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This presentation investigates the dynamics of discrete-time cellular neural networks (DT-CNN).
In contrast to classical neural networks that are mostly gradient-like systems, DT-CNN possesses
both complete stability and chaotic behaviors as different parameters are considered. An energy-
like function which decreases along orbits of DT-CNN as well as the existence of a globally
attracting set are derived. Complete stability can then be concluded, with further analysis
on the sets on which the energy function is constant. The formations of saturated stationary
patterns for DT-CNN are shown to be analogous to the ones in continuous-time CNN. Thus,
DT-CNN shares similar properties with continuous-time CNN. By confirming the existence of
snap-back repellers, hence transversal homoclinic orbits, we also conclude that DT-CNN with
certain parameters exhibits chaotic dynamics, according to the theorem by Marotto.

Keywords : Cellular neural network; pattern formation; complete stability; homoclinic orbits;
snap-back repeller; chaos.

1. Introduction

Cellular neural network (CNN) is a large aggrega-
tion of analogue circuits. It was first proposed by
Chua and Yang in 1988. A CNN assembly consists
of arrays of identical elementary processing units
called cells. The cells are only connected to their
nearest neighbors. This local connectivity makes
CNN very suitable for VLSI implementation. The
equations for a two-dimension layout of CNN are
given by

C
dxij(t)

dt
= −

1

R
xij(t) +

∑

(k,`)∈Nr(i,j)

[aij,k`h(xk`(t))

+ bij,k`uk`] + I , (1)

where xij, yij = h(xij) are the state and output
voltage of the specified CNN cell at site (i, j), re-
spectively; uk` is the controlling input. Nr(i, j) rep-
resents the neighborhood of (i, j) with radius r (a
positive integer). CNN are characterized by the bias
I, the template sets A and B which consist of real
numbers aij,k` and bij,k`, respectively. aij,k` repre-
sents the linear feedback, bij,k` the linear control.
The standard output function h is a piecewise-linear
mapping defined by h(ξ) = (1/2)(|ξ+1|−|ξ−1|). C
is the linear capacitor and R is the linear resistor.
R and C are often set to R = 1 and C = 1, for con-
venience of discussion. A complete set of the CNN
model requires imposing boundary condition for the
cells on the boundary of the assembly, see [Shih,
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2000]. This presentation will not take into account
the boundary conditions, since the approach and
methodology used herein prevail even with consid-
eration of boundary conditions. Equation (1) is a
continuous-time model, we thus call it CT-CNN.

In this investigation, we shall study the
discrete-time cellular neural network (DT-CNN).
DT-CNN admits rich dynamics including proper-
ties analogous to the ones in CT-CNN. The model
is described by the following difference equation.

xij(t + 1) = µxij(t) +
∑

(k,`)∈Nr(i,j)

[ãij,k`h(xk`(t)) + b̃ij,k`uk`] + Iij , (2)

where t is an integer and (i, j) belongs to a n1 ×
n2 lattice. Equation (2) can be derived from a
delta-operator based CNN. If one collects from a
continuous-time signal x(t) a discrete-time sequence
x[k] = x(kT ), the delta operator

δx[k] =
x[k + 1] − x[k]

T
is an approximation of the derivative of x(t).
Indeed, limT→0 δx[k] = ẋ(t)|t=kT . In this case,
µ = 1 − T/τ , where T is the sampling period,
and τ = RC. The parameters ãij,k`, b̃ij,k` in (2)
correspond to aij,k`, bij,k` in (1) under sampling,
see [Hänggi et al., 1999]. If (2) is considered in
conjunction with (1), then T is required to satisfy

τ ≥ T to avoid aliasing effects. Under this situa-
tion, 0 ≤ µ ≤ 1 and CT-CNN is the limiting case
of delta-operator based CNN with T → 0. If the
delta-operator based CNN is considered by itself,
then there is no restriction on T , and thus no re-
strictions on µ in (2). On the other hand, a sample-
data based CNN has been introduced in [Harrer
& Nossek, 1992]. Such a network corresponds to
the limiting case of delta-operator based CNN as
T → 1. The readers are referred to [Hänggi et al.,
1999] and the reference therein for an account of
unifying results on the above-mentioned models. On
the other hand, Euler’s difference scheme for (1)
takes the form

xij(t + 1) =

(

1 −
∆t

RC

)

xij(t) +
∆t

C




∑

k∈Nr(i,j)

aij,k`h(xk`(t)) + bij,k`uk` + I



 . (3)

The parameters in (2) and (3) are related by
µ = 1 − (∆t/RC), ãij,k` = (∆t/C)aij,k`, b̃ij,k` =
(∆t/C)bij,k` and Iij = (∆t/C)I.

A lattice of any dimension with finitely many
sites can be reindexed into a one-dimensional man-
ner. Thus, CNN of any dimension can be refor-
mulated into a one-dimensional setting, cf. [Shih
& Weng, 2002]. Restated, the DT-CNN (2) in a
two-dimensional layout can be written into a one-
dimensional form as

xi(t + 1) = µxi(t) +
n∑

k=1

ωikh(xk(t)) + zi , (4)

where i = 1, . . . , n, n = n1 · n2, and ωik, zi corre-
spond to ãij,k` and (b̃ij,k`uk`+Iij), respectively. This
expression suppresses local connectivity among cells
of DT-CNN. However, it is more concise for our pre-
sentation. We shall study DT-CNN in the form (4)
for most of this presentation. In the discussions of
pattern formation in the last section, the expres-
sion of DT-CNN exhibiting local connectivity [such
as (2)] will be adopted.

This presentation aims to explore dynamical
features of the DT-CNN, including complete sta-
bility, chaotic behaviors and pattern formation.
By complete stability, we mean that every orbit
tends to a steady state solution (fixed point of the
DT-CNN herein) as time tends to infinity. Com-
plete stability for the CT-CNN has been stud-
ied in [Chua & Yang, 1988; Lin & Shih, 1999;
Shih, 2001]. The basic assumption for such a re-
sult is the symmetry of the coupling weights, that
is, W := [ωik] is a symmetric matrix. The situ-
ation is much more complicated in DT-CNN. We
first derive the existence of a trapping region, and
a Lyapunov function V . Because of the saturation
part of the output function h, there is a large
portion of phase space on which V is constant. We
then analyze the dynamics on these regions and
conclude complete stability for the DT-CNN, under
an additional assumption. We shall also illustrate
that formations of saturated stationary solutions
and patterns for DT-CNN are analogous to the ones
in CT-CNN.
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The second goal of this work is to study the
snap-back repellers of the DT-CNN. A fixed point
x of a map F is said to be a snap-back repeller of F
if there exists a positive real number r and a point
x0 ∈ B(x; r) with x0 6= x such that all eigenvalues
of DF (x) exceed unity in norm for all x ∈ B(x; r)
and F m(x0) = x with det(DF m(x0)) 6= 0 for some
positive integer m. Such x0 is called a snap-back

point. It is obvious that the existence of snap-back
repeller implies the existence of a transversal ho-
moclinic orbit. In 1975, Li and Yorke [1975] proved
that period three implies chaos as well as cer-
tain sensitive dependence on initial conditions for
one-dimensional mappings. It was extended into
multidimensional maps by Marotto [1978].

Theorem 1.1 (Marotto). If F has a snap-back

repeller, then the dynamical system x → F (x) is

chaotic in the following sense:

(1) There exists a positive integer m0 such that F
has p-periodic points for every integer p ≥ m0.

(2) There exists a scrambled set, that is, an un-
countable set L containing no periodic points
such that the following pertains:

(a) F (L) ⊂ L;
(b) for every y ∈ L and any periodic point x

of F, lim supk→∞ ‖F k(y) − F k(x)‖ > 0;
(c) for every x,y ∈ L with x 6= y,

lim supk→∞ ‖F k(y) − F k(x)‖ > 0.

(3) There exists a uncountable subset L0 of L such
that for every x,y ∈ L0,

lim inf
k→∞

‖F k(y) − F k(x)‖ = 0 .

Marotto concluded that snap-back repellers
imply chaos in the sense of the above theorem.
The snap-back repeller, which is suitable for the
noninvertible map with repelling fixed points, is
a powerful technique for proving chaos in multidi-
mensional maps. Guckenheimer and Holmes [1983]
showed that if a diffeomorphism has a transver-
sal homoclinic orbit to the hyperbolic fixed point
x, then F is locally topologically equivalent to a
subshift of finite type. This theorem only applies
to diffeomorphisms. Marotto [1979] also applied his
theorem to study the transversal homoclinic orbits
for the Hénon map.

