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Abstract

Java has become the most important language in the Internet area, but the execution performance of Java processors is severely

limited by the true data dependency inherited from the stack architecture defined by Sun’s Java Virtual Machine. A sequential

hardware-based folding algorithm––POC folding model was proposed in the earlier research to eliminate up to 80.1% of stack push

and pop bytecodes. The remaining stack push and pop bytecodes cannot be folded due to the sequential checking characteristic of

the POC folding model. In this paper, a new software/hardware cooperated folding algorithm––T-POC (Tagged-POC) folding

model is proposed to enhance the folding ability of the POC-based Java processors to fold the remaining stack push and pop

bytecodes. While executing the bytecodes, bytecode grouping and rescheduling are done by a T-POC bytecode rescheduler to

generate the new binary class images in memory. With the cooperation of the hardware-based POC folding model, higher execution

performance can be achieved by executing the newly generated class images. Statistical data show that 94.8% of stack push and pop

bytecodes can be folded, and the overall execution speedups of 2-, 3-, and 4-foldable strategies are 1.72, 1.73 and 1.74, respectively,

as compared to a single-pipelined stack machine without folding.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Internet technologies have ushered in a new era for

computer-related products. That includes the Internet-

enabled PCs, NC clients, NetPCs, smart hand-held

devices (PDA, smart phone), NetTVs (Internet TV, In-
ternet set-top box), game consoles, etc. Java (Gosling

et al., 1996) is the most popular language over the In-

ternet owing to its security, robustness and write-once-

run-anywhere characteristics. Java computing becomes

the fourth computing wave after terminal-host comput-

ing, PC-computing and client–server computing. It is an

emerging and open technology, suitable for new appli-

cations and new developers.
Java Virtual Machine (JVM) (Lindholm and Yellin,

1996; Venners, 1998) is a stack-based machine and its

performance is limited by true data dependency. A
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means of avoiding such a limitation, i.e. stack operations

folding, was proposed by Sun Microsystems. In Sun’s

picoJava-II processor (Sun, 1999a,b), the stack opera-

tions folding is implemented in the Instruction Folding

Unit (IFU). While executing, pre-defined and pre-stored

folding patterns are compared with bytecodes in in-
struction stream sequentially. In our earlier study, we

proposed a systematic folding solution named the Pro-

ducer, Operator, and Consumer (POC) folding model

(Chang et al., 1998, 2000). In this folding model, dy-

namic folding rules are used to check the foldability

instead of the pre-defined and pre-stored folding pat-

terns. The POC folding model can be implemented into

the instruction decoder unit of a Java processor while
maintaining low hardware cost (Chang et al., 1998,

2000).

Java classes (Lindholm and Yellin, 1996; Venners,

1998) that are compiled from Java sources can be run on

any platforms that provide the JVM. While executing

the classes, they are loaded by the Dynamic Class Loader

and sent to the Class File Verifier for verification.
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Finally they are sent to the execution engine for execu-

tion. Java processor is one kind of the hardware-based

execution engines for bytecode execution. The Inter-

preters and Just-In-Time (JIT) compilers (Cramer et al.,

1997) are of the software-based execution engines. In

general, hardware-based approaches can achieve the
highest execution performance. On the other hand, the

software-based approaches are more popular and lower

in cost. In this paper, a software/hardware cooperated

scheme based on the POC folding model is proposed.

With the new Java bytecode execution scheme, almost

all the stack push and pop operations can be folded to

achieve highest performance without introducing extra

hardware cost.
In the original POC folding model, bytecodes are

classified into three POC types. The JVM runtime data

structures like Constant Register, Local Variable, and

Operand Stack are used to classify the bytecode execu-

tion behavior. The Producer moves the data from Con-

stant Register or Local Variable to Operand Stack. The

Operator reads its sources from Operand Stack, exe-

cutes, and writes the result back to Operand Stack. The
Consumer moves the data from Operand Stack to Local

Variable. The concept of the POC folding model is that P
sends the data to the O or C instead of the Operand

Stack. Similarly, the executing result of O is sent to
Fig. 1. Execution environment of the
Local Variable instead of Operand Stack. Consequently,

bytecodes matching this concept can be folded together

explicitly and the number of times in accessing to the top

of stack pointer is reduced by the POC folding concept.

