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Abstract

High technology industry must continuously improve product quality and multiple correlated product quality

characteristics must be assessed simultaneously due to product complexity. While many Taguchi method applications

have addressed a state system problem, dynamic multi-response problems have seldom been examined. This study

presents a novel optimization procedure for dynamic multiple responses based on Taguchi�s parameter design. The

signal to noise (SN) ratio and system sensitivity are used to assess the performance of each response. Principal com-

ponent analysis is then performed on the SN values and system sensitivity values to obtain a set of uncorrelated

components. The optimization direction for each component is also determined based on the corresponding variation

mode chart. Finally, the relative closeness to the ideal solution resulting from the technique for order preference by

similarity to ideal solution is determined as an overall performance index for multiple responses. A case study obtained

from biological reduction of an ethyl acetoacetate process demonstrates the effectiveness of the proposed procedure.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Stringent global competition demands contin-

uously elevating product quality. Off-line quality

control and robust design have been widely im-

plemented throughout industry to upgrade prod-

uct quality. As a major proponent of the

philosophy of robust design, Taguchi focused on
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information of both the mean and variability of a

quality characteristic using the signal to noise (SN)
ratio. In doing so, the optimal factor/level combi-

nation obtained from the Taguchi method can be

determined to simultaneously reduce the quality

variation and bring the mean close to the target

value. Despite its widespread industrial appli-

cations, the Taguchi method can only be used

for optimizing single-response problems. Cases

involving dynamic multi-response problems have
rarely been seen. However, industry has increas-

ingly emphasized developing procedures capa-

ble of simultaneously optimizing the dynamic
ed.
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multi-response problems in light of the increasing
complexity of modern product design. Further-

more, moderate or high correlations among these

responses may incur difficulty in optimizing mul-

tiple responses simultaneously. Accordingly, devel-

oping optimization procedure of dynamic multiple

responses must consider the correlations among

these responses to accurately depict the multi-

response performances in a dynamic system.
This study develops a novel multi-response

optimization procedure for a dynamic system that

can resolve the correlation problems among re-

sponses and reduce the computational complexity.

The SN ratio and system sensitivity are used to

assess the performance of each response. Principal

component analysis (PCA) is then performed on

SN values and system sensitivity values to obtain a
set of uncorrelated principle components, which

are linear combinations of the original responses.

Additionally, the variation mode chart is plotted

to interpret the variation mode (or principal

component variation) resulting from PCA. Based

on engineering requirements, engineers can deter-

mine the optimization direction for each principal

component using the variation mode chart.
Finally, technique for order preference by simi-

larity to ideal solution (TOPSIS) is adopted to

derive the overall performance index (OPI) for

multiple responses. The optimal factor/level com-

bination is determined with the maximum OPI

value and therefore, simultaneously reduces the

quality variation and brings the mean to the target

value. Results obtained from the biological re-
duction of an ethyl acetoacetate process experi-

ment demonstrate the effectiveness of the proposed

procedure.
2. Literature review

2.1. Dynamic system

The feasibility of optimizing a dynamic system

has received increasing attention in recent years

(Wasserman, 1998). A dynamic system differs from

a state system in that the former contains signal

factors to achieve the target performance or ex-

press the intended output. The response varies
with the level of the signal factor. For example,
signal factors may be the steering angle in the

steering mechanism of an automobile or the speed

control setting of a fan. The signal factors are se-

lected by engineers to enhance product functions

and enhance manufacturing flexibility.

A dynamic system ideally assumes that a linear

form exists between the response and the signal

factor. The ideal function can be expressed as
follows:

Y ¼ bM þ e ð1Þ
where Y denotes the response of a dynamic system,

M represents the signal factor, b is the slope or

system sensitivity, and e denotes the random error.

Wasserman (1996) indicated that since various
control factor/level combinations influence both b
and e, Eq. (1) should be modified as follows:

Y ¼ bðdÞM þ eðdÞ ð2Þ
where bðdÞ reflects the system sensitivity under a

certain control condition, d. eðdÞ represents the
random errors under d, and eðdÞ is assumed to

possess a normal distribution with a mean of zero

and a variance of r2ðdÞ. Taguchi used the SN ratio

and system sensitivity as performance measures in

a dynamic system to assess the robustness of a

process. The SN ratio and system sensitivity are as

follows:

SN ¼ 10 log10
b2

r2
; ð3Þ

S ¼ 10 log10 b2; ð4Þ
where S represents the system sensitivity in a dy-

namic system. Phadke and Dehnad (1988) assumed

that the quality loss varies with the input signals.