Classical continuous-time neural networks do
not exhibit chaotic behaviors. It is certainly not
the case for discrete-time neural networks, see
for example, [Chen & Shih, 2002] on a study of

the so-called transiently chaotic neural network.
Recently, Sbitnev and Chua have studied the lo-
cal activity criteria and its application to nonhomo-
geneous spatiotemporal patterns for the DT-CNN.
Other mathematical studies in CT-CNN include
investigations of pattern formations and spatial
entropy, in [Juang & Lin, 2000; Shih, 1998, 2000],
and traveling wave solutions [Hsu & Lin, 2000].

In Sec. 2, we shall address the dynamics and
demonstrate complete stability and chaotic behav-
iors of DT-CNN. Rigorous justifications as well as
numerical illustrations for these dynamics are pre-
sented in Sec. 3. In Sec. 4, we briefly show that
formations of saturated stationary patterns for the
DT-CNN can be established as in CT-CNN.

2. Dynamics of the DT-CNN

In Sec. 2.1, we shall study the existence of a
Lyapunov function, and complete stability for
DT-CNN. Chaotic behaviors in the sense of ex-
istence of snap-back repellers (hence transversal
homoclinic orbits) will be illustrated in Sec. 2.2.
We shall illustrate these dynamics numerically in
Sec. 3.3.

Let us first discuss the existence of fixed points
and their classifications. The following notations are
similar to the ones in CT-CNN, see [Lin & Shih,
1999]. First, we partition R into three regions, ac-
cording to the configuration of the piecewise linear
output function h. Let Ωl = {x ∈ R|x ≤ −1}, Ωm =
{x ∈ R| − 1 < x < 1}, Ωr = {x ∈ R|x ≥ 1}. Herein,
“l”, “m” and “r” mean respectively “left”, ‘‘middle”
and “right”. Then R = Ωl ∪ Ωm ∪ Ωr. Accord-
ingly, we partition R

n into 3n regions: Ωα1···αn
:=

{(x1, . . . , xn) ∈ R
n|x1 ∈ Ωα1 , . . . , xn ∈ Ωαn , αi =

“l”, “m”, “r”}. Notably, Ωl = Ωl, Ωm = Ωm,
Ωr = Ωr, in the case n = 1.

Let Dex = {(α1, . . . , αn)|αi = “l” or “r” for all
i = 1, . . . , n}, Dmix = {(α1, . . . , αn)|αi = “l” or “r”
or “m”, and αj = “m” for at least one j}. We write
α = (α1, . . . , αn). Ωα is called an exterior region

if α ∈ Dex, a mixed region if α ∈ Dmix, an inte-

rior region if αi = “m” for all i = 1, . . . , n. We say
that a fixed point x = (x1, . . . , xn) of (4) is satu-

rated if it lies in an exterior region (that is, |xi| ≥ 1
for every i), interior if it lies in the interior region
(|xi| < 1 for every i) and mixed if it lies in a mixed
region.

For a fixed point x to exist in an exterior re-
gion Ωα, α ∈ Dex, it is required that for every
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i = 1, . . . , n,

xi = µxi +
n∑

k=1

ωikδk + zi ,

with xi ≥ 1 if αi = “r”, and xi ≤ −1 if αi = “l”.
Herein, δk = −1, if αk = “l” and δk = 1, if αk = “r”.
Hence, the fixed point in each exterior region, if
exists, is unique.

For a fixed point x to exist in the interior re-
gion Ωα, α = (m, . . . ,m), the following equations
have to be satisfied for x = x

xi = µxi +

n∑

k=1

ωikxk + zi , (5)

and |xi| < 1 for all i = 1, . . . , n.
Consider a mixed region Ωα, α = (α1, . . . ,

αn) ∈ Dmix. Let J0 = {i|αi = “m”} and J1 =
{i|αi = “l”, “r”}. For a fixed point x to exist in the
mixed region, the following system of linear equa-
tions needs to be satisfied for x = x:

xi − µxi −
∑

k∈J0

ωikxk =
∑

k∈J1

ωikδk + zi , (6)

for i ∈ J0 and |xi| < 1, and for i ∈ J1

xi :=
1

1 − µ




∑

k∈J1

ωikδk +
∑

k∈J0

ωikxk + zi



 (7)

satisfies xi ≥ 1 if αi = “r”, xi ≤ −1 if αi = “l”.
Herein, again, δk = −1, if αk = “l” and δk = 1,
if αk = “r”. Therefore, it is possible that the fixed
points in the mixed regions or the interior region
appear as a continuum. Since (5) and (6) are lin-
ear systems, one can easily derive conditions on
the parameters so that each of these linear systems
has a unique solution. We shall call these param-
eters regular. Thus, for the DT-CNN with regular
parameters, if a fixed point exists in a region Ωα,
then it is unique and isolated. Notably, there may
exist semi-invariant subsets in a mixed region Ωα,
α = (α1, . . . , αn) ∈ Dmix. Indeed, if x satisfies (6),
let

Iα := {x = (x1, . . . , xn)|xi = xi if i ∈ J0 ,

xi ≥ 1 if αi = “r”, xi ≤ −1 if αi = “l”} . (8)

For a point x in this set Iα ⊂ Ωα, forward iterations
of x under (4) stay in Iα, before entering another
region Ωα′ , as (4) is respected.

2.1. Complete stability

Let us denote the n-dimensional map in (4) by

Fi(x) = µxi +
n∑

k=1

ωikh(xk) + zi , (9)

where i = 1, . . . , n. Notably, F = (F1, . . . , Fn)
restricted to each region Ωα is an affine map. The
domain of this map can be extended to R

n, and
we denote this extended map by FΩα

. By complete

stability, we mean that every solution of the system
tends to a stationary solution as time goes to pos-
itive infinity. Such a property is also called conver-
gence of dynamics, cf. [Fiedler & Gedeon, 1998; Shih
& Weng, 2000]. To conclude such a property, one
needs to assure first that every solution is bounded.

Proposition 2.1. If 0 < µ < 1, then there exists a

globally attracting set for (9).

Proof. Assume 0 < µ < 1. Let

M =
1

1 − µ

[

max
i=1,...,n

(
n∑

k=1

|ωik| + |zi|

)]

.

Then, µxi − (1 − µ)M ≤ Fi(x) ≤ µxi + (1 − µ)M
for every i. Hence, if x = (x1, . . . , xn) ∈ R

n with
|xi| ≤ M for every i, then |Fi(x)| ≤ M . It follows
that the set A = {(x1, . . . , xn) ∈ R

n| − M ≤ xi ≤
M} is a positively invariant set. On the other hand,
let x = (x1, . . . , xn) ∈ R

n with |xi| > M for every
i. We only need to consider each component of F .
Let xi > M , then

xi > µxi +

n∑

k=1

|ωik| + |zi|

≥

∣
∣
∣
∣
∣
µxi +

n∑

k=1

ωikh(xk) + zi

∣
∣
∣
∣
∣

= |Fi(x)| .

On the other hand, for xi < −M , we have

xi < −
1

1 − µ

(
n∑

k=1

|ωik| + |zi|

)

,

and then

xi < µxi −

n∑

k=1

|ωik| − |zi|

≤ −

∣
∣
∣
∣
∣
µxi +

n∑

k=1

ωikh(xk) + zi

∣
∣
∣
∣
∣

= −|Fi(x)| .
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We have shown that |Fi(x)| < |xi| for all x =
(x1, . . . , xn) with |xi| > M for all i. Accordingly,
it can be justified that A is a globally attracting set
for (9). �

Let us introduce the following Lyapunov func-
tion for DT-CNN:

V (x) = −
1

2

n∑

i=1

n∑

k=1

ωikh(xi)h(xk)

−

n∑

i=1

zih(xi) +
1

2
(1 − µ)

n∑

i=1

h(xi)
2 , (10)

where h(ξ) = (1/2)(|ξ + 1| − |ξ − 1|) and x =
(x1, . . . , xn) ∈ R

n. It will be shown in Sec. 3 that

V (F (x)) − V (x) ≤ −
1

2
(∆y)T W (∆y) ,

where ∆y = (∆y1, . . . ,∆yn) and ∆yi = h(Fi(x)) −
h(xi), i = 1, . . . , n, under the assumptions that
0 ≤ µ ≤ 1, and the matrix of connection weights
W = [ωik] is symmetric. We thus obtain the follow-
ing proposition.

Proposition 2.2. Let W = [ωik] be a positive-

definite symmetric matrix and 0 ≤ µ ≤ 1. Then

V (F (x)) − V (x) ≤ 0, for all x ∈ Rn.

