priority 71 81 74 70
Delivery Time | Regular 88 275 106 86
TABLE VIII
COMPARISONS OF DELIVERY TIMES BETWEEN THE SDTP AND THE ND RULES
SDTP ND (Nearest Depot)
mean variance mean variance
Priority 215 130 231 127
Regular 284 68 473 76

in other loops are moderate. Experiments of both the Shortest
Delivery Time Path (SDTP) algorithm and the Nearest Depot
(ND) rule are conducted. In the Nearest Depot rule, the delivery
path is determined by the topologically shortest distance, that is,
a lot is routed to the nearest exit to the current loop and to the
nearest entry point to the destination loop. In SDTP, the delivery
path is selected according to the estimate of the delivery time.
Experiment results are shown in Table VIII. It takes less than
0.5 s of the computation time of SDTP in a Pentium-IV 1.8
GHz PC for all the tested cases. The delivery times by SDTP
improve for both priority and regular transportation. Specially,
for the cases of regular lots, SDTP dynamically routes the lots
according to the traffic conditions so that the potential blockings
in busy loops can be avoided.

VI. CONCLUSION

A neural-network-based estimator is proposed to predict the
average loop-to-loop delivery times of both priority and reg-
ular lots. A 3-3-2 neural-network model is built for each AMHS
intrabay loop, whose inputs are the transport loading ratio in
the design capacity, automated material handling resources, and
priority/regular job ratios. A discrete-event simulation model is
built for the automatic material handling functions in a 300-mm
fab and its outputs are adopted for neural network training. As
the delivery of lots within an intrabay loop is independent of
those of the other loops, the average delivery time along the
loop-to-loop delivery path is the summation of all the delivery
times of each loop of the path. The delivery of a lot should
move along the path that results in the shortest delivery time.
Given the estimate of lot delivery time in each loop, the path
with the shortest delivery time can be determined by solving a
shortest path algorithm in polynomial computational time. Nu-
merical experiments based on realistic data from a 300-mm fab
indicate that this neural network model is sound and effective
for the prediction of average delivery times. The developed ap-
proach is applicable to the implementation of a transport time
estimator for 300-mm fab scheduling and dispatching systems.

Future research directions include the point-to-point delivery
time estimate within an OHT loop so that the tool-to-tool de-
livery time estimate in a fab can be realized. However, due to
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the complicated dynamics in an automated fab, the estimate of
tool-to-tool delivery time may suffer from a large spread of dis-
tribution. Estimates from such a wide confidence interval be-
come useless information for fab scheduling and dispatching.
As there may be several OHT dispatching rules applied in dif-
ferent intrabay loops in the same time for different transport pur-
poses, the other research direction is to incorporate more dis-
patching rules, e.g., Longest Waiting Time First (LWT) rule or
Equal In-between Distance (EID) rule, into our neural network
model so that its estimates will be closer to the performance
from the real OHT system.

REFERENCES

[1] J. Anderson and M. Bell, “Travel time estimation in urban road net-
works,” in Proc. IEEE Conf. Intelligent Transportation Systems, Nov.
1997, pp. 924-929.

[2] Automated Material Handling System (AMHS) Framework User Re-
quirements Document: Version 1.0, International SEMATECH, 1999.

[3] M. Ataliah, Algorithms and Theory of Computation Handbook. Boca
Raton, FL: CRC Press LLC, 1999.

[4] U. Bader, J. Dorner, J. Schlieber, T. Kaufmann, and M. Garbers, “Cost
efficient future automation and transport concepts,” in Proc. 7th Int.
Symp. Semiconductor Manufacturing, Tokyo, Japan, Oct. 1998, pp.
57-60.

[5] N.Bahri,J. Reiss, and B. Doherty, “Comparison of unified vs. segregated
automated material handling,” in Proc. IEEE Int. Symp. Semiconductor
Manufacturing, San Jose, CA, Oct. 2001, pp. 3-6.

[6] G. Cardarelli and P. M. Pelagagge, “Simulation tool for design and
management optimization of automated interbay material handling
and storage systems for large wafer fab,” IEEE Trans. Semiconduct.
Manufact., vol. 8, pp. 44-49, Feb. 1995.

[7] C.D.Delong and S. P. Wu, “Simulating the transport and scheduling of
priority lots in semiconductor factories,” in Proc. 2002 Winter Simula-
tion Conf., San Diego, CA, Dec. 2002, pp. 1387-1391.

[8] B. Ehteshami, R. B. Petrakian, and P. M. Shabe, “Trade-offs in cycle
time management: Hot lots,” IEEE Trans. Semiconduct. Manufact., vol.
S, pp. 101-106, May 1992.