The desired response of the product, g�ðMÞ, can be

represented as a function of M . They also defined

the quadratic loss through g�ðMÞ. For any givenM ,

the quadratic loss can be expressed as follows:

QðMÞ ¼
Z
y
k½y � g�ðMÞ�2 dF ðy=MÞ

¼ kEy=M ½fy � g�ðMÞg2� ð5Þ
where y denotes the quality characteristic value, M
represents the signal factor, and k is a constant.

The corresponding expected total loss, Q, can be

expressed as
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Qðz; SÞ ¼ k½fBðz; SÞ � 1g2Efg�2g� þ r2ðz; SÞ ð6Þ

where r2ðz; SÞ denotes the mean square value of e,
Bðz; SÞ is defined as a ratio of the actual slope (or

system sensitivity) to the ideal slope, z represents

the control factors and S is the scaling factor in a

dynamic system.

Eq. (6) reveals that the quality loss is affected by

two components. The first component represents

the system sensitivity of the output response as

deviated from the ideal system sensitivity and the
other component represents the variation in the

quality characteristics. Taguchi suggested that si-

multaneously adjusting the actual slope b to the

ideal slope b0 and reducing the quality variation

can minimize the total quality loss.
2.2. Multiple responses optimization

Most of the previous optimization methods for

multi-response problems focused on a state sys-

tem. Many Taguchi practitioners have adopted

engineering knowledge to resolve multi-response

optimization problems. For example, Phadke

(1989) combined engineering knowledge with rel-

evant experience to optimize three responses, i.e.,

surface, wafer thickness, and deposition rate, in a
very-large-scale integrated (VLSI) circuit-manu-

facturing process. Other techniques, such as

Logothetis and Haigh (1988), Elsayed and Chen

(1993), Chang and Shivpuri (1995), Ames et al.

(1997), Tong and Su (1997), Su and Tong (1997)

and Antony (2000), either utilized SN ratios for

each response to create new composite indices or

applied mathematical algorithms to optimize a
state multi-response problem. Despite their con-

tributions, the above multi-response optimization

methods share the following limitations:

1. The optimal factor/level combination for multi-

ple responses is determined based on pure engi-

neering experience and the correlations among

responses are not considered. Owing to that
the engineer�s judgment often leads to uncer-

tainty during decision making, different engi-

neers may produce conflicting results when

addressing the same problem.
2. These procedures are developed based on the

linear programming technique or other com-

plicated mathematical algorithms. Therefore,

making them impractical for most engineering

applications.

2.3. Principal component analysis

Hotelling (1933) initially developed PCA to ex-

plain the variance–covariance structure of a set of

variables by linearly combining the original vari-

ables. The PCA technique can account for most of

the variation of the original p variables via k un-

correlated principal components, where k6 p. Re-

stated, let x ¼ x1; x2; . . . ; xp be a set of original

variables with a variance–covariance matrix R.
Through the PCA, a set of uncorrelated linear

combinations can be obtained as the following

matrix:

Y ¼ ATx ð7Þ
where Y ¼ ðY1; Y2; . . . ; YP ÞT, Y1 is called the first

principal component, Y2 is called the second prin-

cipal component and so on; A ¼ ðaijÞP�P and A is

an orthogonal matrix with ATA ¼ I. Therefore, x
can be expressed as follows:

x ¼ AY ¼
Xp

j¼1

A:jYj ð8Þ

where A:j ¼ ½a1j; a2j; . . . ; apj�T is the jth eigenvector

of R.
Variationmode chart (Yang, 1996) is an effective

means of analyzing variation mode (or principal

component variation) obtained from PCA. Ana-

lyzing this chart can provide further insight into the

different variation types for each variation mode.

Therefore, the portion of variation contributed by

original variables (x1; x2; . . . ; xp) in each mode can

be obtained. The calculation process for establish-
ing a variation mode chart is given as follows.