The proof will be given in Sec. 3. Notably, since
h(ξ) = 1 for ξ ≥ 1 and h(ξ) = −1 for ξ ≤ −1, V is
constant on every exterior region. In addition, V is
constant on every segment Ĩ of a mixed region Ωα,
α = (α1, . . . , αn) ∈ Dmix, where Ĩ is of the form

{x ∈ Ωα|xi ≥ 1 if αi = “r”, xi ≤ −1 if αi = “l”,

xi = ξi if αi = “m”} ,

where −1 < ξi < 1 is an arbitrary number. Concern-
ing the asymptotic behaviors of (9), we should then
study the dynamics on the set on which V is con-
stant, according to the LaSalle’s invariant principle
(quoted in Sec. 3.1). Figure 1 illustrates a typical
graph of function V for the case n = 2.

Let S0 = {x ∈ R
n|V (F (x)) − V (x) = 0}. No-

tably, by the definition of S0 and the computations
in the proof of Proposition 2.2, x ∈ S0 if and only if
h(Fi(x)) = h(xi), for all i = 1, . . . , n. For each i, the
equation h(Fi(x)) = h(xi) holds for the following
three cases, due to the definition of the piecewise lin-
ear output function h: (a) Fi(x) = xi, (b) Fi(x) ≥ 1
and xi ≥ 1, (c) Fi(x) ≤ −1 and xi ≤ −1.

-4 -2 0 2 4

-4

-2

0

2

4

x1

x2

(a)

-4
-2

0
2

4
-4

-2

0

2

4

0
0.2
0.4
0.6
0.8

-4
-2

0
2

4

(b)

Fig. 1. V (x) is constant on exterior regions and some seg-
ments of mixed regions for DT-CNN with n = 2, µ = 0.2,
ω = 0.3, ω12 = ω21 = 0.2, z2 = z1 = 0. (a) The contour plots
for function V . (b) The graph of function V .

Thus, S0 is contained in the union S of the
following sets:

{x ∈ Ωα| − 1 < xi = Fi(x) < 1 if αi = “m” ,

xi ≥ 1 if αi = “r” , xi ≤ −1 if αi = “l”} .

Restated,

S :=

(
⋃

α∈Dex

Ωα

)

∪




⋃

α∈Dmix

Iα



 ∪ E0 , (11)

where E0 is the set of fixed points in the interior
region, and Iα is defined in (8). We shall call each
of the sets Ωα, Iα, E0 in (10) a component of S.
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-10 -7.5 -5 -2.5 2.5 5 7.5 10

-10

-7.5

-5

-2.5

2.5

5

7.5

10

xr

x

x

y
x=y

y=µx-ω+k

y=µx+ω+k

Fig. 2. The graph of f(x) = µx + ωh(x) + k with the parameter µ = 0.4, ω = −5 and k = 0. (DPS) fails to hold. In fact,
there exists an attracting periodic orbit with period 2.

Notably, these components of S are pairwise dis-
joint if (9) with regular parameters are considered.

We say that a point x is a virtual fixed point of
(9) if it is a fixed point for the affine map FΩα

asso-
ciated with the restriction of F to Ωα, but fails to
lie in Ωα. For example, take (9) with n = 2, µ = 0.2,
ω = 0.5, ω12 = ω21 = 0.2 and z1 = z2 = 0. Then
Irm = {(x1, x2)|x1 > 1, x2 = 2/3} and the fixed
point (19/24, 2/3) is a virtual fixed point of FΩrm

.
Indeed, this fixed point does not belong to Ωrm.

Here, we shall denote that Ωα, α = (α1, . . . ,
αn), is more interior than Ωα′ , α′ = (α′

1, . . . , α
′
n),

if αi = “m” and α′
i = “r” or “l” for some i and

αi = α′
i for all other i.

By the LaSalle’s invariant principle, the ω-limit
set of every orbit lies in S0. The following two prop-
erties for the dynamics of (9) on S are needed to
get control on the iterations of points in S0 ⊂ S,
and then to conclude complete stability for the
DT-CNN.

(CPS) − a convergent property on components of
S: If there is a stable fixed point x in a com-
ponent of S, then x attracts every point in
this component.

(DPS) − a divergent property on components of S:
If there is no stable fixed point in a com-
ponent (⊆ Ωα for some α) of S, then every

orbit starting in the component leaves the
component and enters into a region which
is more interior than Ωα, in finite forward
iterates.

In contrast to the situation in CT-CNN [Lin & Shih,
1999], additional conditions need to be imposed to
guarantee these two properties for DT-CNN. It is
straightforward to see from (9) that (CPS) holds if
0 < µ < 1. On the other hand, Fig. 2 gives an illus-
tration for the situation that (DPS) does not hold
for (9) with n = 1. In Fig. 2, xl is a virtual fixed
point of FΩl

, and xr is a virtual fixed point of FΩr
.

Points in Ωl are iterated into Ωr which is not more
interior than Ωl. But, to conclude complete stabil-
ity, we require that forward iterations of points in
Ωr (resp. Ωl) can only lie in Ωm ∪Ωr (resp. Ωm ∪Ωl).
With the following condition (H), the virtual fixed
points xr of FΩr

and xl of FΩl
satisfy xr > −1 and

xl < 1. Under the circumstances, the situation like
Fig. 2 does not occur.

The conditions for the existence of fixed points
and virtual fixed points of (9) are very complicated.
Herein, we get around with this complication by for-
mulating an assumption which takes into account
the possibility of existence of semi-invariant subset
Iα in every mixed region Ωα. We recall that a fixed
point of (9) in a mixed region Ωα lies in Iα, and
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forward iterations of points in Iα under (9) stay in
Iα, before entering another region Ωα

′ .
Let us introduce the following notations

δ(αi, αk) and z(i):

δ(αi, αk) =

{
1 , if αi = αk

−1 , if αi 6= αk ,

where αi, αk = “l” or “r”;

z(i) =

{
−zi , if αi = “l”

zi , if αi = “r” .

We consider the following additional condition: for
i = 1, . . . , n, with αi = “r” or “l”,

(H)
1

1 − µ



ωii −
∑

k,αk=“m”

|ωik|

+
∑

k 6=i,αk 6=“m”

δ(αi, αk)ωik + z(i)



 > −1 .

Consequently, if x = (x1, . . . , xn) is a virtual fixed
point of FΩα

, α ∈ Dmix or Dex, then xi > −1
(resp. xi < 1) if αi = “r” (resp. αi = “l”). Under
the assumption (H) and 0 < µ < 1, if αi = “r”
(resp. αi = “l”), then xi ≥ Fi(x) > −1 (resp.
xi ≤ Fi(x) < 1), for all x ∈ Iα if α ∈ Dmix and
for all x ∈ Ωα if α ∈ Dex. Thus, (H) and 0 < µ < 1
ensure that forward iterations of points in a com-
ponent of S without a fixed point enter into more
interior regions, that is, (DPS) holds. Notably, if the
parameters of DT-CNN are regular, then there are
at most 3n components for S and the component
E0 in the interior region only consists of the fixed
point of F .

According to the LaSalle’s invariant principle,
Propositions 2.1, 2.2 and the above arguments, we
can conclude the following theorem on complete
stability for the DT-CNN. Detailed proof for the
theorem is given in Sec. 3.1.

Theorem 2.3. Let W be a positive-definite sym-

metric matrix. If 0 < µ < 1 and the condition (H)
holds, then the DT-CNN with regular parameters is

completely stable.

Remark. Theorem 2.3 can be generalized from
symmetric W to cycle-symmetric ones, via a suit-
able change of coordinates, as in [Shih, 2001].

2.2. Illustrations of chaotic

dynamics

In this section, we shall illustrate the construction
of homoclinic orbits and snap-back repellers for the

two-cell DT-CNN system, that is, (4) or (9) with
n = 2. The existence of snap-back repellers re-
sults in chaotic dynamics of DT-CNN, according to
Marotto’s theorem. Notably, F is an affine map-
ping when restricted to each of the nine regions
Ω?∗, ?, ∗ = “l”, “m”, “r”. For simplicity, we take
ω = ω11 = ω22, z1 = z2 = z. Equation (9) with
n = 2 becomes:

F1(x1, x2) = µx1 + ωh(x1) + ω12h(x2) + z , (12)

F2(x1, x2) = µx2 + ωh(x2) + ω21h(x1) + z . (13)

To find fixed points of the system, we need to solve
F1(x1, x2) = x1, F2(x1, x2) = x2. For example, if
we look for a fixed point in the middle region Ωmm,
then the following equation (F restricted to Ωmm)
should be considered.

µx1 + ωh(x1) + ω12h(x2) + z

= µx1 + ωx1 + ω12x2 + z = x1 , (14)

µx2 + ωh(x2) + ω21h(x1) + z

= µx2 + ωx2 + ω21x1 + z = x2 . (15)

Under suitable parameter conditions, one can find
solution (x1, x2) of (14), (15) with |x1|, |x2| < 1. We
denote this fixed point in Ωmm by (x1, x2). Fixed
points in other regions can be found similarly.

