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SUMMARY 

A systematic procedure is presented for generating dynamic stiffness matrices for two independent circular foundations 
on an elastic half-space medium. With the technique reported in References 1-3, the analytic solution of three- 
dimensional (3D) wave equations satisfying the prescribed traction due to the vibration of one circular foundation can be 
found. Since there are two analytic solutions for two prescribed tractions due to the vibrations of two circular 
foundations, the principle of superposition must be used to obtain the total solution. The interaction stresses (prescribed 
tractions) are assumed to be piecewise linear in the r-directions of both cylindrical co-ordinates for the two circular 
foundations. Then, the variational principle and the reciprocal theorem are employed to generate the dynamic stiffness 
matrices for the two foundations. In the process of employing the variational principle, a co-ordinate transformation 
matrix between two cylindrical co-ordinate systems is introduced. Some numerical results of dynamic stiffness matrices 
for the interaction of two identical rigid circular foundations are presented in order to show the effectiveness and 
efficiency of the present method, and some elaborations for its future extensions are also discussed. 

INTRODUCTION 

Soil-structure interaction problems have attracted much attention from researchers in earthquake engineer- 
ing in the past few decades. To perform soil-structure interaction analysis, a sub-structure technique is often 
used. In sub-structuring analysis, the interaction of the structure and the surrounding soil medium is usually 
represented by a dynamic stiffness matrix, which can be combined with the total stiffness matrix of the finite 
element model of the structure. 

To generate the dynamic stiffness of a structural foundation, some analytic procedures are available. For 
example, Lysmer4 employed the analytical solution for constant normal ring-traction on a half-space 
medium to generate the compliance function (the inverse of the dynamic stiffness function) for vertical 
vibration of a rigid circular plate, Luco and Westmann’ obtained the compliance functions for torsional, 
vertical, horizontal and rocking vibrations of a rigid circular plate by reducing the Fredholm integral 
equations to algebraic equations using the finite difference method, and Wong and Luco6 employed an idea 
similar to Lysmer’s to generate the compliance functions for a rigid foundation with an arbitrary shape on 
a half-space medium. Liou1-3 developed a technique to generate dynamic stiffness functions for vibrations of 
an axial symmetric foundation and a foundation with an arbitrary shape. 

When two independent foundations are sufficiently close, their interaction is significant in the seismic 
analysis of the two structures. Therefore, researchers have started to pay attention to structure-soil-structure 
interaction in recent decades. Similarly, to perform structure-soil-structure interaction analysis, a sub- 
structure technique can also be employed. Thus, to generate the dynamic stiffness matrix for a two- 
foundation system is an important step in the analysis of structure-soil-structure interaction. 

To generate the dynamic stiffness functions, many procedures are available. For example, Roesset and 
Gonzalez’ employed the semi-analytical solution of unit loading on a layered stratum, which is obtained by 
using the consistent boundary method (layer element) to generate the dynamic stiffness functions required 
and then investigating the behaviour of the interaction of the two structures. Lin et aZ.* also used a hybrid 
method in which the near field and the complementary far field of a layered stratum are modelled by the finite 
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element method and the consistent boundary method, respectively, to investigate the behaviour of t hc 
vibrations of two embedded foundations. Warburton et d9 employed the solution for a single foundation to 
approximate the displacement at the location of the second foundation by an averaging process. This method 
can give fair results for low-frequency excitation. Savidis and Richter'' used Green's function to generate thc 
boundary integral equation for a two-foundation system. For two-dimensional (2-D) problems. Luco and 
Chtesse'  obtained an analytic form of the solution for two shear walls subjected to anti-plane shear wave 
(SH waves) cxcitations, and studied the interaction effect of these two walls. Murakami and LucoL2 extended 
the solution to investigate the interaction behaviour among many shear walls which are equally spaced. For 
3-D problems, Wong and L U C O ' ~  used a procedure similar to that of Savidis to obtain the boundary integral 
equation for a multiple foundation system. They also developcd a technique for an itcrative approach. which 
can save some computational effort when finding the inverse of the complex matrix of the influence function. 
Kawakami and Tasaki14 directly employed the boundary element method and developed a simplified 
method to study the interaction effect of two masses excited by wave motion in a half-space. Triantafyllidis 
and Prange"-I6 employed the influence function, which is the integral of Green's function, to generate the 
dynamic stiffness functions for two rigid circular foundations and two rigid rectangular foundations. 