Let zj ¼A:jYj ¼ ½a1j;a2j; . . . ;apj�T;Yj ¼ ½z1j;z2j; . . . ;
zpj�T, Eq. (8) can be rewritten as follows:

x ¼ z1 þ z2 þ � � � þ zp ð9Þ
where zj is a product of a random scalar Yj and a

deterministic vector A:j; zj can be defined as a geo-

metrical variation mode. The mean, varianceand
standard deviation of zij are given as follows:



Fig. 2. An example of variation mode chart.
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EðzijÞ ¼ Eðaij � YjÞ ¼ aijEðYjÞ ¼ 0; ð10Þ

VarðzijÞ ¼ Varðaij � YjÞ ¼ a2ijVarðYjÞ ¼ a2ijkj; ð11Þ

rðzijÞ ¼ jaijj
ffiffiffiffi
kj

p
; ð12Þ

where kj is the variance of Yj, representing the ei-

genvalue of the jth principal component. Fig. 1
plots the variation mode chart based on a three-

sigma zone (u� 3r) that describes the pattern and

magnitude for each variation mode. In this figure,

the solid line denotes the variation extent limit

(VEL1), which is equal to 3rðzijÞ as shown in Eq.

(13). The dotted line denotes the variation extent

limit (VEL2), which is equal to�3rðzijÞ as shown in

Eq. (14):

VEL1ðzjÞ ¼ 3a1j
ffiffiffiffi
kj

p
; . . . ; 3apj

ffiffiffiffi
kj

p� �
; ð13Þ

VEL2ðzjÞ ¼
�
� 3a1j

ffiffiffiffi
kj

p
; . . . ;� 3apj

ffiffiffiffi
kj

p �
: ð14Þ

The following example, including four vari-

ables x ¼ ðx1; x2; x3; x4Þ, illustrates how to use a

variation mode chart to characterize the exact

pattern and magnitude of a variation mode. In

this example, assume that the eigenvalue k1 ¼
33:62 and A:1 ¼ ð0:503; 0:332;�0:455;�0:656Þ.
The VEL1ðz1Þ ¼ ð8:75; 5:77;�7:91;�11:4Þ and the

VEL2ðz1Þ ¼ ð�8:75;�5:77; 7:91; 11:4Þ are accord-

ingly obtained using Eqs. (13) and (14). Thus, the

variation mode chart for the mode 1 is presented in

Fig. 2.

Clearly, when x1 and x2 vary in the positive di-

rection, x3 and x4 vary in the negative direction. As
x1 moves in the positive direction up to 8.75, x2
moves in the positive direction up to 5.77, x3 and x4
Fig. 1. Variation mode chart.
move in the negative direction up to 7.91 and 11.4,

respectively. If responses x1 and x2 are more im-

portant than responses x3 and x4, the principal

component score is determined as a larger value is

desired. In this case, optimizing (or maximizing)

the principal component increases response x1 and
x2 by 8.75 and 5.77, respectively, and decreases x3
and x4 by 7.91 and 11.4, respectively. Whereas

responses x3 and x4 are more important than re-

sponses x1 and x2, the principal component score is

determined as a smaller value is desired. In this

case, optimizing (or minimizing) the principal

component decreases responses x1 and x2 by 8.75

and 5.77, respectively and increases x3 and x4 by
7.91 and 11.4, respectively. Therefore, analysis of

variation mode chart can provide further insight

into the variation pattern of various variables.

Doing so can facilitate the reduction of the origins

of variable variations.

2.4. TOPSIS

Hwang and Yoon (1981) developed TOPSIS to

assess the alternatives before multiple attributes

decision-making. TOPSIS simultaneously consid-

ers the distances to the ideal solution and negative

ideal solution regarding each alternative and selects

the most relative closeness to the ideal solution

as the best alternative. That is, the best alternative

is the nearest one to the ideal solution and the
farthest one from the negative ideal solution. The

procedure of TOPSIS is summarized as follows:

1. Establish an alternative performance matrix.

The structure of the alternative performance
matrix is expressed as follows:
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ð15Þ
where Ai denotes the possible alternatives, i ¼
1; . . . ;m; Xj represents attributes relating to alter-

native performance, j ¼ 1; . . . ; n; and xij is the

performance of Ai with respect to attribute Xj.

2. Normalize the performance matrix.

The normalized performance matrix can be ob-

tained using the following transformation formula:

rij ¼
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 x

2
ij

q ð16Þ

where rij represents the normalized performance of

Ai with respect to attribute Xj. The matrix form of

rij is given as follows:

R ¼ ½rij� ð17Þ
where i ¼ 1; . . . ;m and j ¼ 1; . . . ; n.