To keep the simplicity of the POC folding hardware,

folding check is limited among continuous bytecodes. In
other words, if one P type bytecode cannot be folded

with its adjacent O or C type bytecode, it is executed

sequentially. If we can scan the Java bytecodes and find

out those discontinuous P type bytecodes and resched-

ule the sequence of bytecodes, the Java processor with

the POC folding unit can execute the rescheduled

bytecodes more efficiently. By combining the Tagged-

POC (T-POC) bytecode rescheduler and the POC

folding hardware on the Java processor, a hybrid fold-

ing approach is depicted in Fig. 1. The gray blocks

represent the work done in the research to enhance the

execution performance of the JVM. Other blocks remain

the same as general JVM execution environment. Java

classes are loaded by the Dynamic Class Loader and then

rescheduled by the proposed T-POC bytecode resched-

uler to improve the execution performance on POC-
based Java processors.

The paper is organized as follows. Section 2 describes

the simulation environment and the benchmarks used in

this paper. The basic properties of the benchmarks and
proposed Java virtual machine.



Table 1

Property of dynamic bytecode counts in SPECjvm98 benchmark suite

Program name Bytecode counts (million)

compress 1137

db 74

jack 341

javac 63

jess 121

mpegaudio-3 1220

raytracer 160
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the POC types distribution are also given. In Section 3,

the detailed descriptions of the POC folding model are

described. These include the folding check rules and a

folding example based on the POC folding model. The

T-POC folding model and the T-POC bytecode re-

scheduler algorithm are presented in Section 4. Simula-
tion results for the proposed T-POC folding model is

given in Section 5. Finally, Section 6 concludes the

benefits and applications for the proposed T-POC

folding model.
2. Simulation environments and POC types distribution

In this section, basic simulation environment is in-

troduced and bytecode distribution properties are ana-

lyzed according to the POC types. SPECjvm98

(SPECjvm98, n.d.) benchmark programs are sent to the

bytecode tracer to generate the runtime bytecode traces.

By analyzing the traces, the basic properties of the

benchmarks for the POC and T-POC folding models are

shown.

2.1. Simulation environments

By modifying the Sun’s JDK Virtual Machine (JDK,

n.d.), runtime bytecode traces (NMI, n.d.) are generated

when the benchmark program is running. In this re-

search, we developed a benchmark profiler and a trace-

driven simulator with three different folding models for
our performance study. The three different folding

models include picoJava-II, POC and T-POC folding

models. We use the SPECjvm98 benchmarks as our

simulation source data. There are three input data set

scales for the SPECjvm98 benchmarks: s1, s10, and

s100. According to the suggestion of the SPECjvm98,

the s1 data set is small and is used for prototype eval-

uation. For research papers, either s10 or s100 can be
chosen. We had tried to gather the s100 traces. The re-

sult is that the traces generated by the s100 data set are

too large to fit into the 20GB hard disk. In this paper,

we use s10 data set as the simulation basis. The number
Table 2

Property of occurrence percentages for each POC type

Program name P OALL

OE (%) OB (%)

compress 40.02 26.24 8.54

db 44.14 20.48 13.51

jack 32.67 25.04 13.10

javac 41.82 15.00 14.76

jess 44.00 9.31 19.78

mpegaudio-3 45.61 38.00 4.20

raytracer 39.35 14.28 16.44

Average 41.09 21.19 12.90
of bytecodes in the traces for the SPECjvm98 bench-

marks is collected by the benchmark profiler and is

shown in Table 1.

2.2. POC types distribution

There are 203 bytecodes defined in the JVM. In the
POC folding model, these bytecodes are classified into

three types according to the usage of source and desti-

nation storage. In this research, the O type bytecodes are

further divided into four subtypes according to their

execution behavior. The first subtype is �OE’, which is a

collection of bytecodes that will be executed in execution

units. The second subtype is �OB’, which is a collection of

bytecodes that conditionally branch or jump to target
address. The third subtype is �OC’, which is a collection

of bytecodes that will be executed in micro-ROM or

trapped as a sequence of instructions. The last subtype is

�OT’, which will force the folding check to be terminated

for the difficulty in performing folding. The �OALL’ no-

tation means the summation of the four sub-types of O
bytecode instructions. The occurrence percentages for

each type of bytecodes are shown in Table 2.
In Table 2, the average occurrence percentage for P