This paper presents a systematic procedure to generate the dynamic stiffness matrix for two circular 
foundations on a half-space medium. In the procedure, a technique, reported in References I 3: of decompos- 
ing arbitrarily prescribed stress boundary conditions on the surface of a half-space medium is used to find the 
analytical solutions of 3-D wave equations in cylindrical co-ordinates. The interaction stresses of the 
foundations and the soil medium are assumed to be piecewise linear in the r-direction. Two solutions for the 
interaction stresses from the vibrations of the two foundations are obtained separately, and then the principle 
of superposition is used to obtain the final solution. After that the variational principle is employed to 
generate the dynamic stiffness matrix for the two foundations. In the process of using the variational 
principle, the co-ordinatc transformation matrix is introduced, since the two independent solutions are 
described in different cylindrical co-ordinate systems. 

Some numerical results are presented for the dynamic stiffness matrices for two identical rigid circular 
foundations. with different distances apart, on a half-space medium. A comparison is made with the results in 
Reference 15 in order to show the effectiveness and efficiency of the present method and shed some light on 
the significance of the effect of structure-soil-structure interaction. Some comments on the important 
features of this method are also presented. 

FORMULATION OF A DYNAMIC STIFFNESS MATRIX 

To generate a dynamic stiffness matrix for two circular foundations, a sub-structure technique is employed. 
For the sub-structure of wave propagation in a half-space medium, the contact stresses (interaction stresses) 
due to the harmonic vibration of the foundation are treated as the prescribed tractions on the surface of 
a half-space medium, as shown in Figure 1 .  In Figure I ,  the prescribed traction tl  (in contact area No. I ) ,  
described in an r l ,  O , ,  z l  co-ordinate system, and the prescribed traction t2 (in contact area No. 2), described 
in an rz, t12, z 2  co-ordinate system, can be expressed in terms of Fourier components with respect to 8 ,  and Oz 
in the following two equations, respectively. 

and 

where diagonal matrices L; = diag(cos no,, cosnO,, - sinno,), L: = diag(sinnB,, sinno,, cos nfj,), super- 
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Contact Area No. 1 Contact Area No. 2 

195 

Half-Space Medium 

7 

Figure 1 .  A half-space medium with two prescribed tractions 

scripts s and a denote symmetric and anti-symmetric with respect to the line of O 1  = 0 and O2 = 0, and 
matrices ES, and are similar to matrices L: and L; except that 8, is replaced with 02. In equations (1) and 
(2), the time harmonic variation eior has been omitted for convenience in later derivations. 

For each Fourier component in equations ( I )  and (2), the tractions are assumed to be piecewice linear in 
the rl- and r2-directions, respectively. Let the radius a, (for contact area No. 1) be divided into m l  
sub-intervals. One can express the traction of each Fourier component in the following form: 

or 
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matrix H: = diag [hT, hT, hT], vector PT,n = (qT, pT, sT) ,  and q j ,  p j  and s j  are the stress intensities a t  nodal ring 
j for 7 r , z , ~ r l .  rTzlzl,n and tO,r,,n, respectively. Vector in equation (3) could be either P!,.,, or P;,n for symmetric 
o r  anti-symmetric Fourier components, respectively. 

Similarly, the radius u2 (of contact area No. 2) can be divided into m, sub-intervais and the traction of every 
Fourier component in equation ( 2 )  can be written as 

t 2 . n  = H:P2.n % .I , 

I t  should be noted that HT and H: are 3 x 3 (m, + 1) and 3 x 3 (m2 + 1) matrices, respectively. 
Consider the prescribed tractions of equation (1) with (3) only. References 1-3 reported an analytical 

solution for 3 - 0  equations of wave propagation in a half-space medium satisfying this boundary condition. 
Using the analytical solution, the displacements at the surface of a half-space medium can be expressed as 
follows: 

(; is the complex shear modulus of the half-space material. 

!Ff! 

I ‘PI 

i j 

c m d  c, are the compressional and the shear wave velocities in the half-space medium, k ,  the a7imuthal wake 
qumber i n  I’,. Q1, z1 co-ordinates, J,(klrl) i q  the first kind of Bessel function of order 8 1  m d  
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Jn(klrl) = dJn(kLrl)/drl. Note also that vectors DT+ DT and Df-l are Hankel transforms of the vector hT in 
equation (3). 