3. Multiply the performance matrix by its associ-
ated weights.

Each column of matrix R is multiplied by

weights associated with each attribute. The weigh-

ted performance matrix V is obtained as follows:

V ¼

w1r11 w2r12 : wjr1j � wnr1n
w1r21 w2r22 : wjr2j � wnr2n
� � � � � �

w1ri1 w2ri2 : wjrij : wnrin
� � � � � �

w1rm1 w2rm2 � wjrmj � wnrmn

2
666666664

3
777777775

¼

v11 v12 � v1j � v1n
v21 v22 � v2j � v2n
� � � � � �
vi1 vi2 � vij � vin
� � � � � �

vm1 vm2 : vmj � vmn

2
666666664

3
777777775

ð18Þ
where wj represents the weight of attribute Xj and

vij represents the weighted normalized perfor-

mance of Ai with respect to Xj for i ¼ 1; . . . ;m and

j ¼ 1; . . . ; n.

4. Determine the ideal and negative ideal solutions.

The ideal value set V þ and the negative ideal

value set V � are determined as follows:

Vþ ¼ fðmax vij j j 2 JÞ or ðmin vij j j 2 J0Þ;
i ¼ 1; 2; . . . ;mg ¼ fvþ1 ; vþ2 ; . . . ; vþn g;

V� ¼ fðmin vij j j 2 JÞ or ðmax vij j j 2 J0Þ;
i ¼ 1; 2; . . . ;mg ¼ fv�1 ; v�2 ; . . . ; v�n g;

where

J ¼ fj ¼ 1; 2; . . . ; n jvij; a larger response is desiredg

J0 ¼ fj ¼ 1; 2; . . . ; n jvij; a smaller response is desiredg

5. Calculate the separation measures.

The separation of each alternative from the

ideal solution (Sþ
i ) is given as follows:

Sþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

ðvij � vþj Þ
2

vuut : ð19Þ

The separation of each alternative from the

negative ideal solution (S�
i ) is as follows:

S�
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

ðvij � v�j Þ
2

vuut : ð20Þ

The alternative definitions of Sþ
i ¼

Pn
j¼1 jvij � vþj j

and S�
i ¼

Pn
j¼1 jvij � v�j j can also be utilized to

replace Eqs. (19) and (20).

6. Calculate the relative closeness to the ideal so-

lution and rank the preference order.

The relative closeness Ci to the ideal solution

can be expressed as follows:

Ci ¼
S�
i

Sþ
i þ S�

i
ð21Þ

where the Ci value lies between 0 and 1. The closer

the Ci value is to 1 implies a higher priority of the

ith alternative.
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3. Proposed procedure

This study proposes an optimization procedure

for multiple responses in a dynamic system based

on Taguchi�s parameter design. Because multiple

responses always contain moderate or high corre-

lations among each other, the PCA is initially

performed on the SN values and system sensitivity
obtained from each response to integrate the di-

mension of multiple responses to a smaller number

of uncorrelated components. The variation mode

charts for components obtained from PCA are

then utilized to investigate the variation pattern of

various integrated responses. Finally, TOPSIS is

utilized to determine the optimal factor/level

combination for multiple responses. The proposed
procedure for optimizing multi-response problems

includes the following seven steps:
Step 1. Calculate the SN ratio and system sensi-

tivity for each response.

The SN ratio and system sensitivity can be ob-
tained using Eqs. (3) and (4).

Step 2. Conduct the PCA on normalized SN ratio

and system sensitivity.

The SN ratio and system sensitivity for each
response is normalized by the following formula:

SNij � SNj

SSNj

; ð22Þ

Sij � Sj
SSj

; ð23Þ

where SNij denotes the SN ratio of the jth re-

sponse under the ith experimental run; SNj and

SSNj represent the mean and standard deviation of

SN ratios for the jth response, respectively. Sij
denotes the system sensitivity of the jth response

under the ith experimental run; Sj and SSj repre-

sent the mean and standard deviation of system

sensitivity for the jth response, respectively. The

eigenvalues and eigenvectors for each principal

component are obtained after conducting PCA on

normalized SN ratio and system sensitivity.

Step 3. Determine the number of principal com-

ponents retained and establish the variation mode
charts for SN ratio and system sensitivity, respec-

tively.

Some principal components are selected for

further analysis based on (1) the significance of the

linear correlation between the responses and

principal components. (2) the cumulative varia-

tion of the responses accounted for by the se-

lected principal components. The corresponding
variation mode charts for SN ratio and system

sensitivity are also established using Eqs. (13)

and (14).

Step 4. Determine the optimization direction of the
selected principal components.

The optimization direction of each selected

principal component is determined according to

the variation mode chart. When more than one

principal component is selected for further analy-

sis, the first principal component initially deter-

mines the optimization direction. Thereafter, the

optimization direction of the second principal
component is determined, and so on for the re-

maining selected components.