(stack push) and C (stack pop) bytecodes are 43.38%. In

other words, if all of the P and C bytecodes are folded,

the number of bytecodes to be executed will be reduced

to 56.62% of the original traces. This SPECjvm98

benchmark shows that if we apply folding techniques

to reduce the number of bytecodes to be executed will

result in increasing the average number of issued
OALL (%) C (%)

OC (%) OT (%)

19.61 1.39 55.77 4.21

14.13 5.63 53.76 2.10

27.87 0.46 66.48 0.85

21.94 3.31 55.01 3.16

20.72 2.43 52.23 3.77

8.99 1.85 53.04 1.35

28.27 1.03 60.03 0.62

20.22 2.30 56.62 2.29
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bytecodes per cycle from 1 to the maximum of about

1.77 with the assumption of one cycle execution for each

bytecode. This also indicates that the maximum per-

formance speedup of a Java processor with folding is

about 1.77 as compared to a stack machine without

folding.
3. The POC folding model

The basic concept about stack operations folding was

proposed by the Sun Microsystems. Some fixed patterns

are selected and built in the instruction decoder of the

Java processor. As in the implementation of the Sun’s
picoJava-II processor, nine folding patterns are defined

in the IFU to enable the maximum foldability of four. In

contrast to the approach of defining the fixed folding

patterns, the POC folding model based on the dynamic

folding checking is presented. A simple example for the

POC folding model is given to illustrate the operations of

how the POC folding is done.
3.1. Folding check rules

The folding check procedure of the POC folding

model is done by checking one bytecode N (been folded

or not) and its next bytecode N þ 1. By examining their

POC types, operand sources, operand destinations, data

types and widths, the POC folding model determines

whether they are foldable or not. If they are foldable, the
resulting folded instruction will become the new byte-

code N , and it will be checked with its next bytecode

N þ 1 by applying the same POC checking procedure.

This procedure will be repeated until an ending case is

encountered in the POC folding check. The related no-

tations are defined as below.
Fig. 2. Foldability check for b
d folding of bytecodes N and N þ 1

PSn;Wn=TOS;Wn0 producer with source �Sn’ of width �Wn’,
ytecodes
and destination Top of Operand Stack (TOS) of

width �Wn0’
OSn;Wn=Dn;Wn0 operator with source Sn of width Wn, and
destination Dn of width Wn0
CTOS;Wn=LV;Wn0 consumer with source TOS of width Wn,
and destination Local Variable (LV) of width

Wn0
Two possible relations, as listed below, exist between

two consecutive bytecodes:

SI Serial Instructions, referring to a situation in
which bytecodes N and N þ 1 are serialized

bytecodes that are not foldable

FI Foldable Instructions, referring to a situation in

which bytecodes N and N þ 1 are foldable

After the folding check, the indication status for

further folding check is:

C Continuing status, referring to a situation in

which the folded bytecode (N plus N þ 1) may

be verified for further foldability

E Ending status, referring to a situation in which

the folded bytecode (N plus N þ 1) cannot be

folded anymore. Therefore, the folding check

procedure must be terminated

Fig. 2 shows the foldability checking rules for byte-

codes N and N þ 1 in the POC folding model. The fol-

dability check continues if the current indication status

is C. The procedure stops if the indicating status is E. An

illustrative example of the POC folding model is given in

the following subsection to show how to use the folda-

bility checking rules shown in Fig. 2.
N and N þ 1.



Table 3

Annotated POC types

Instruction no. Bytecode name Annotated POC types

I1 iconst_2 Piconst 2;1=TOS;1

I2 iload index1 PLVðindex1Þ;1=TOS;1

I3 iadd OE=TOS;2=TOS;1

I4 istore index2 CTOS;1=LVðindex2Þ;1
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3.2. An illustrative example of the POC folding model

Assume that a sequence of bytecodes is I1–I4. Their

POC type notations are listed in Table 3.

The POC folding procedures are explained as the

following steps:

Step 1. Piconst 2;1=TOS;1 operating with PLVðindex1Þ;1=TOS;1

results to Piconst 2þLVðindex1Þ;2=TOS;2/SI/C.

Step 2. Piconst 2þLVðindex1Þ;2=TOS;2 operating with OE=TOS;2=

TOS;1 results to OE=iconst 2þLVðindex1Þ;2=TOS;1= FI=C.
Step 3. OE=iconst 2þLVðindex1Þ;2=TOS;1 operating with CTOS;1=

LVðindex2Þ;1 results to OE=iconst 2þLVðindex1Þ;2=
LVðindex2Þ;1=FI=E.