[9] P. J. Egbulu and J. M. A. Tanchoco, “Characterization of automatic

guided vehicle dispatching rules,” Int. J. Prod. Res., vol. 22, no. 3, pp.

359-374, 1984.

L. Fu and L. R. Rilett, “Dynamic O-D travel time estimation using an

artificial neural network,” in Proc. Vehicle Information & Navigation

Systems, 6th Annu. VINS, Seattle, WA, July 1995, pp. 236-242.

D. Fronckowiak, A. Peikert, and K. Nishinohara, “Using discrete

event simulator to analyze the impact of job priorities on cycle time in

semiconductor manufacturing,” in Proc. IEEE/SEMI Advanced Semi-

conductor Manufacturing Conf. and Workshop, 1996, pp. 151-155.

F. M. Ham and I. Kostanic, Principles of Neurocomputing for Science &

Engineering. New York: McGraw Hill, 2001.

R. Kurosaki, T. Shimura, H. Komada, T. Kojima, and Y. Watanabe, “Low

cost and short lead time AMHS design using interbay/intrabay diverging

and converging method for 300 mm fab,” in Proc. 9th IEEE Int. Symp.

Semiconductor Manufacturing, 2000, pp. 48-51.

D.-Y. Liao and H.-S. Fu, “Dynamic OHT allocation and dispatching

in large-scaled 300 mm AMHS management,” in Proc. 2002 IEEE

Int. Conf. Robotics and Automation, Washington, DC, May 2002, pp.

3630-3636.

Y. Narahari and L. M. Khan, “Modeling the effect of hot lots in semicon-

ductor manufacturing systems,” IEEE Trans. Semiconduct. Manufact.,

vol. 10, pp. 185-188, Feb. 1997.

[10]

[11]

[12]

[13]

[14]

[15]

[16] S. G. Nash and A. Sofer, Linear and Nonlinear Programming. New
York: McGraw Hill, 1996.

J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and Adaptive
Systems. New York: Wiley, 2000.

D. Pillai, T. Quinn, K. Kryder, and D. Charlson, “Integration of 300 mm
fab layouts and material handling automation,” in Proc. 1999 IEEFE Int.
Symp. Semiconductor Manufacturing, October 1999, pp. 23-26.

D. Pillai and S. Srinivasan, “Material handling automation—trends, vi-
sion, and future plans,” in Proc. IEEE/SEMI Int. Symp. Semiconductor
Manufacturing, 1997, pp. 251-254.

Qnet V2000, Vesta Service, Inc., Winetka, IL(http://www.qnetv2k.com)
B. Subramaniam and D. K. Kryder, “Automation challenges in the
next generation semiconductor factory,” in Proc. IEEE/SEMI Advanced
Semiconductor Manufacturing Conf., 1997, pp. 349-355.

J.-H. Ting and J. M. A. Tanchoco, “Unidirectional circular layout for
overhead material handling systems,” Int. J. Prod. Res., vol. 38, no. 16,
pp. 3913-3935, 2000.

L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approaches in En-
gineering. New York: Wiley, 1997.

J. Weckman, “300 mm fab/AMHS layout challenge: A cookbook ap-
proach,” in Proc. 7th IEEE Int. Symp. Semiconductor Manufacturing,
1998, pp. 61-64.

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

Da-Yin Liao (S’90-M’91) received the B.S. degree
in mechanical engineering and the M.S. and Ph.D. de-
grees in electrical engineering from National Taiwan
University, Taipei, Taiwan, R.O.C., in 1989, 1991,
and 1994, respectively.

From 1994 to 1996, he served as a Second Lieu-
tenant in the Chinese Army, Taiwan. He is currently
with Department of Information Management, Na-
tional Chi-Nan University, Taiwan, R.O.C., where he
started his professorship from September 2001. Be-
fore then, he has worked as a department manager
and a senior director in the IT Division of semiconductor foundry and TFT/LCD
manufacturing companies for six years. He worked in a 300-mm mass pro-
duction fab on the design and implementation of computer-integrated manu-
facturing (CIM) and automatic material handling systems (AMHS) before he
joined National Chi-Nan University. He has participated and leaded the devel-
opment of CIM and AMHS projects in four wafer fabs and one TFT/LCD fab.
His current research interests include computer-integrated manufacturing, pro-
duction scheduling, discrete optimization, and production management of semi-
conductor manufacturing.

Dr. Liao served as a session chair/co-chair for many international
conferences.

Chia-Nan Wang is working toward the Ph.D. degree
at National Chiao Tung University, Taiwan, R.O.C.