Similarly, the analytical solution for 3-D equations of wave propagation satisfying the boundary condition 
of equation (2) with equation (4) can be obtained, except that the co-ordinate system is r2,  02,  z2 in Figure 1. 
The displacement vector at the surface of the half-space medium can be expressed as follows: 

m 

m = O  

where matrices Jm, Q and D, are similar to those defined in equation (5) except that rl and k l  are replaced 
with r2 and k 2 ,  respectively. 

The principle of superposition is employed to obtain the total solution for the prescribed tractions of both 
equations (1) and (2). This leads to the total displacement vector at the surface of the half-space medium as 
follows: 

u = u ,  +u2  (7) 
In equation (7), ul' is described by rl, d1 and u2 by r2,  0,. Therefore, the co-ordinate transformation matrix 
must be introduced when the variational principle is employed to generate a dynamic stiffness matrix. 

Consider the half-space medium with the prescribed tractions of equations (1) and (2). The work done by 
variations of tl  and t2 is 

6 W = jr[2ff6t:(ul + TuZ)rl do1 dr, + ~ ~ ~ ) t ~ ( T T u l  + u2)r2 do2 dr2 
0 

where T (referring to Figure 2) is the co-ordinate transformation matrix and can be expressed as follows: 

1 T = [  0 1 0 
cos (0, - 0,) 0 - sin (0, - 0,) 

sin (0, - e l )  0 cos (0, - 0,) 

Replacing equation (1) with (3), equation (2) with (4) and substituting equations (5)  and (6) into equation (8), 
and making use of the orthogonal property of Fourier components, equation (8) can be written, after some 
mathematical manipulations, as 

m 

aW= 2 (6(PI,n)TKLP",,n + a(P?,JTK;np?,n) 
n = O  

m m m 

+ C ( 6 ( K , n ) T  C K:,rnP;,m) + (s(P?,nIT C K:,mP;,m) 
n = O  m = O  m = O  

where 

K:, = ~ m ~ l ~ f f H I L : L : . J n r ,  d0, dr, QDndkl 

Kin = ~ m ~ l ~ f f H I L ~ L y J n r l  d0, dr l  QD,dk, 

0 0  0 

0 0 0  
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~ 

K L l  = H2~,TTL,"Jnr2 do2 dr2 QD, dk, J, J,!" 
In equation (9), the integral of the product of symmetric and anti-symmetric Fourier components with 
respect to the line d l  = 0 and f12 = 0 (Figure 1) has been set equal to zero. 

If one truncates the infinite Fourier series of equations (1) and (2) to finite series, and let A and B be the 
highest components for equations ( 1 )  and (2), respectively, equation (9) can be written in a matrix form as 

where 

K' 

and the expression for K" is similar to that for K'. From equation (14), one can observe that the interactions 
among Fourier components only occur between two symmetric components and between two anti- 
symmetric components, and there are no interactions between symmetric and anti-symmetric components 
with respect to the line 0, = 0 and 0, = 0 in Figure 1. Also, by reciprocal theorem (Betti's theorcm), one can 
easily prove that Kin = (Kin)', K:, = KE,nl = (KL,,JT and K;,, = (K:,.JT. Therefore both K' and K" are 
symmetric matrices. 

Now consider the sub-structure of the two foundations. If finite element modelling is employed for the 
sub-structure, the displacement fields of the two foundations can be expressed as 

where N 1  and N2 are the matrices of the shape functions with rcspect to the variables r l  and r z .  respectively. 
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vectors Vl,, and V2,,, are the displacements at the nodal rings of the finite element model, and matrices L, 
and Em are defined in equations (1) and (2). Making use of equations (15) and (16), the work done by the 
variation of t l  and t2 in equations (1) and (2) can be expressed the following equation. 

ra l  r2a 

where 

the expression for Bz,m is similar to that in equation (17b), and matrices H1 and L, are defined in equations (3) 
and (1). In a similar way to equation (14), the integration of the products of the symmetric and anti-symmetric 
Fourier components has also been set to be zero in equation (1  7), and the infinite Fourier series in equations 
(15) and (16) have also been truncated to finite series in order to make equation (17) compatible with equation 
(14). Equation (17) can also be rewritten in matrix form as 