In the first step, bytecodes I1 and I2 are checked using
the folding rules shown in Table 2. The relation between

I1 and I2 is SI, and the folding check can be continued

because of the indication status is C. Consequently, the
I3 is checked with the new combined POC type of I1 and

I2 in the second step. The folding relation FI means that

the I1, I2 and I3 are foldable. The folding procedure

does not end here because the indication status is C. In
the third step, the I4 is checked with the combined POC

type of I1, I2 and I3. The folding relation of FI is still

hold, resulting in the foldability of four bytecodes. The

folding procedure ends because of the indication status

is E. The final combined instruction is sent to the

functional unit for execution. As a result, the original

four bytecodes that requires four cycles to be executed

are now only one cycle for execution. From the micro-

processor hardware design point of view, this folding
procedure can be done by using simple comparison

circuitry in the instruction decoding stage. If four

bytecodes are folding into a single one, the execution

unit executes the folded one only. This greatly increases

the Issued Instructions Per Cycle (IIPC) for a single

pipeline Java processor.
4. The tagged POC folding model

As depicted in Section 3, the POC folding model uses

the folding rules to check whether bytecode N and

bytecode N þ 1 is foldable or not. This checking pro-

cedure limits the discontinuous P type bytecodes to be

folded by the hardware-based POC folding unit. In this
section, the discontinuous P type bytecodes are rear-

ranged nearby the corresponding O or C type bytecodes

by a T-POC bytecode rescheduler. With the T-POC

bytecode rescheduler, we propose a T-POC folding model

which combines the software-based T-POC bytecode

rescheduler and the original POC-based Java processor
for Java bytecode execution. An algorithm for the T-

POC bytecode rescheduler in cooperating with the

hardware-based POC folding is given and a folding

example is shown to help readers to understand how the

folding procedures are done in both software and

hardware side.

4.1. Extended folding groups

The bytecode sequence is rescheduled by grouping the

folded bytecodes into a hierarchical structure in the T-

POC folding model. Each folding group is expressed as

an Extended Folding Group (EFG) with the notation of

EFGði; jÞ. The EFG related notations and properties are

explained below.

1. An EFG tree may either be empty or consist of one or

more EFGs. An EFG tree is one kind of Dynamic De-

pendency Graph with folding for the Java Instruction

Set Architecture (ISA).

2. An EFG tree is not cyclic.

3. If the height of the EFG tree is h, then the lower

bound for execution cycles is h.
4. If there are k EFGs with the same level i, EFGði; jÞ

means that the EFG is located at the ith level of the

EFG tree and the j is the ordering number of these

EFGs, for all i and j meet the conditions of 16 i6 h
and 16 j6 k.

5. The number k in previous description indicates the

maximum number of issued EFGs for an in-order su-

perscalar machine at level i.
6. If EFGðiy ; jyÞ depends on the EFGðix; jxÞ, then

16 ix < iy 6 h holds.

As shown in Fig. 3, the outmost extended folding

group EFGð5; 1Þ consists of P2, an inner extended folding

group EFGð4; 1Þ and OB1. The EFGð4; 1Þ consists of

EFGð2; 1Þ, EFGð3; 1Þ and OE6. Again, the EFGð2; 1Þ
consists of P3, EFGð1; 1Þ and OE2. Finally, EFGð1; 1Þ
consists of P4, P5 and OE1. In this example, only
EFGð1; 1Þ and EFGð1; 2Þ can be folded directly by se-

quential hardware of the POC folding model. EFGs with

higher-level numbers (EFGð2; 1Þ, EFGð2; 2Þ, EFGð3; 1Þ,
EFGð4; 1Þ and EFGð5; 1Þ) cannot be folded using the

POC folding model, unless their corresponding inner

folding groups have been executed. In this example, P1

cannot be folded with its adjacent code and it must be

issued first. P3, P6 and P2 are treated as serial and non-
foldable instructions in the previous POC folding model.

With the T-POC folding model, they can be folded into



Fig. 3. An example of extended folding groups.

Table 4

Annotated POC types with P 0 tag

Instruction no. Bytecode name Annotated POC types

I1 iload index1 PLVðindex1Þ;1=TOS;1

I2 P0 PDF TOS;1=TOS;1

I3 iadd OE=TOS;2=TOS;1
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distinct folding groups with their corresponding byte-
codes to gain higher execution performance.