Next, to construct a homoclinic orbit, we shall
find pre-images of the fixed point (x1, x2). To this
end, the equation F (x1, x2) = (x1, x2) needs to be
solved, that is,

µx1 + ωh(x1) + ω12h(x2) + z = x1 , (16)

µx2 + ωh(x2) + ω21h(x1) + z = x2 . (17)

If we aim at finding the first pre-image of (x1, x2)
in Ωll, we should consider (16), (17) restricted to
Ωll. In this case, with h(x1) = h(x2) = −1, we ob-
tain the solution x1 = (1/µ)(x1 + ω + ω12 − z) and
x2 = (1/µ)(x2 + ω + ω21 − z). If these two values
are less than minus one, then (x1, x2) is indeed a
pre-image of (x1, x2), which is located in Ωll. If so,

we denote this point (x1, x2) by (x−1,l
1 , x−1,l

2 ), which
reads as the first pre-image of (x1, x2) lying in Ωll.
Finding a further pre-image of (x1, x2) amounts to

finding the pre-image of (x−1,l
1 , x−1,l

2 ). That is, we
solve for (x1, x2) in the following system:

µx1 + ωh(x1) + ω12h(x2) + z = x−1,l
1

µx2 + ωh(x2) + ω21h(x1) + z = x−1,l
2 .
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Fig. 3. The big dot denotes the snap-back repeller xmm = (x1, x2) of F in Ωmm. The other small dots are successive
pre-images of xmm under F . The graph shows that there exists a homoclinic orbit for xmm.

Table 1. Numerical values for a backward orbit of the fixed
point (0, 0), for DT-CNN with n = 2, µ = −1.5, ω = 50,
ω12 = 0.4 and ω21 = −0.4. This orbit is a homoclinic orbit
for DT-CNN.

(x1, x2) = (0, 0)

(x−1,l
1

, x
−1,l
2

) = (−33.6, −33.0667)

(x−2,m
1

, x
−2,m
2

) = (−0.687114, −0.687454)

(x−3,m
1

, x
−3,m
2

) = (−1.40494 ∗ 10−2,−1.42902 ∗ 10−2)

(x−4,m
1

, x
−4,m
2

) = (−2.8723 ∗ 10−4,−2.97012 ∗ 10−4)

...
...

(x−k,m
1

, x
−k,m
2

) → (0, 0) as k → ∞.

If there exists a solution (x1, x2) to this system
of equations, which lies in Ωmm, then we shall de-

note this point by (x−2,m
1 , x−2,m

2 ). One can find
successive pre-images of (x1, x2) lying in all possible

regions; for example, {(x−1,l
1 , x−1,l

2 ), (x−2,m
1 , x−2,m

2 ),

(x−3,m
1 , x−3,m

2 ), . . .}, as illustrated in Fig. 3. If F is

expanding on Ωmm, and (x−k,m
1 , x−k,m

2 ) → (x1, x2),
as k → ∞, then this orbit is a homoclinic orbit for
(9) with n = 2. Table 1 illustrates a numerical com-
putation of such an orbit for (9) with the indicated
parameters.

The above-mentioned scheme describes the
basic ideas for constructing homoclinic orbits for
DT-CNN. However, technical difficulties arise in
locating the parameters to guarantee the existence
of solutions for the associated linear systems and
suitable magnitudes of the components for these
solutions. We shall propose an approach which
combines using the structure of the one-dimensional
DT-CNN with the standard Brouwer’s fixed
point theorem for the constructions of homoclinic
orbits.
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X0

X

X0

X

(a) (b)

X0

X

(c)

Fig. 4. In (a)–(c), successive pre-images for fixed point x can be found so that some points in the backward orbit of x lie in
a neighborhood of x. Thus, x is a snap-back repeller with snap-back point x0.

We plan to sketch our approach in this section
and arrange the details in Sec. 3.2. First, let us con-
sider three tent maps with slope ±s, s > 1. In each
graph of Fig. 4, it is easily observed that there exists
a homoclinic orbit through x, and x0 is a snap-back
point. Thus, x is a snap-back repeller, by the defi-
nition of snap-back repeller.

Let us consider the case of a single-cell DT-
CNN, f(x) = µx+ωh(x)+κ with h(x) = (1/2)(|x+
1| − |x− 1|). Under some parameter conditions, the
graph of f is as Fig. 5. It can be seen that each of
the shaded regions in Fig. 5 is like a tent map in
Figs. 4(b) and 4(c). Though the lower-left shaded
region of Fig. 5 is upside-down, finding pre-images
for the repelling fixed point is similar to the sit-

uation in Figs. 4(b) and 4(c). Hence, we can eas-

ily trace the backward orbit for each of the three

fixed points of f in Fig. 5. We remark that instead

of solving the associated linear systems to find the
pre-images of fixed points, we adopt a geometric

approach herein. Restated, we explore suitable con-

figurations for the graph of f to meet our purpose.

Such a treatment allows us to formulate the con-
ditions on the parameters to conclude the desired

results. For example, since µ and µ + ω are the

slopes of f , the conditions µ < −1, µ + ω > 1, and

|κ/(µ + ω − 1)| < 1 imply that there exist three re-
pelling fixed points and that the middle fixed point

κ/(µ + ω − 1) belongs to Ωm.
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1-1

y=x

x

y

slope =  µ

slope =  µ

slope =  µ+ω

Fig. 5. The configuration for one-dimensional DT-CNN.

To extend the scenario of Fig. 5 to multidimen-
sional DT-CNN, we need to establish a family of
one-dimensional maps which have similar configu-
rations as Fig. 5. Consider the two-cell DT-CNN
(12), (13). Since |h| ≤ 1, we have

f̌(x1) ≤ F1(x1, x2) ≤ f̂(x1) , (18)

f̌(x2) ≤ F2(x1, x2) ≤ f̂(x2) , (19)

where f̂(ξ) = µξ+ωh(ξ)+κ and f̌(ξ) = µξ+ωh(ξ)−
κ, and κ := max{|ω12| + |z|, |ω21| + |z|}. For any
ρ1, ρ2 ∈ R and ξ ∈ R, if we take fρ2

(ξ) = F1(ξ, ρ2)

or fρ1
(ξ) = F2(ρ1, ξ), then f̌(ξ) ≤ fρi

(ξ) ≤ f̂(ξ),
i = 1, 2, by (18), (19). Under certain parameter con-

ditions, the configurations for f̂ , f̌ , and the family
{fρi

} are as illustrated in Fig. 6(a).
Let (x1, x2) be a fixed point of (12), (13). For

each (ρ1, ρ2) ∈ Ω?∗, ?, ∗ = “r”, “m”, “l”, we consider
the equations

µx1 + ωh(x1) + ω12h(ρ2) + z = x1 , (20)

µx2 + ωh(x2) + ω21h(ρ1) + z = x2 . (21)

Solving (20) for x1 (resp. (21) for x2) can be re-
garded as solving the equation fρ2

(ξ) = x1 (resp.
fρ1

(ξ) = x2) for ξ. Assume that the configura-
tion in Fig. 6(b) holds. It follows that for η in
certain range, we can always find −1 < ξ

′

i < 1
and ξ′′i > 1 such that fρ2

(ξ′1) = fρ2
(ξ′′1 ) = η and

1-1

x

y

f

f ρ
f

y=x

(a)

η

ξ"ξ'

y=x

fρ

f

f

(b)

Fig. 6. The graph of a family of single-cell maps fρ. There
exist three fixed points for each fρ. Each fixed point is a
snap-back repeller. (a) The scenario for a family of maps
{fρ}, whose members differ by vertical shifts. (b) Blow-up
of the right-upper region of (a), fρ(ξ′) = fρ(ξ′′) = η.

fρ1
(ξ′2) = fρ1

(ξ′′2 ) = η. Herein, x1 or x2 are re-
garded as η in Fig. 6(b). The scenario confirms the
existence of solutions (x1, x2) = (ξ′1, ξ

′

2), (ξ′1, ξ
′′
2 ),

(ξ′′1 , ξ′2), (ξ′′1 , ξ′′2 ) for (18), (19). We regard the corre-
spondence (ρ1, ρ2) 7→ (ξ′1, ξ

′
2) or (ξ′1, ξ

′′
2 ) or (ξ′′1 , ξ′2) or

(ξ′′1 , ξ′′2 ) as a mapping G : Ω?∗ → Ω?∗, where ?, ∗ =
“m”, “r”. Similar discussions hold for the lower-left
part of Fig. 6(a). A fixed point of G gives a pre-
image of (x1, x2). Obviously, a unique fixed point
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in Ω?∗ exists if G is a contraction mapping on Ω?∗.
Thus we shall impose conditions so that the scenario
in Fig. 6(a) holds and G is a continuous mapping
on each region Ω?∗. To find further pre-images of
(x1, x2), we again consider (20), (21) with (x1, x2)
replaced by the first pre-image of (x1, x2).