Step 5. Conduct TOPSIS to obtain the OPI for the

selected principal component scores.
According to the optimization direction of the

selected principal components of SN ratio and

system sensitivity obtained from Step 4, TOPSIS is

then employed to obtain an OPI. Thus, the ex-

perimental runs are treated as alternatives; the

selected principal components are treated as at-

tributes and quality performance matrices associ-

ated with SN ratio and system sensitivity are
formed. The weighted quality performance matri-

ces can be obtained using Eqs. (15)–(18), where

weights are the eigenvalues associated with each

principal component. If a larger value is desired,

the ideal and negative ideal solutions representing

the maximum and minimum principal component

scores of all experimental runs are expressed in

Eqs. (24) and (25). Whereas a smaller value is
desired, the ideal and negative ideal solution rep-

resenting the minimum and maximum principal

component scores of all experimental runs are

expressed in Eqs. (26) and (27). Correspondingly,

the OPI values (or Ci values for i ¼ 1; . . . ;m) under
each experimental run are derived using Eqs.

(19)–(21).
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vþj ¼ maxfv1j; v2j; . . . ; vmjg; ð24Þ

v�j ¼ minfv1j; v2j; . . . ; vmjg; ð25Þ

vþj ¼ minfv1j; v2j; . . . ; vmjg; ð26Þ

v�j ¼ maxfv1j; v2j; . . . ; vmjg: ð27Þ

Step 6. Determine the optimal factor/level combi-

nation.

The main effects on OPI for SN ratio and sys-

tem sensitivity are determined based on Ci values.

Thus, the corresponding diagrams plot the factor

effect on OPI. The optimal factor/level combina-

tion producing the maximum OPI value is deter-

mined based on Taguchi�s two-stage optimization
procedure. That is, initially, minimize the system

variation based on the diagrams of SN ratio. The

adjustment factor, significantly affecting to system

sensitivity and insignificantly affecting to SN ratio,

is then determined based on the diagrams of sys-

tem sensitivity and SN ratio. Therefore, we can

simultaneously reduce quality variation and bring

the actual output values on the target values using
adjustment factor.
4. Illustrative example

A biological reduction of the ethyl 4-chloro

acetoacetate processes for the production of an

optically pure compound was used to demonstrate
the effectiveness of the proposed optimization

method. The Industrial Technology Research In-

stitute at Taiwan performed this illustrative ex-

ample. S-4-Chloro-3-hydroxybutyric acid ethyl

ester (S-CHBE) is a widely used chiral synthon

used for synthesizing various optically active

compounds such as antihypertensive drugs, HMG-

CoA reductase inhibitors and antibiotics (Patel
et al., 1992). The compound can be produced by

adding ethyl 4-chloro acetoacetate to baker�s yeast
(Ushio et al., 1991). The reaction produces S-

CHBE (a desired-form product) with a small

amount R-CHBE (a non-desired-form product).

When carefully controlled, the S-CHBE form-

ing enzymes are more active than the R-CHBE

and ultimately produce a higher optical purity.
Therefore, the following two optimized responses
were determined:

1. For the S-CHBE (yS) concentration: a larger re-

sponse is desired.

2. For the R-CHBE (yR) concentration: a smaller

response is desired.

Since altering the substrate concentration will
affect both responses yS and yR, the substrate

concentration was considered a signal factor (M)

in the experiment. Additionally, the freshness of

the yeast was then considered a noise factor.

Throughout the brainstorm analysis and pre-test

experiments, eight control factors were selected for

optimization. Tables 1 and 2 display these factors

and their corresponding levels.
The L18 orthogonal array was employed in this

experiment. Six observations were made for both

yS and yR under each experimental combination

based on the previous planning experiment. The

experimental data was analyzed by strictly fol-

lowing the proposed procedure. Table 3 displays

the experimental observations, SN ratios and sys-

tem sensitivity for each response resulted from
Taguchi�s SN ratio formula. Tables 4–7 display the

eigenvalues and eigenvectors arising from PCA for

SN ratios and system sensitivity, respectively,

conducted by employing SAS statistical software

package (many other statistical soft packages such

as SPSS, Minitab or STATISTICA can also be

used to conduct PCA).