4.2. Algorithm for the T-POC bytecode rescheduler

In order to fold those discontinuous P type byte-

codes, we reschedule these discontinuous bytecodes

nearby the corresponding O or C type bytecodes before

feeding them into Java processor. The T-POC bytecode

rescheduler does: (1) find out the EFGs by analyzing the

original bytecode sequence; (2) decide the output se-

quence of the newly generated EFGs.

In the example of Fig. 3, the execution result of

EFGð1; 1Þ is one of the source operands of the OE2 in-

struction in EFGð2; 1Þ. The execution of both EFGð1; 1Þ
and EFGð2; 1Þ requires three clock cycles using the POC

folding model (the first is P3, followed by EFGð1; 1Þ, and
the last is OE2). In the T-POC folding model, the exe-

cution takes only two clock cycles. Instead of issuing the

P3 bytecode first in the POC folding model, the T-POC

folding model issues the EFGð1; 1Þ first. The result of the
EFGð1; 1Þ is then marked as a tag and combined with the

P3 bytecode to be folded into the OE2 bytecode. The new

tag is named as a P0 bytecode. In order to perform

further folding capability with the new P0 bytecode, we
choose one free reserved opcode in JVM as the P0 tag.
The P0 tag represents the result of the EFG that writes

data back to the operand stack. The POC type for the P0

tag is P. That is, no extra POC types are added in the
I1: PLV(index1),1/TOS,1

I2: PBC_TOS,1/TOS,1

I3: OE/TOS,2/TOS,1

PLV(index1)+BC_TOS
/SI/C

Fig. 4. An example of the T-POC
original folding check rules. The attributes of P0 tag used
in the POC folding model are listed below

P0 : POC ¼ P; SN ¼ DFTOS; WN ¼ 1; DN ¼ TOS;

W0
N ¼ 1

The P0 tag is treated as a P type bytecode whose

source comes from the pipeline latches (e.g. data for-

warding) or top of the operand stack. The notation of

DF_TOS is an abbreviation of data forwarding and the

top of stack. The destination for P0 tag is the top of the
operand stack. The numbers for both source and desti-

nation operands are one. The POC folding model is

modified by adding the ability to recognize the P0 tag. As

the example shown in Fig. 3, the tagged POC types for

EFGð2; 1Þ are listed in Table 4. The P0 tag is used to

represent the result of EFGð1; 1Þ.
With the P0 tag, the POC folding model is transformed

to the T-POC folding model. The T-POC folding check
procedures are depicted in Fig. 4. The I1 and I2 byte-

codes are combined to a new P type for further check-

ing. In the second step, the OE type of I3 is combined
,2/TOS,2

OE/LV(index1)+BC_TOS,2/TOS,1
/FI/C

folding check procedures.
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with the previously generated P and the folding check

relation is foldable.

In Figs. 3 and 4, the results of EFGð2; 1Þ and

EFGð3; 1Þ are the source operands of OE6 bytecode.

Consequently, two P 0 tags are generated to represent the

execution results of EFGð2; 1Þ and EFGð3; 1Þ, respec-
tively. Both P 0 tags will be assigned before the OE6

bytecode to form a folding group while executing.

Again, the result of the OE6 bytecode will be represented

as another P0 tag consumed by the OB1 bytecode. By

applying the T-POC folding model repeatedly, the EFGs

among the bytecode sequence are generated. These

EFGs can be executed on the POC folding hardware

efficiently. The folding algorithm for the T-POC folding

model is shown in Fig. 5. In this algorithm, folding check

is done within the basic block of size M , which is im-

plemented as a do-while loop. The POC folding model

with the foldability N is used as the kernel of folding

check rule. Folded or non-folded bytecodes are stored in

the array of FG with the corresponding folding group

information like folding relations (FI or SI) and folded

number. In inner while loop, source operands from stack
are assigned by P bytecode or P 0 tag. If there are enough
Fig. 5. Algorithm for the T-POC bytecode rescheduler.
P or P0 type results in previous folding groups, these P
or P0 types are folded as source operands of the current

folding group and their Available flags are cleared. If the

number of P or P0 type results is insufficient, extra P0

bytecodes are added according to the required number

of sources. As defined in the JVM, the maximum re-
quired number of source operands from stack is four. As