B' 0 
d w =  Ba][;:] 

where 

dP" = [dPy, '. ' dpl:, 6P",T1 ' "  6P",TB] 

v" = [Vyl ... v!:A vg1 ' ' .  v::B] 

B' = diag [B", I . . B 1 , A  Bi,l " '  B?!,B1 

and expressions for vectors Pa, V" and matrix B" are similar to those for P', Vs and Bs, respectively. 
Equating equations (14) and (18), one can obtain the following two equations: 

(19) 

(20) 

K5Ps = BsVV' or Us = B5Vs 

and 

K"P" = B"V" or U" = B"V" 

where vectors Us and U" are the generalized displacements at the nodal rings of the assumed piecewise linear 
stress models of equations (1) and (2). Equations (19) and (20) give the relationship between the generalized 
displacements of the assumed stress model and the finite element model of equations (15) and (16). The 
reciprocal theorem can be used to find the corresponding force-stress relationship. This gives 

F5 = B"P' and Fa = B"'P" (21) 

where the vectors F' and Fa are the generalized forces at the nodal rings of the finite element models of 
equations (15) and (16). The following two equations can be obtained by making use of equations (19) and 
(20) with equation (21). 

Fs = BST[KS]-'BSVS = 1"' 

Fa = BaTIKa]-lB"V" = I"V" 

(22) 

(23) 

and 

where Is is the dynamic stiffness matrix for the excitations of the symmetric Fourier components with respect 
to the line B1 = 0 and O 2  = 0, as shown in Figure 2, and I" is the dynamic stiffness matrix for the excitations of 
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Contact Area No. 2 

s 
Figure 2. Co-ordinate transformation for two cylindrical co-ordinates 

the anti-symmetric Fourier components. Both the I" and I" matrices are symmetric since matrices Ks and K" 
are symmetric as indicated in equation (14). Equations (22) and (23) also show that there are no interactions 
between the symmetric vibration mode and the anti-symmetric vibration mode with respect to the line 
connecting the two centres of the two circular foundations (Figure 2). 

This concludes the derivations for the dynamic stiffness matrices for the interaction of the vibrations of two 
circular foundations on an elastic half-space medium. 

NUMERICAL RESULTS 

A numerical example of two identical rigid circular foundations, rigidly attached to an elastic half-space 
medium and subjected to excitations in all possible directions, is used to demonstrate the effectiveness and 
efficiency of the present method. In the example, the radius of both foundations is uo (uo = 0.5), the complex 
shear modulus of the half-space is G = G R ( 1  + 2&), in which the hysteresis damping ratio 5 is selected to be 
0.05 for major numerical results, and the Poisson ratio is assumed to be 0.33. In order to investigate the 
significance of the effect of the interaction of the two foundations, seven clear distances (8s) 
(d/uu = 0.2, I ,  2,4,10, 20 and m) between the two foundations are chosen for the calculation of dynamic 
stiffness matrices. 

Since both circular foundations are rigid, only Fourier components of n = 0,1 and m = 0, 1 in equations 
(22) and (23) are involved in the calculation of the dynamic stiffness matrix for all the vertical, two horizontal 
(I- and y-directions in Figure 3), rocking, pitching and torsional vibrations of the two foundations, as defined 
in Figure 3. Equation (22) is the dynamic stiffness matrix for the two foundations with vertical, horizontal 
(x-direction) and pitching motions. Equation (23) is the dynamic stiffness matrix for the two foundations with 
torsional, horizontal (y-direction) and rocking motions. Furthermore, due to symmetry and anti-symmetry 
with respect to the centre line C-C between the two foundations, as shown in Figure 3, the dynamic stiffness 
functions in the two dynamic stiffness matrices have the following properties: I,,,, = 

= - fz2,.. . lzlPl = - Iz,P, and fxIp ,  = fxZp, for the dynamic stiffness matrix in equation 
I:,,Al = I 

= I P A P r ,  
- - (22), and I T I T ,  = I l A T 2 ,  I p , y l  = l y , y , ,  I R , R ,  = I R 2 R 2 ,  I T , y ,  - I T 2 y 2 3  1 T , R ,  = - I T , R ,  and l y l R ,  = I v 2 R :  forthe 

dynamic stiffness matrix in equation (23). 
Using this method, one should note that singularity could occur in calculating the Q matrix of equation 