Both two principal components are retained for
SN ratio and system sensitivity according to Ta-

bles 4–7, since the first one principal component

for SN ratio and system sensitivity only account

for 68% and 65% of the variation of the original

variables. Two principal components are uncor-

related and can account for 100% of the variation

of original variables. Table 8 and Fig. 3 display the

variation mode of the first principal component
for SN ratio and system sensitivity. Table 9 and

Fig. 4 display the variation mode of the second

principal component for SN ratio and system

sensitivity. Clearly, the directions of variation

mode for responses S-CHBE and R-CEBE asso-

ciated with SN ratio are consistent and the direc-

tions of variation mode for responses S-CHBE and



Table 1

Factors and their corresponding levels

Factor Level

Level 1 Level 2 Level 3

Signal factor Substrate concentration (%) 1 3 5

Noise factor Batch of yeast (N) First lot Second lot

Control factors Type of cap (A) Sponge Aluminum

Shaking rate (B) 140 rpm 170 rpm 200 rpm

Glucose conc. (C) 0.2% 0.6% 1%

Yeast addition (D) Fluctuate level 1 Fluctuate level 2 Fluctuate level 3

Conc. of enzyme inhibitor (E) Fluctuate level 1 Fluctuate level 2 Fluctuate level 3

pH of reaction solution (F) 7.5 8.0 8.5

Buffer concentration (G) 0.3 M 0.4 M 0.5 M

Yeast preculture time (H) 1 hour 2 hours 3 hours

Table 3

Experimental observations, SN ratio and system sensitivity

Ex.

no.

Control factor SN ratio System

sensitivity

L18 A B C D E F G H S R S R

1 1 1 1 1 1 1 1 1 0.81 )2.21 )6.87 )19.65
2 1 1 2 2 2 2 2 2 5.81 1.30 )7.48 )18.28
� � � � � � � � � � � � �
� � � � � � � � � � � � �
17 2 3 2 1 3 1 2 3 3.82 2.56 )8.68 )24.51
18 2 3 3 2 1 2 3 1 5.55 0.48 )7.38 )19.63

Table 2

The fluctuating factor/level

Substrate concentration (%) 1 3 5

Yeast addition (D) Level 1 40% 80% 120%

Level 2 60% 100% 140%

Level 3 80% 120% 160%

Conc. of enzyme inhibitor (E) Level 1 1.0 ml/l 1.2 ml/l 1.4 ml/l

Level 2 1.2 ml/l 1.4 ml/l 1.6 ml/l

Level 3 1.4 ml/l 1.6 ml/l 1.8 ml/l
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R-CHBE associated with system sensitivity are
opposite in the first principal component. There-

fore, the first principal component is determined,

as a larger value desired integrated response.

Doing so, the SN ratios of both responses can be

enhanced, the response value for S-CHBE can be

increased and the response value for R-CHBE can

be decreased simultaneously, these conforming the

engineering requirement, when optimizing the first
principal component. Whereas, the directions of
variation mode for responses S-CHBE and R-

CHBE associated with SN ratio are opposite and

the directions of variation mode for responses S-

CHBE and R-CHBE associated with system sen-

sitivity are consistent in the second principal

component. Since the selected optimization direc-

tion of the second principal component cannot

comfort the engineering requirement for responses



Table 8

The variation mode for SN ratio

The first principal component

SN ratio + ) System

sensitivity

+ )

S-CHBE 2.47 )2.47 S-CHBE 2.42 )2.42
R-CHBE 2.47 )2.47 R-CHBE )2.42 2.42

Table 9

The variation mode for system sensitivity

The second principal component

SN ratio + ) System

sensitivity

+ )

S-CHBE 1.70 )1.70 S-CHBE 1.77 )1.77
R-CHBE )1.70 1.70 R-CHBE 1.77 )1.77

Table 5

The eigenvectors of principal components for SN ratio

Response First component Second component

S-CHBE 0.707107 0.707107

R-CHBE 0.707107 )0.707107

Table 7

The eigenvectors of principal components for system sensitivity

Response First component Second component

S-CHBE 0.707107 0.707107

R-CHBE )0.707107 0.707107

Table 4

The eigenvalues and explained percentage of variation for SN

ratios

Compo-

nents

Eigen-

value

Differ-

ence

Percent-

age

Cumulative

percentage

First

component

1.35723 0.714450 0.678613 0.67861

Second

component

0.64277 – 0.321387 1.00000

Table 6

The eigenvalues and explained percentage of variation for

sensitivity

Compo-

nents

Eigen-

value

Differ-

ence

Percent-

age

Cumulative

percentage

First

component

1.30626 0.612512 0.653128 0.65313

Second

component

0.69374 – 0.346872 1.00000
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S-CHBE and R-CHBE in SN ratio and system
sensitivity simultaneously, we must determine the

optimization direction by trading off between these

two responses. Because the S-CHBE is more

important than R-CHBE, the second principal

component is determined, as a larger value desired
Fig. 3. The variation mode chart for
integrated response. In this case, increasing the SN
ratio of response S-CHBE by 1.70 can decrease the

SN ratio of NU by 1.70 and increase the system

sensitivity of responses S-CHBE and R-CHBE by

1.77 simultaneously.