a result, the time complexity for the do-while loop is

OðMÞ. The EFGs are gathered from the FG in last for
loop according to the availability of result and whether

the FG contains non-P type bytecode. Again, the time

complexity for the for loop is OðMÞ because M byte-

codes can be generated to at most M EFGs.
4.3. Java processor execution model for the software/

hardware cooperated T-POC folding

In order to further recognize and execute the P0 tags
generated by the T-POC bytecode rescheduler, the de-

coder unit for a Java processor using POC folding model

should be slightly modified to decode the newly defined

opcode for the P0 tag. As the same example in Fig. 3, the
original bytecode sequence is listed below

P1P2P3P4P5OE1OE2P6P7P8OE3P9OE4C1OE5OE6OB1

After the T-POC folding, the newly generated byte-

code sequence is:

P1P4P5OE1P3P
0OE2P7P8OE3P

0P9OE4C1P6OE5P
0P0OE6P2P

0OB1

The source operand field of the P 0 tags comes from

the nearest pipeline latches in bypassing circuitry, or

from top of stack. In order to explain how P 0 tag gets its

source operand correctly, the detailed operations of the

newly generated bytecode sequence are executed using
the pipeline stages defined in Sun’s picoJava-II proces-

sor. There are six pipeline stages and their occurring

sequence is F (Fetch), D (Decode), R (Register), E (Ex-

ecution), C (Cache) and W (Write).

While decoding the O type bytecodes, an identifica-

tion number for the execution result is assigned and

recorded in the decoder pipeline latch. The P0 or C type

bytecodes with sources from top of stack will check the
identification numbers in the pipeline latches. If there

are some valid identification numbers in the E and C
pipeline stages, the P0 tag or C type bytecode will get the

nearest one through forwarding. In other words, the

data in E stage owns higher priority than that in C. If
both E and C pipeline latches contain no valid identifi-

cation number, the operand should be read from the top

of stack. Consequently, the identification number as-
signing circuit and the forwarding mechanism described

above are the same as processors without P 0 tag. The
only overhead is to add a new entry for the P 0 tag in

decoder unit, which maintains the simplicity of the low-

cost Java processor design.



Fig. 6. An example of pipeline execution.
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In Fig. 6, the execution flow with picoJava-II pipeline

for the newly generated bytecode sequence is shown.

Most O type bytecodes except the OE5 require two
source operands. In cycle 7, both of OE6 operands come

from P 0 tags. It is obvious that P 0
4 is in the previous E

stage and P0
2 has already been written to top of stack.

Consequently, P0
4 can be forwarded directly from the E

stage and P0
2 is read from the top of stack. With the

same 4-foldable POC folding unit, the newly generated

sequence takes eight cycles to execute, as compared to

the 11 cycles using the original sequence.
5. Folding performance and considerations

In this section, folding performance of the T-POC

folding model and performance comparisons based on

various folding models are shown. For the fairness of

performance comparisons, the hardware parameters for
simulation are configured the same as defined in the

picoJava-II processor. That is, instruction queue size is

seven bytes and the maximum foldability is four. Fur-

thermore, extra bytecode memory requirement for T-

POC bytecode rescheduler and EFGs are given.
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Fig. 7. Percentages of folded stack operations for the
5.1. Folding performance comparisons

The percentages of folded stack push/pop bytecodes
for the T-POC bytecode rescheduler are shown in Fig. 7.

Various foldabilities of 2-, 3-, 4- and max-foldable are

shown for comparison. It is obvious that 4-fold

performs almost the same as what max-fold does. In

average, the percentages of folded stack operations for 2-,

3-, 4- and max-fold are 86.3%, 94.0%, 94.8% and 94.8%,

respectively. The IIPC for the T-POC folding model are

shown in Fig. 8. In average, the IIPC for 2-, 3-, 4- and
max-fold are 1.72, 1.73, 1.74 and 1.74, respectively. With

the T-POC folding model, a single-pipelined Java pro-

cessor can achieve the competitive performance as

compared to a two-issue superscalar processor.