(Sb) at the Rayleigh wave number if the damping ratio = 0. Therefore, some material damping. which 
would meet the realistic condition of the soil, must be assumed in the soil medium. After some extensive 
numerical invcstigations, the infinite integration limit of the wave number in equations 10(a) 13(b) can be 
replaced with the finite number 200/uo without losing accuracy for a damping ratio as low as 0.01. and 1 0  
equal subintervals for radius uo is enough for a piecewise linear stress model of equations (3) and (4). Thc 
Gaussian quadrature method is employed to perform the integrations for which closed-form integration 
cannot be obtained. 



DYNAMIC STIFFNESS MATRICES 20 I 

In order to show the effectiveness of this method, some comparisons with the results in Reference 15 are 
made in Table I. As mentioned above, material damping in a soil medium is necessary, and the results for 
4 = 0.01 are used for comparison. In the table, the non-dimensionalized frequency b is defined as oao/Re (cs). 
Although there are some discrepancies between the results of the two methods, in general one can still say 
that the two results agree fairly well with each other except IPIPlr for which the discrepancy is higher. Since 
I p , p , ,  IxIx, and I , , , ,  are obtained simultaneously by equation (22), as mentioned above, it is believed that the 
accuracy of these dynamic stiffnesses should be of the same order. The sources of the discrepancies could be 
the error due to digitizing the curves in Reference 15, and the use of two different damping ratios for the soil 
medium and two different analytical approaches. 

Figures 4-10 show some numerical results of dynamic stiffness functions for the vibrations of the two 
foundations. In the figures, it should be noted that all the dynamic stiffness functions and excitation 
frequencies are non-dimensionalized by radius a. and complex shear modulus G [or shear wave velocity 
Re (c,)]. Each figure contains several curves of results representing different clear distances between the two 
foundations. The curves for different clear distances are marked by different symbols. Table I1 shows the 
symbols used. 

Foundation No. 1 Foundation No. 2 

Rocking 
Pitching 

Torsion 

22 

@itcAi 
Roeking 

Rs 
4 

Figure 3. Definitions of the motions for two identical foundations 

Table I. Comparison for clear distance d = 05ao 

Presented h = 0-03568 6.67 3.03 5.39 1.64 4 1 6  0.023 
method b = 071365 5.71 4.25 4.88 2.23 3.90 0 2 0  
( 5  = 0.01) 

Reference 15 b = 003568 6.82 3.00 5.50 1.77 4.42 0 0 2  
(t = 0)  b = 0,71365 5.89 4.30 5.00 2.17 4.19 0.31 

Presented b = 0.03568 5.3 1 0.013 5.12 1.88 4.09 0016  
method b = 0,71365 4.9 1 0.23 4.70 2.57 3.69 0 3 1  
( 5  = 0.01) 

Reference 15 b = 0.03568 5.39 0 0  1 5.15 1.90 4.16 0-0 1 
( 5  = 0) b = 071365 5.00 0.2 1 4.72 2.55 3.73 0.26 
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Table 11. Symbols representing dif- 
ferent separations of the two foun- 