To guarantee that each fixed point is a repeller,
we require that F is expanding on each of the nine
regions Ω?∗, ?, ∗ = “l”, “m”, “r”. This property
holds if we require µ + ω > 1 + κ. Indeed, let us
take the region Ωmm for an illustration. F on Ωmm

is a linear system with coefficient matrix

L =

(
µ + ω − 1 ω12

ω21 µ + ω − 1

)

.

The magnitudes for the eigenvalues of L are greater
than one, under the condition µ+ω > 1+κ, by the
Gerschgorin’s theorem.

3. Verifications for the Dynamics of

DT-CNN

3.1. Complete stability

In this section, we shall provide rigorous proof for
the dynamics of DT-CNN. We plan to justify the
complete stability and the existence of snap-back
repellers for DT-CNN in Secs. 3.1 and 3.2, respec-
tively. Several numerical illustrations are arranged
in Sec. 3.3.

Proof of Proposition 2.2. Recall V defined in (9),

V (x) = −
1

2

n∑

i=1

n∑

k=1

ωikh(xi)h(xk)

−

n∑

i=1

zih(xi) +
1

2
(1 − µ)

n∑

i=1

h(xi)
2 .

It follows that

V (F (x)) − V (x) = −
1

2

n∑

i=1

n∑

k=1

ωikh(Fi(x))h(Fk(x)) −

n∑

i=1

zih(Fi(x)) +
1

2
(1 − µ)

n∑

i=1

h(Fi(x))2

−

[

−
1

2

n∑

i=1

n∑

k=1

ωikh(xi)h(xk) −
n∑

i=1

zih(xi) +
1

2
(1 − µ)

n∑

i=1

h(xi)
2

]

. (22)

Let ∆yi = h(Fi(x)) − h(xi). We substitute zi = −µxi −
∑n

k=1 ωikh(xk) + Fi(x), by (9). Equation (22)
becomes

−
1

2

n∑

i=1

n∑

k=1

ωik∆yi∆yk −
1

2

n∑

i=1

n∑

k=1

ωik[h(xi)∆yk + h(xk)∆yi]

+

n∑

i=1

(

µxi +

n∑

k=1

ωikh(xk) − Fi(x)

)

∆yi +
1

2
(1 − µ)

n∑

i=1

[h(Fi(x))2 − h(xi)
2]

= −
1

2

n∑

i=1

n∑

k=1

ωik∆yi∆yk − µ
n∑

i=1

[Fi(x) − xi]∆yi +
n∑

i=1

(µ − 1)Fi(x)∆yi

+
1

2
(1 − µ)

n∑

i=1

[h(Fi(x))2 − h(xi)
2]

= −
1

2

n∑

i=1

n∑

k=1

ωik∆yi∆yk − µ

n∑

i=1

[Fi(x) − xi]∆yi

−(1 − µ)
n∑

i=1

(

Fi(x)∆yi −
1

2
[h(Fi(x))2 − h(xi)

2]

)

. (23)

In the above computations, the first equality follows from the symmetry of W = [wik]. Let Γi(x) =
Fi(x)∆yi − (1/2)[h(Fi(x))2 −h(xi)

2] in (23), for i = 1, . . . , n. We divide the following discussions into three
cases.
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(i) |Fi(x)| < 1: Γi(x) = Fi(x)∆yi − Fi(x)∆yi +
(1/2)(∆yi)

2 = (1/2)(∆yi)
2 ≥ 0.

(ii) Fi(x) ≥ 1:

(a) xi ≥ 1: Γi(x) = Fi(x)(1 − 1) − (1/2)(12 −
12) = 0;

(b) |xi| ≤ 1:

Γi(x) = Fi(x)(1 − xi) −
1

2
[12 − (xi)

2]

≥ 1 − xi −
1

2
+

1

2
(xi)

2

=
1

2
(xi − 1)2 ≥ 0 ;

(c) xi ≤ −1: Γi(x) = Fi(x)[1 − (−1)] −
(1/2)[12 − (−1)2] = 2Fi(x) ≥ 2.

(iii) Fi(x) ≤ −1:

(a) xi ≥ 1: Γi(x) = Fi(x)[−1 − 1] −
(1/2)[(−1)2 − 12] = −2Fi(x) ≥ 2;

(b) |xi| ≤ 1:

Γi(x) = Fi(x)[−1 − xi] −
1

2
[(−1)2 − (xi)

2]

≥ 1 + xi −
1

2
+

1

2
(xi)

2

=
1

2
(xi + 1)2 ≥ 0 ;

(c) xi ≤ −1: Γi(x) = Fi(x)[−1 − (−1)] −
(1/2)[(−1)2 − (−1)2] = 0.

By (i)–(iii), Γi ≥ 0 for all i. [Fi(x) −
xi][h(Fi(x)) − h(xi)] ≥ 0, since h is non-decreasing.
Therefore, if 0 ≤ µ ≤ 1, (23) is no larger than
−(1/2)(∆y)tW∆y, where ∆y = (∆y1, . . . ,∆yn).
Since W is positive-definite, V (F (x)) ≤ V (x) for
all x ∈ R

n. This completes the proof. �

Let us recall the LaSalle’s invariant principle
for difference equations:

x(t + 1) = F (x(t)) , (24)

where F : R
n → R

n is a continuous function. Let U
be a subset of R

n. For a function V : U → R, define
V̇ (x) = V (F (x)) − V (x). V is said to be a Lya-

punov function of (24) on U if (i) V is continuous,
and (ii) V̇ (x) ≤ 0 for all x ∈ U . Set

S0 = {x ∈ U |V̇ (x) = 0} .

LaSalle’s Invariant Principle [LaSalle, 1976]. Let

F be a continuous mapping on R
n, and let V be

a Lyapunov function for F on a set U ⊆ R
n. If

γ : {F k(x)|k ∈ N}, the positive orbit of a point

x, is contained in a compact set and γ ⊂ U, then

its ω-limit set ω(γ) ⊂ S0 ∩ V −1(c) for some

c = c(x).

We shall apply the LaSalle’s invariant principle
in the following proof of Theorem 2.3.

Proof of Theorem 2.3. It follows from 0 < µ < 1 and
the assumption (H) that (CPS) and (DPS) hold.
Consider the positive orbit γ : {F k(x)|k ∈ N} of an
arbitrary point x. Denote by ω(γ), the ω-limit set of
γ, which is bounded and invariant. It follows from
Proposition 2.1 that there exists a globally attract-
ing set for (9). Note that this globally attracting
set is a compact set. Accordingly, any positive orbit
γ will be contained in a compact set. In addition,
with W being symmetric and positive-definite, V
is a Lyapunov function for (9) on R

n, by Proposi-
tion 2.2. Hence, ω(γ) is contained in S0, due to the
LaSalle’s invariant principle. Suppose x ∈ ω(γ) and
x is not a fixed point of F , then F k(x) belongs to
ω(γ) for any integer k ∈ N, according to the defini-
tion of ω(γ). Moreover, V (F k(x)) = V (x). If F k(x)
enters into a region which is not in S0, then V de-
creases. So, F k(x) has to remain in S0 for any k ∈ N.
Therefore, F k(x) travels among components of S0

and these components are pairwise disjoint under
the assumption that the parameters for DT-CNN
are regular. Assume that x belongs to an exterior
region Ωα. If there is a fixed point in Ωα, then it
must be stable and attracts all points in Ωα, due
to (CPS). In this case, x has to be this fixed point.
If there is no fixed point in Ωα, then forward iter-
ations of x enter into a component of S in region
Ωα′ which is more interior than Ωα, due to (DPS). If
this component is E0, then since E0 only consists of a
stable fixed point of F under the assumption of the
theorem, a contradiction to x ∈ ω(γ) arises. If this
component is Iα′ in a mixed region Ωα′ , then sim-
ilar arguments indicate that either there is a con-
tradiction to x ∈ ω(γ) or further iterations of x

enter a region which is more interior than Ωα′ , due
to (CPS) and (DPS). Since there are at most 3n

components for S, the situation that forward iter-
ations of x eventually enter into E0 in the interior
region Ωm···m again yields a contradiction. If x lies
in Iα of some mixed region, then similar arguments
yield a contradiction. We conclude that if x ∈ ω(γ),
then x is a fixed point of F . In addition, it follows
from Lemma 2.7 of [Hale & Raugel, 1992] that ω(γ)
is connected. Thus ω(γ) consists of only one fixed
point. This completes the proof. �
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Fig. 7. Configurations for the one-dimensional DT-CNN.
(a) The parameters satisfy Proposition 3.1(i). (b) The pa-
rameters satisfy Proposition 3.1(ii).