In Figs. 9 and 10, the performance comparisons for

the picoJava-II, POC folding model and T-POC folding

model are shown. The foldability in both POC and T-

POC folding models is four, which is the same as
picoJava-II. The average percentages of folded stack

operations for the picoJava-II, POC folding model and

T-POC folding model are 39.6%, 80.1% and 94.8%, re-

spectively. Furthermore, the average IIPC for each

folding model are 1.25, 1.54 and 1.74, respectively.
jess mpegaudio raytracer Average

4-fold Max-fold

T-POC folding model with various foldabilities.
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5.2. Memory space overhead for T-POC bytecode

rescheduler and EFGs

In this subsection, memory space overhead of the T-

POC bytecode rescheduler is shown. Bytecodes in the

same basic block with M instructions are fed into the T-

POC folding algorithm shown in Fig. 5. M folding

groups are allocated as internal used variables. Later,
the folding groups will be transformed to EFGs to be
executed in the Java processor. As a result, memory

space is required for two areas. One is the M folding

groups inside the T-POC bytecode rescheduler, and an-

other one is the EFGs outside the T-POC bytecode re-

scheduler. At first, the size of data structure for the M
folding groups inside the T-POC bytecode rescheduler is

analyzed. As shown in Fig. 11, over 90% basic block

contains less than 16 bytecodes for most of the bench-
mark programs, excluding the computation-oriented
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compress and the mpegaudio-3 programs. Conse-

quently, if the M equals to 16, most basic blocks will be

covered except those two heavy computation programs.

If the M is further added to 64, over 90% basic blocks

for the SPECjvm98 using s10 data set will be covered.
For most bytecodes except the two variable length

bytecodes of lookupswitch and tableswitch, five

bytes (one for opcode, four for operands) are enough to

store the required information. The indication flags like

Available, O_Flag and POC information consume at

most two bytes for each folding group. Consequently,

total required size for the folding groups equals to

M � ðN � 5þ 2Þ bytes. If the M is varied from 16 to 64,
the required size for N equals to 4 (4-foldable) is varied

from 352 bytes to 1408 bytes. We think that this is ac-

ceptable while comparing with other software-based

JVM implementation of JITs or Interpreters.

Second, we will analyze the output codes of the

T-POC bytecode rescheduler. As mentioned before, the

T-POC bytecode rescheduler rearranges the P type

bytecodes by adding P0 tags in the EFGs. Consequently,
the percentages of added P0 tags are collected in our

simulation. As shown in Fig. 12, 37.85% of P0 bytecodes
are added in the run-time memory in average. This

seems too terrible to use the T-POC folding approach.

In fact, we still think this acceptable because the actual

bytecode size for a Java program is small as compared

to constant pool and runtime area as defined in the
Java’s class file. For example, the bytecode size for

the javac benchmark program is about one-fifth of the

corresponding class file size. Consequently, the T-POC

bytecode rescheduler, while introducing less than 10% of

memory space overhead, delivers 13% performance gain

over the POC folding model without adding extra cost

for the Java processor design.
6. Conclusions

In this paper, the software/hardware cooperated T-

POC folding model is proposed. The output of the T-

POC bytecode rescheduler consists of EFGs, which is

sent to the Java processor with the POC folding unit for

execution. The only modification required for the Java
processor is to add a new P0 tag information in in-

struction decoder. With a 4-foldable T-POC folding
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model, over 90% of stack operations are folded for every

benchmark programs in SPECjvm98 using s10 data set.

The resulting folding speedup is 1.74, and this achieves

98.3% of the theoretical upper bound of 1.77. The time

complexity for the T-POC bytecode rescheduler is

OðM � NÞ, where M is the basic block size and N is
foldability that is usually less than 4. The required space

for runtime data structure of the T-POC bytecode re-

scheduler is less than 2 Kbytes. The increased size of

software folded bytecode sequence with extra P0 tag is

less than 10% as compared to the original class loaded

into memory. The performance enhancement of the T-

POC folding over the POC folding is 13%.

In the future research, the algorithm used in T-POC

bytecode rescheduler may be implemented directly by

hardware if the speed limitation can be solved. If higher

folding capability can be implemented by a simple

folding circuitry, the T-POC folding can help the su-

perscalar processors to exploit higher instruction-level

parallelism while greatly reduce the complexity of the

hardware dependency detection. With the future re-

quirements of smart phones and other multimedia ap-
plications, the computation power is more important for

a Java processor. The potential of the T-POC folding

model contains both performance enhancement and

complexity cost down. This may be one of the best so-

lutions for a high performance Java processor using the

T-POC folding model.
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