He works as a director of Newfancy Technology
Inc. He has worked as a section manager in man-
ufacturing department and was in charge of the
design and implementation of computer-integrated
manufacturing (CIM) and automatic material han-
dling systems (AMHS) for Taiwan Semiconductor
Manufacturing Company (TSMC) for six years. He
also worked as a project manager for evaluation
and development of AMHS systems at International
SEMATECH (ISMT) for two years. His research interests include production
management of semiconductor, technology management, information manage-
ment and multimedia application.




	toc
	Neural-Network-Based Delivery Time Estimates for Prioritized 300
	Da-Yin Liao, Member, IEEE, and Chia-Nan Wang
	I. I NTRODUCTION

	Fig.€1. 300-mm AMHS with OHT loops.
	Fig.€2. Loop-to-loop delivery time estimator.
	Fig.€3. Average delivery time versus loading ratio.
	II. N EURAL N ETWORK M ODEL FOR AN OHT L OOP
	III. S IMULATION OF P RIORITIZED OHT O PERATIONS
	A. OHT Intrabay Simulation Model


	Fig.€4. Neural-network-based delivery time estimates for an OHT 
	Fig.€5. A three-layer neural network model.
	TABLE€I O BJECTS D EFINED IN THE 300-mm OHT S IMULATION M ODEL
	Fig.€6. An OHT intrabay simulation model.
	B. Prioritized OHT Dispatching
	Preemptive Highest Priority Job First (PHP) Policy: Given a set 

	C. Simulation Model Verification
	D. Numerical Experiments of the OHT Intrabay Simulation Model

	TABLE€II E XPERIMENT R ESULTS IN L OT D ELIVERY T IME ( IN S ECO
	IV. N UMERICAL E XPERIMENTS OF THE N EURAL N ETWORK M ODEL

	TABLE€III A VERAGE L OT D ELIVERY T IMES IN THE S IMULATION R ES
	V. N EURAL -N ETWORK -B ASED D ELIVERY T IME E STIMATOR

	TABLE€IV T RAINING P ARAMETERS OF THE N EURAL N ETWORK M ODEL
	TABLE€V R ESULTANT W EIGHTS A FTER T RAINING
	Fig.€7. Training set RMS error.
	Fig.€8. Testing set RMS error.
	Fig.€9. Comparisons between target and test patterns.
	TABLE€VI S HORTEST D ELIVERY T IME P ATH (SDTP) A LGORITHM
	TABLE€VII E STIMATE OF L OOP D ELIVERY T IMES F ROM THE N EURAL 
	TABLE€VIII C OMPARISONS OF D ELIVERY T IMES B ETWEEN THE SDTP AN
	VI. C ONCLUSION
	J. Anderson and M. Bell, Travel time estimation in urban road ne

	Automated Material Handling System (AMHS) Framework User Require
	M. Ataliah, Algorithms and Theory of Computation Handbook . Boca
	U. Bader, J. Dorner, J. Schlieber, T. Kaufmann, and M. Garbers, 
	N. Bahri, J. Reiss, and B. Doherty, Comparison of unified vs. se
	G. Cardarelli and P. M. Pelagagge, Simulation tool for design an
	C. D. DeJong and S. P. Wu, Simulating the transport and scheduli
	B. Ehteshami, R. B. Petrakian, and P. M. Shabe, Trade-offs in cy
	P. J. Egbulu and J. M. A. Tanchoco, Characterization of automati
	L. Fu and L. R. Rilett, Dynamic O-D travel time estimation using
	D. Fronckowiak, A. Peikert, and K. Nishinohara, Using discrete e
	F. M. Ham and I. Kostanic, Principles of Neurocomputing for Scie
	R. Kurosaki, T. Shimura, H. Komada, T. Kojima, and Y. Watanabe, 
	D.-Y. Liao and H.-S. Fu, Dynamic OHT allocation and dispatching 
	Y. Narahari and L. M. Khan, Modeling the effect of hot lots in s
	S. G. Nash and A. Sofer, Linear and Nonlinear Programming . New 
	J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural and Ad
	D. Pillai, T. Quinn, K. Kryder, and D. Charlson, Integration of 
	D. Pillai and S. Srinivasan, Material handling automation trends

	Qnet V2000, Vesta Service, Inc., Winetka, IL (http://www.qnetv2k
	B. Subramaniam and D. K. Kryder, Automation challenges in the ne
	J.-H. Ting and J. M. A. Tanchoco, Unidirectional circular layout
	L. H. Tsoukalas and R. E. Uhrig, Fuzzy and Neural Approaches in 
	J. Weckman, 300 mm fab/AMHS layout challenge: A cookbook approac