3.2. Chaotic behaviors

3.2.1. One-dimensional DT-CNN

Let f : R → R be the single-cell DT-CNN which
takes the following form:

f(x) = µx + ωh(x) + κ , (25)

where h(x) = (1/2)(|x + 1| − |x − 1|). A compact
region K is called a trapping region for f provided
f(K) ⊂ int(K). We shall show that there exists
a trapping region for f satisfying some parame-
ter conditions. Existence of trapping regions as-
sures that iterations of the system do not diverge
to infinity.

Note that the point κ/(µ + ω − 1) is a fixed
point of (25) if |κ/(µ + ω − 1)| < 1; moreover, the
graph of f has two slopes µ+ω, µ, and f has three
fixed points if µ + ω > 1, µ < −1 [see Fig. 7(a)],
or, µ + ω < −1, µ > 1 [see Fig. 7(b)]. Furthermore,
these fixed points are all repelling.

Proposition 3.1

(i) Assume that µ + ω > 1, µ < −1, |κ/(µ + ω
− 1)| < 1 and µ + ω + κ < −1 − 2(ω/µ),
1 + 2(ω/µ) < −µ − ω + κ, then there exists a

trapping region containing [−µ−ω+κ, µ+ω+κ]
for the single-cell DT-CNN.

(ii) Assume that µ + ω < −1, µ > 1, |κ/(µ + ω
− 1)| < 1 and (ω + κ)/(1 − µ) > −µ − ω + κ,
µ+ω+κ > (κ − ω)/(1 − µ), then there exists a

trapping region containing [µ+ω+κ,−µ−ω+κ]
for the single-cell DT-CNN.

Let us explain the main idea of Proposition 3.1
by some figures. In Fig. 7(a) corresponding to
case (i), the graph of f is like a reverse N-shape
figure. The local minimum and local maximum
occur at −1 and 1, respectively. The forward it-
erations of the local minimum −µ − ω + κ and
local maximum µ + ω + κ, under f , are all be-
tween the first pre-images of the minimum and the
maximum, −1 − 2(ω/µ) and 1 + 2(ω/µ), marked
in Fig. 7(a). Figure 7(b) corresponds to case (ii).
Both the local minimum µ + ω + κ, and the local
maximum −µ − ω + κ, are between the two fixed
points (κ − ω)/(1 − µ), (ω + κ)/(1 − µ). The asser-
tions thus follow.

The following formulations will be used to prove
the existence of snap-back repellers for the multidi-
mensional DT-CNN. For κ > 0, |ρ| ≤ κ, let

f̂(x) = µx + ωh(x) + κ ,

f̌(x) = µx + ωh(x) − κ ,

fρ(x) = µx + ωh(x) + ρ .

It is obvious that f̌ ≤ fρ ≤ f̂ due to |ρ| ≤ κ. We

call f̂ the upper-map and f̌ the lower-map. These
two piecewise linear functions f̂ and f̌ are drawn in
Fig. 8(a), and fρ is between f̂ and f̌ .

We classify the parameter conditions for the ex-
istence of fixed points, snap-back repellers, as well
as trapping regions as follows:

(PC-1-a) µ + ω > 1 + κ, µ < −1 − κ, |κ/(µ+
ω − 1)| < 1
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(c)

Fig. 8. Configurations for the upper and lower maps f̂ and f̌ which satisfy conditions in Proposition 3.2. The parameters
satisfy (a), (b) condition (i), (c) condition (ii), of Proposition 3.2.

(PC-1-b) (1/µ)[(κ/(µ + ω − 1))+ω+κ] > −µ−
ω + κ

(PC-1-c) µ + ω + κ < −1 − 2(ω/µ) + 2(κ/µ)
(PC-2-a) µ + ω < −1 − κ, µ > 1 + κ, |κ/(µ+

ω − 1)| < 1
(PC-2-b(i)) (1/(µ + ω))[(κ − ω)/(1 − µ) − κ] <

−µ− ω − κ
(PC-2-b(ii)) (1/µ)[κ/(µ + ω − 1) + ω − κ] > µ+

ω + κ
(PC-2-c) (ω + κ)/(1 − µ) > −µ − ω + κ.

(PC-1-a), (PC-2-a) are related to existence of
three fixed points; (PC-1-b), (PC-2-b) are associ-
ated with existence of snap-back repellers; (PC-1-c),
(PC-2-c) correspond to the trapping regions, for the

DT-CNN. Notably, in (PC-1-b), κ/(µ+ω−1) is the
middle fixed point of f̌ and [κ/(µ+ω−1)+ω+κ]/µ
is the left pre-image of this value κ/(µ + ω − 1)
under f̌ . Condition (PC-1-b) means that this pre-

image value is larger than f̂(−1), cf. Fig. 8(a). By

symmetry for the graphs of f̌ and f̂ , imposing this
condition on the left-handed part of the configura-
tion for f̌ and f̂ yields the same effect to the right-
handed part. In addition, conditions (PC-1-a) and
(PC-1-c) with κ > 0 imply the condition in Propo-
sition 3.1(i). Similar situations hold for the other
conditions in (PC-2) and Proposition 3.1(ii).

Proposition 3.2. Let κ > 0 and f̌ ≤ fρ ≤ f̂ be

defined as above.
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(i) If (PC-1-a,-b) or (PC-2-a,-b(i)) hold, then

there exist three snap-back repellers for the

map fρ.

(ii) If (PC-2-a,-b(ii)) hold, then there exists at least

one snap-back repeller which lies in the middle

region Ωm for the map fρ.

Proposition 3.2 can be seen from the following
observations. In Fig. 8(a), if η ∈ [η1, η3], then there
exist two pre-images η−1,l and η−1,m of η under fρ

lying in Ωl and Ωm, respectively, due to (PC-1-b).
Similarly, if η ∈ [η2, η4] and (PC-1-b) holds, then
there exist two pre-images η−1,m and η−1,r of η un-
der fρ lying in Ωm and Ωr, respectively. Consider
the middle fixed point x of fρ lying in Ωm. It then
lies in [η1, η3] obviously. We choose the pre-image
x−1,l ∈ Ωl of x. Since x−1,l belongs to the inter-
val [η1, η3], there exists a pre-image x−2,m of x−1,l,
which lies in Ωm. Since the inverse of fρ restricted to
Ωm is contracting, one can construct a homoclinic
orbit for the fixed point x accordingly. With the
slope assumption on fρ, it can be concluded that
x is a snap-back repeller. The situations for other
cases in Proposition 3.2 are similar.

Remark. There is a difference between items (i)
and (ii) in Proposition 3.2, concerning the existence
of trapping region. More precisely, there are param-
eters satisfying condition (ii) of Proposition 3.2 and
condition (ii) of Proposition 3.1 simultaneously. It
is not the case for condition (i) of Proposition 3.2
and condition (i) of Proposition 3.1.

3.2.2. Multidimensional DT-CNN

In the subsection, we shall verify the existence of
snap-back repellers for the multidimensional DT-
CNN. Rewrite (4) or (8) as

Fi(x) = µxi + ωh(xi) +

n∑

k 6=i

ωikh(xk) + zi ,

i = 1, . . . , n ,

h(ξ) =
1

2
(|ξ + 1| − |ξ − 1|) .

(26)

First, we consider the trapping region of (26).
Our idea is to get control of every component Fi

of the multidimensional DT-CNN. Given the map
(26), for i = 1, . . . , n, let

κi =

n∑

k 6=i

|ωik| + |zi| , (27)

f̌i(ξ) = µξ + ωh(ξ) − κi ,

f̂i(ξ) = µξ + ωh(ξ) + κi .
(28)

Theorem 3.3. There exists a trapping region for

(26 ), which contains

(I) T := [−µ − ω − κ1, µ + ω + κ1] × · · · × [−µ −
ω − κn, µ + ω + κn], provided (PC-1-a,-c) holds

for the parameters (µ, ω, κi), i = 1, . . . , n;
(II) T := [µ + ω − κ1,−µ−ω +κ1]× · · · × [µ + ω −

κn,−µ−ω+κn], provided (PC-2-a,-c) holds for

the parameters (µ, ω, κi), i = 1, . . . , n.