dations 

c-a $ = 0 2  

Figure 4 shows the dynamic stiffness function (Izlzi) for the vertical vibration of one of the two foundations, 
From the figure, it can be seen that the influence from the other foundation on the vertical dynamic stiffness is 
not significant if the separation of the two foundations is greater than 4ao (d/a, > 4 in Figure 4). Figure 
5 gives the results of the horizontal dynamic stiffness function. In the figure, the solid lines show the results for 
the horizontal vibration in the x-direction and the broken lines show the results for vibration in the 
)?-direction. The same conclusion can be drawn from this figure as from Figure 4, and it can also be seen that 
the influence of the existence of the other foundation is more important for the vibration in the x -  direction 
than for the vibration in the y-  direction. Regarding the dynamic stiffness for pitching and rocking motions. 
the influence from other foundation is even less than that for the horizontal dynamic stiffness as shown in 
Figure 6. The solid lines in Figure 6 are the results of pitching dynamic stiffness and the broken lines are the 
results of rocking dynamic stiffness. From Figure 6, it can also be seen that the influence on the pitching 
dynamic stiffness from the other foundation only occurs when the two foundations are sufficiently close 
(saying d/a, < 1.0), and the influence on the rocking dynamic stiffness is insignificant (the broken lines cannot 
be distinguished from the solid lines). Figure 7 shows the coupling dynamic stiffness for pitching and 
horizontal motions (solid lines), and rocking and horizontal motions (broken lines). From this figure, i t  can 
be seen that the influence from the other foundation may be significant if the two foundations are very close 
(say d /uo  < 1.0). The reason for putting the two horizontal dynamic stiffnesses (Figure 5), the pitching and 
rocking dynamic stiffnesses (Figure 6) and the two coupling dynamic stiffnesses (Figure 7) together is that in 
each case they are identical to each other if the two foundations are infinitely far apart. Figure X shows the 
dynamic stiffness function for the torsional vibration. From this figure, it can be seen that the influence on the 
torsional dynamic stiffness from the other foundation is unimportant even when the two foundations are very 
close (d/uo = 0.2). Figure 9 shows the coupling dynamic stiffness function between the vertical vibrations of 
the two foundations. It can be seen that the coupling dynamic stiffness function approaches zero as dla, = 30 
or t. A similar result can be seen in Figure 10, which shows the coupling dynamic stiffness between the 
torsional vibrations of the two foundations. From Figures 9 and 10, it can be seen that the coupling dynamic 
stiffncsses between the vibrations of two foundations cannot be neglected in soil-structure interaction 
analysis, especially when the two foundations are close to each other. 

After some numerical study of the dynamic stiffness matrices for the two-foundation system. some general 
conclusions can be drawn. 

I .  The interaction of the vibrations of two foundations with an excitation of low frequency is more 

2. The influence on the imaginary parts of the dynamic stiffness functions due to the existence of another 
important than that with an excitation of high frequency. 

foundation is less significant. 







M 
.- 
5 c 
.e a 

w 



(4 
0 

I 

0 

-a 
-9 

0 

r: 
0 

-* -9 

0 

- m  -9 

0 

R 
0 
9 
4 

0 
9 

0 0 0 0 0 0 00 
9 9 

0 
Y d: 
0 0 
I I I 

2 8 d: 
0 0 





0 

-% 

2 

-2 

-0 

0 

-0 

-0  
-9 

-0 

- N  
-9 

-0 
-9 
- 4  





710 G.-S. LIOIJ 

3. The influence on the dynamic stiffness function by the existence of another foundation is not negligible if 
the two foundations are sufficiently close, (say d/ao d 4). 

SOME CHARACTERISTICS OF THE PRESENT METHOD 

After invesigation of the present method, several important features were found. 

1 .  Most computational effort in this method is devoted to the calculation of the surface integrals (e.g. ~~~~‘ 
X X X r ,  dol dr,) in equations 10(a)-13(b) and matrices D,s. However. the calculation of the surface 
integrals and D,s is independent of the complexity of the sub-soil half-space and the excitation 
frequency, since the changes in the soil properties and excitation frequency are only reflected in matrices 
Q and Q in equations 1O(atl3(b). Therefore, one can generate many Ks and K” matrices from equations 
(22) and (23), corresponding to different excitation frequencies, at the same time. To do this, one just 
needs to reserve storage space in the computer for these matrices. Actually, this present method needs 
less computer storage space compared with othcr methods. This feature would dramatically red lice the 
computational cost of generating the dynamic stiffness matrices for the interaction of vibrations of 
several foundations. 

2. The method can easily be extended to generating the dynamic stiffness matrices for the interaction of 
vibrations of more than two foundations. 

3. The method can also be extended to calculating the dynamic stiffness matriccs for vibrations of 
foundations with arbitrary shapes. To do this, one needs the co-ordinate transformation matrix for 
cylindrical- and rectangular co-ordinates. This co-ordinate transformation matrix can be found in 
Reference 2. 

4. Although a half-space medium is assumed throughout the derivation for generating the dynamic 
stiffness matrix, the present method can be extended to calculating the dynamic stiffness matrices for the 
case of a layered medium. To do this, one can replace the Q and Q matrices in equations 10(a) 13(b) 
with the equivalent matrices for a layered medium. The equivalent matrices can be found in Reference 3. 
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