Proof. Let us explain case (I) of Theorem 3.3. In
Fig. 9(a), −1 − 2ω/µ + 2κi/µ is the right-handed

pre-image of f̂i(−1) = −µ − ω + κi under f̌i, and
1 + 2ω/µ − 2κi/µ is the left-handed pre-image of

f̌i(1) = µ + ω − κi under f̂i. Notably, the inter-
val [1 + 2ω/µ − 2κi/µ, −1 − 2ω/µ + 2κi/µ] con-

tains the interval [f̌i(−1), f̂i(1)], under conditions
(PC-1-a,-c). To justify the assertion, we divide the
interval [−µ − ω − κi, µ + ω + κi] into three parts
[−µ − ω − κi,−1], [−1, 1] and [1, µ + ω + κi], for
each i.

(i) If xi ∈ [−µ−ω−κi,−1], we have −µ−ω−κi =

f̌i(−1) ≤ f̌i(xi) ≤ Fi(x) ≤ f̂i(xi) ≤ f̂i(−µ −
ω − κi) ≤ µ + ω + κi.

(ii) If xi ∈ [1, µ+ω +κi], a computation similar to
(i) shows that −µ−ω−κi ≤ Fi(x) ≤ µ+ω+κi.

(iii) If xi ∈ [−1, 1], it follows that Fi(x) ∈ [f̌(−1),

f̂(1)] = [−µ − ω − κi, µ + ω + κi].

Case (II) follows from similar arguments, see
Fig. 9(b). �

Next, let us consider the fixed points for the
map (26).

Theorem 3.4. Let κi and f̌i, f̂i be defined as (27 ),
(28). Assume that (PC-1-a) or (PC-2-a) holds for

the parameters (µ, ω, κi), i = 1, . . . , n, then there

exist 3n fixed points of (26 ) in R
n.

Proof. Notably, every component Fi of the map F
satisfies f̌i(xi) ≤ Fi(x) ≤ f̂i(xi), for all x. Con-
sider a fixed region Ωα for certain α = (α1, . . . , αn),
αi = “l”, “m” or “r”. Let (ξ ′1, . . . , ξ

′
n) ∈ Ωα be

given. Then, under condition (PC-1-a) or (PC-2-a)
for each i, there exist ξl

i ∈ Ωl, ξm
i ∈ Ωm, ξr

i ∈ Ωr

such that

ξ∗i = µξ∗i + ωh(ξ∗i ) +

n∑

k 6=i

ωikh(ξ′k) + zi , (29)
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Fig. 9. Configurations for f̌ and f̂ satisfying the conditions in (a) Theorem 3.3 (I), (b) Theorem 3.3 (II).

where “∗” = “l”, “m”, “r”. Restated, each ξ∗i is
a fixed point of the one-dimensional map ξi 7→
µξi + ωh(ξi) +

∑n
k 6=i ωikh(ξ′k) + zi. The correspon-

dence gives a map H: Ωα → Ωα in the following
form:

Hi(ξ
′)=







1

1 − µ





n∑

k 6=i

ωikh(ξ′k) + ω + zi



 if αi = “r”

1

1 − µ − ω





n∑

k 6=i

ωikh(ξ′k) + zi



 if αi = “m”

1

1 − µ





n∑

k 6=i

ωikh(ξ′k) − ω + zi



 if αi = “l” ,

where ξ′ = (ξ′1, . . . , ξ
′
n) and H = (H1, . . . ,Hn). It is

clear that H is a continuous function on Ωα. Hence,
by the Brouwer’s fixed point theorem, there exists
one fixed point x of H in Ωα, which is also a fixed
point of F . In fact, there exists only one fixed point
in each Ωα, as to be seen in the proof of Theo-
rem 3.5. Consequently, there are 3n fixed points of F
in R

n. �

The following theorem mainly concerns itself
with the existence of the snap-back repeller for (26).
The idea is, again, setting up a good control on ev-
ery component of F first and using the Brouwer’s
fixed point theorem to obtain suitable pre-images
of the fixed point and confirm the existence of ho-
moclinic orbits.

Theorem 3.5. If (PC-1-a,-b) or (PC-2-a,-b(i))
holds for the parameters (µ, ω, κi), i = 1, . . . , n,
then there exist 3n snap-back repellers for (26 ). If

(PC-2-a,-b(ii)) holds, then there exists at least one

snap-back repeller of (26), which lies in the interior

region.

Proof. We only verify the (PC-1-a,-b) case. No-
tably, µ + ω > 1 + κi, µ < −1 − κi and
|κi/(µ + ω − 1)| < 1 imply the existence of 3n fixed
points of (26), due to Theorem 3.4. Each of the 3n

regions Ωα, αi = “l” or “m” or “r”, contains exactly
one of these fixed points. The proof is divided into
three steps (I)–(III).

(I) For each i = 1, . . . , n, there is a scenario as
Fig. 8(a), under condition (PC-1-a,-b). That
is, if η ∈ [ηi

1, ηi
3] (resp. η ∈ [ηi

2, ηi
4]), then for

any ξ = (ξ1, . . . , ξn) ∈ R
n, there exist ξ′i ∈ Ωm,

and ξ′′i ∈ Ωl, (resp. ξ′i ∈ Ωm and ξ′′i ∈ Ωr) such
that, for xi = ξ′i, ξ

′′
i

η = µxi + ωh(xi) +

n∑

k 6=i

ωikh(ξk) + zi .

(II) Let x = (x1, . . . , xn) be a fixed point in Ωα,
α = (α1, . . . , αn), αi = “l” or “m” or “r”.
Notice that xi ∈ [ηi

1, η
i
3] (resp. [ηi

2, η
i
4]) if αi =

“l” (resp. αi = “r”), and xi ∈ [ηi
1, ηi

3]∩ [ηi
2, η

i
4]

if αi = “m”. Choose α′ = (α′
1, . . . , α

′
n) such

that α′
i = “l”, or “r”, if αi = m, and α′

i = “m”,
if αi = “l” or “r”. Let ξ = (ξ1, . . . , ξn) ∈ Ωα′ ,
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then there exists (x1, . . . , xn) ∈ Ωα′ , satisfying

xi = µxi + ωh(xi) +
n∑

k 6=i

ωikh(ξk) + zi , i = 1, . . . , n ,

according to (I). The correspondence defines the following map H : Ωα′ → Ωα′ :

Hi(ξ) =







−1

µ





n∑

k 6=i

ωikh(ξk) + ω + zi − xi



 if α′
i = “r”

−1

µ + ω





n∑

k 6=i

ωikh(ξk) + zi − xi



 if α′
i = “m”

−1

µ





n∑

k 6=i

ωikh(ξk) − ω + zi − xi



 if α′
i = “l” ,

where ξ = (ξ1, . . . , ξn) and H = (H1, . . . ,Hn). It
is clear that H is a continuous function on Ωα′ . It
follows from similar arguments as the proof of The-
orem 3.4 that there exists a fixed point x−1 of H
and this point satisfies F (x−1) = x.

(III) Let x−1 be as obtained in (II). Similar ar-
guments as in (II) confirm that there exists
x−2 ∈ Ωα such that F (x−2) = x−1. Notably,
x−2 is chosen back into the region Ωα contain-
ing x. Successively, we can find x−l ∈ Ωα with
l ≥ 3. We compute the derivative DF of F on
Ωα as follows.

[DF ]ik =







µ if i = k, αk = “l” or “r” ,

µ + ω if i = k, αk = “m” ,

0 if i 6= k, αk = “l” or “r” ,

ωik if i 6= k, αk = “m” .

According to (PC-1-a), µ+ω−κi > 1 for all i. Thus,
the absolute values of all eigenvalues of DF (x)
are larger than one for all x, by the Gerschgorin’s
theorem. It follows that the absolute values of all
eigenvalues of DF−1(x) are less than one, for all
x. Hence, F is expanding on Ωα and F−1 is a
contraction on F (Ωα), under certain norm on R

n.
Therefore, the sequence {x−l} lies on the unstable
manifold of x and x−l → x, as l → ∞. We thus con-
clude that the fixed point x is a snap-back repeller.
The orbit {x−l} is exactly a homoclinic orbit. In
fact, x is the only fixed point (a snap-back repeller)
in Ωα, as F is expanding on Ωα. �

The construction in the proof of Theorem 3.5
shows that there are infinitely many different ho-

moclinic orbits for a single snap-back repeller. For
example, as we chose x−2 in step (III), we could
have chosen another pre-image of x−1 under F ,
which lies in a region different from Ωα. Indeed,
there are at least 2n possibilities to choose the pre-
image of every point x−l, l ≥ 2, in the backward
orbit {x−l|l ∈ N} of x under F .

3.3. Numerical illustrations

We plan to illustrate the dynamics of DT-CNN dis-
cussed in Secs. 2 and 3 by a two-cell DT-CNN. The
parameters µ = 0.8, ω = 0.3, ω12 = ω21 = 0.05 and
z1 = z2 = 0 satisfy Theorem 2.3. Thus DT-CNN
with these parameters is completely stable. There
are four attracting fixed points lying in Ω?,∗ with
?, ∗ = “l”, “r”, in Fig. 10.

Next, we illustrate the numerical ranges for the
parameters satisfying condition (i) of Theorems 3.4
and 3.5. We use a Mathematica program to test
whether if the inequalities in (PC-1) are satisfied
for various parameters. Figures 11(a) and 11(b)
give such an illustration. In Fig. 11(a), we locate
the ranges for the parameters ω and κ satisfying
(PC-1-a,-b,-c), with fixed µ = −1.8. In Fig. 11(b),
with κ = 0, the parameter ranges for µ and ω sat-
isfying the condition (PC-1-a,-b,-c), are computed
similarly.

Bifurcation diagrams for the iterations of x1,
x2 with respect to the parameter ω as well as the
Lyapunov exponents for DT-CNN with the param-
eters in the ranges in Figs. 11(a) and 11(b), are also
demonstrated in Figs. 12(a)–12(c).
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-3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

4

Fig. 10. Dynamics of DT-CNN on two dimensions with parameters µ = 0.8, ω = 0.3, ω12 = ω21 = 0.05 and z = 0. The
initial values are chosen from two circles with center at the origin and radii 1/2 and 4, respectively. Every orbit in the figure
approaches one of the four stable fixed points.
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70
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Fig. 11. The parameter ranges for (a) (ω, k) with fixed µ = −1.8, (b) (µ, ω) with fixed k = 0, which satisfy condition
(PC-1-a,-b) of Theorems 3.4 and 3.5.

4. Local and Global Saturated

Patterns of DT-CNN

A steady state (resp. pattern) x (resp. y) of the
cellular neural network is called saturated if every
component of x (resp. y) is either greater than one
or less than minus one (resp. equal to one or minus
one). A methodology of the formations of saturated

patterns for CT-CNN has been developed by Juang
and Lin [2000], and Shih [1998]. In this section, we
shall illustrate that formations of saturated steady
states and patterns for DT-CNN can be established
exactly as in CT-CNN. Our treatments work for
CT-CNN and DT-CNN of any dimension.

Let us take the DT-CNN with space-invariant
template [α, a, β] on one-dimensional lattice for an
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Fig. 12. The bifurcation diagram for (a) x1, (b) x2, with
respect to the parameter ω. (c) Lyapunov exponent for
various ω.

illustration. Consider, for i ∈ Tm := {k| − m ≤ k ≤
m} ⊂ Z,

xi(t + 1) = µxi(t) + αh(xi−1(t)) + ah(xi(t))

+ βh(xi+1(t)) + zi . (30)

Usually, there are boundary conditions imposed on
the two ends of the lattice Tm, cf. [Shih, 2000]. We
omit this consideration for simplicity. The station-
ary equation for (30) is

−xi + α̃h(xi−1) + ãh(xi) + β̃h(xi+1) + z̃i = 0 ,

(31)

where α̃ = α/(1 − µ), β̃ = β/(1 − µ), z̃i =
zi/(1 − µ) and ã = a/(1 − µ). For convenience of
notations, we drop these “tilde”.

If a 6= 0 and x = {x−m, . . . , xm} is a solution
of (31) with |xi| > 1 for all i ∈ Tm (that is, a satu-
rated steady state solution of DT-CNN), then, for

u

v

α+βα−β

−α−β

−α+β

1−1

L-1,-1 L-1,1 L1,-1 L1,1

Fig. 13. (α, β) ∈ Λ1, (z, a) ∈ [2; 1, 0]. The four lines
L−1,−1, L−1,1, L1,−1, L1,1 intersect u-axis at −α − β + z,
−α + β + z, α − β + z and α + β + z, respectively. (z is set
to zero in the graph for simplicity.)

each i ∈ Tm, (u, v) = (xi, yi = h(xi)) satisfies






v = h(u)

v =
1

a
[u − (zi + σ1α + σ2β)]

(32)

for σ1, σ2 = 1 or −1. The expression in the sec-
ond equation of (32) represents four straight lines
on (u, v)-plane if a, α, β 6= 0, α 6= ±β, zi are given.
These four lines are labeled by Lσ1σ2

, σ1, σ2 = 1 or
−1 (see Fig. 13).

We first partition the (α, β)-plane so that the
order of α+β, α−β, −α+β, −α−β are fixed. For
example, let Λ1 = {(α, β) ∈ R

2|α + β > α − β >
−α + β > −α − β}. For (α, β) ∈ Λ1, then the four
lines {Lσ1σ2

|σ1, σ2 = ±1} are positioned in order as
in Fig. 13. Assume that the intersection of the four
lines Lσ1σ2

with the graph of v = h(u) is as Fig. 13.
Consider

(yi−1, yi, yi+1) = (h(xi−1), h(xi), h(xi+1))

= (−1, 1, 1), (1, 1,−1), (1, 1, 1),

(−1,−1, 1), (−1,−1,−1) . (33)

Then (33) are the only 1 × 3 local saturated pat-
terns for (30). Indeed, such scenario of intersection
guarantees that there exist certain (xi−1, xi, xi+1)
satisfying (31), with their outputs as in (33). One
can then attach these local solutions (patterns) to
obtain the solutions (patterns) of (31) on Tm.

Thus, our second step is to partition the (zi, a)
parameter plane to classify the intersections of
{Lσ1σ2

|σ1, σ2 = ±1} with the graph of v = h(u).
Fix i and set (z, a) = (zi, a). We take the ex-
ample (α, β) ∈ Λ1 to explain the setting. Let us
denote by “+” the output equals to one at a cell
and “−” for the output equals to minus one at a
cell. For m,n = {1, 2, 3}, we introduce the nota-
tion [m; n] ⊂ (z, a)-plane, which means that if
(z, a) ∈ [m;n], then the first m + 1 lines (from the
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[3;2]

[3;1,0]

[3;1]

[3;0] z

a

[2;0]

[2;1]

[2;1,0]

[2;2]

[2;3]

[1,0;3]

[1,0;2]

[1,0;1,0]

[1,0;1]

[1,0;0]

[1;0]

[1;1]

[1;1,0]

[1;2]

[1;3]

[0;3]

[0;2]

[0;1,0]

[0;1]

[0;0]

[3;3]

(a)

[3;2]

[3;1]

z

a

[2;1]

[2;2]

[2;3]

[1;1]

[1;2]

[1;3]

[0;0]

[3;3]

(b)

Fig. 14. (a) Partition of (z, a)-plane for given α, β 6= 0,
α 6= ±β. (b) Partition of (z, a)-plane for given α 6= 0, α = β.

right) of {Lσ1σ2
|σ1, σ2 = ±1} intersect v = h(u) at

u > 1, and the first n + 1 lines (from the left) of
{Lσ1σ2

|σ1, σ2 = ±1} intersect v = h(u) at u < −1.
Subsequently, (z, a) values can be classified into the
following types.

(i) If (z, a) ∈ [m;n], then the 1×3 local saturated
patterns are exactly those with at least (3−m)
“+” (resp. at least (3 − n) “−”) in {w, e} of
w + e (resp. in {w, e} of w − e).

(ii) If (z, a) ∈ [1, 0; 1, 0], then the 1×3 local satu-
rated patterns are w + e, w − e with w = “+”,
e = “ + ”, “ − ”.

(iii) if (z, a) ∈ [1, 0; n], then the 1 × 3 local satu-
rated patterns are w − e with at least 3 − n
“−” in {w, e}, and w + e with w = “−”,
e = “ + ”, “ − ”.

(iv) If (z, a) ∈ [m; 1, 0], then the 1 × 3 local sat-
urated patterns are w + e with at least 3 − m
“+” in {w, e}, and w − e with w =“−”, e =
“ + ”, “ − ”.

For example, if (α, β) ∈ Λ1 and (z, a) ∈
[2; 1, 0], then the 1× 3 local saturated patterns are
exactly the ones in the following form:

+ + + , + + − , − + +
︸ ︷︷ ︸

, −−− , −− +
︸ ︷︷ ︸

w + e w − e
.

The partition of (z, a) = (zi, a)-plane are illus-
trated in Figs. 14(a) and 14(b). Notably, in attach-
ing local patterns into a pattern on Tm, one only
needs to determine what 1 × 3 local saturated pat-
terns are allowed at each site i. This process is not
affected by the dependence of zi on i.
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