Table 10 lists the OPI values, which are mea-

sures of relative closeness to the ideal solution for

SN ratio and system sensitivity resulting from

TOPSIS. Accordingly, the response diagram on
OPI values for SN ratio and system sensitivity is

established as shown in Figs. 5 and 6. According to

Tables 11 and 12 and Figs. 5 and 6, the following

results can be obtained:

1. The trends of factors A and F are consistent on

SN ratio and system sensitivity. Accordingly,

the optimal level is determined with the larger
SN ratio for factors A and F.

2. For factors B, C, E and G, the effect on SN

ratio is larger than on system sensitivity. There-

fore, the optimal level is determined with the

larger SN ratio for these factors.
the first principal component.



H1

Fig. 4. The variation mode chart for the second principal component.

Table 10

The overall performance index for SN ratio and system sensi-

tivity

Ex. no. OPI for SN ratio OPI for system

sensitivity

1 0.65 0.30

2 0.50 0.79

� � �
� � �
17 0.50 0.65

18 0.56 0.75
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3. For factors D and H, the effect on system sensi-

tivity is larger than on SN ratio. Therefore, the

optimal level is determined with the larger sys-

tem sensitivity for these two factors.

Base on the above analysis, the optimal factor/

level combination is determined as A1B3C2D1E2-

F2G2H1. Factor H is considered as an adjustment
factor, since this factor significantly affects to the

system sensitivity and insignificant affects to the

SN ratio. Note that using the alternative Sþ
i and

S�
i , the same optimal factor/level combination will

also be obtained.
Fig. 5. Response diagr
The predicted SN ratio and system sensitivity
based on significant factors for S-CHBE and R-

CHBE under the optimal factor/level combination

are calculated and compared with that of the

starting factor–level to confirm the reproducibility.

For S-CHBE, factors B, D, E and F are significant

effects on SN ratio and factors A, D, E, F and H

are significant effects on system sensitivity. For R-

CHBE, factors B, E, F and H are significant effects
on SN ratio and factors A, B, C, D and E are

significant effects on system sensitivity. Accord-

ingly, the predicted SN ratio and system sensitivity

for S-CHBE and R-CHBE are calculated as fol-

lows:

The SN ratio for S-CHBE is

gopt ¼ �g þ ðgB3
� �gÞ þ ðgD1

� �gÞ þ ðgE2
� �gÞ

þ ðgF2
� �gÞ ¼ 5:347:

The SN ratio for R-CHBE is

gopt ¼ �g þ ðgB3
� �gÞ þ ðgE2

� �gÞ þ ðgF2
� �gÞ

þ ðg � �gÞ ¼ 3:411:
am for SN ratio.



Fig. 6. Response diagram for system sensitivity.

Table 11

Response table for SN ratio

Factors Level 1 Level 2 Level 3 Difference

A 0.62 0.61 0.01

B 0.48 0.63 0.73 0.25

C 0.58 0.65 0.60 0.07

D 0.49 0.59 0.75 0.26

E 0.52 0.67 0.65 0.15

F 0.60 0.70 0.53 0.17

G 0.58 0.64 0.62 0.06

H 0.64 0.64 0.56 0.08

Table 12

Response table for system sensitivity

Factors Level 1 Level 2 Level 3 Difference

A 0.56 0.48 0.08

B 0.50 0.56 0.51 0.06

C 0.51 0.50 0.57 0.07

D 0.69 0.51 0.37 0.32

E 0.47 0.49 0.61 0.14

F 0.47 0.57 0.53 0.09

G 0.51 0.51 0.55 0.05

H 0.60 0.53 0.44 0.17
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Meanwhile, the system sensitivity for S-CHBE is

gopt ¼ �g þ ðgA1
� �gÞ þ ðgD1

� �gÞ þ ðgE2
� �gÞ þ ðgF2

� �gÞ
þ ðgH1

� �gÞ ¼ �6:078:

The system sensitivity for R-CHBE is

gopt ¼ �g þ ðgA1
� �gÞ þ ðgB3

� �gÞ þ ðgC2
� �gÞ

þ ðgD1
� �gÞ þ ðgE2

� �gÞ ¼ �22:257:

Table 13 summarizes the computations of the

predicted SN values and system sensitivity values
for both responses and compares with the starting

level, A1B3C2D2E2F2G2H1. Table 13 reveals that

the predicted SN ratio and system sensitivity both

on S-CHBE and R-CHBE are significant im-

proved except the SN ratio for S-CHBE is slightly

lower than the starting level. This finding confirms

that the optimal factor/level combination can be

reproduced and the proposed procedure for opti-
mizing dynamic multiple responses can efficiently

enhance the product/process quality.
5. Conclusion

This study utilizes the PCA to simplify the dy-

namic multi-response problems and determines the
optimization direction by using the variation mode

chart. The optimal factor/level combination is also

determined based on the OPI for multiple re-

sponses obtained from TOPSIS. A case study in

which the biological reduction of the ethyl 4-

chloro acetoacetate processes for the production

of an optically pure compound is optimized con-

firms the effectiveness of the proposed procedure.
The proposed procedure has the following

merits:

1. The multi-response optimization direction is

difficult to determine when optimizing response

individually, since moderate or high conflicting

exits among the optimization factor/level com-

bination for theses responses, especially in
dynamic system in light of considering the ef-

fects of SN ratio and system sensitivity on

the dynamic system simultaneously. The OPI



Table 13

Summary of the computations for the proposed procedure and starting level

Factor/level Predicted values

SN ratio System sensitivity

S-CHBE R-CHBE S-CHBE R-CHBE

The proposed procedure A1B3C2D1E2F2G2H1 5.347 3.411 )6.078 )22.257

Starting level A1B3C2D2E2F2G2H1 6.814 3.411 )6.587 )19.574
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obtained from TOPSIS can eliminate these con-

flicts. Furthermore, the TOPSIS simultaneously

considers the ideal and negative ideal solution

to obtain an overall performance index. There-

fore, the OPI cannot be dominated by the best

or the worst quality characteristics.

2. The proposed procedure transforms the corre-

lated multiple responses into uncorrelated com-
ponents through PCA, thereby simplifying the

optimization process. Therefore, the more re-

sponses the more efficiently this proposed pro-

cedure can get.

3. The proposed procedure can also resolve the

multi-response problems in a static system with

some modification.
References

Ames, A.E., Mattucci, N., Macdonald, S., Szonyi, G., Haw-

kins, D.M., 1997. Quality loss functions for optimization

across multiple response surfaces. Journal of Quality

Technology 29, 339–346.

Antony, J., 2000. Multi-response optimization in industrial

experiments using Taguchi�s quality loss function and

principal component analysis. Quality and Reliability En-

gineering International 16, 3–8.

Chang, S.I., Shivpuri, R., 1995. A multiple-objective decision-

making approach for assessing simultaneous improvement

in die life and casting quality in a die casting process.

Quality Engineering 7, 371–383.

Elsayed, E.A., Chen, A., 1993. Optimal levels of process

parameters for products with multiple characteristics.

International Journal of Production Research 31, 1117–

1132.
Hotelling, H., 1933. Analysis of a complex of statistical

variables into principal components. Journal of Educational

Psychology 24 (471–441), 498–520.

Hwang, C.L., Yoon, K., 1981. Multiple Attribute Decision

Making––Method and Applications. A State-of-the-Art

Survey. Springer-Verlag, New York.

Logothetis, N., Haigh, A., 1988. Characterizing and optimiz-

ing multi-response processes by the Taguchi method.

Quality and Reliability Engineering International 4, 159–

169.

Patel, R.N., McNamee, C.G., Banerjee, A., Howell, J.M.,

Robison, R.S., Szarka, L.J., 1992. Stereoselective reduction

of b-Keto esters. Geotrichum Candidum. EnzymeMicrobial

Technology 14, 731–738.

Phadke, M.S., 1989. Quality Engineering Using Robust Design.

Prentice-Hall, Englewood Cliffs, NJ.

Phadke, M.S., Dehnad, K., 1988. Optimization of product and

process design for quality and cost. Quality and Reliability

Engineering International 4, 159–169.

Su, C.-T., Tong, L.-I., 1997. Multi-response robust design by

principal component analysis. Total Quality Management 8,

409–416.

Tong, L.-I., Su, C.-T., 1997. Optimizing multi-response prob-

lems in the Taguchi method by fuzzy multiple attribute

decision making. Quality and Reliability Engineering Inter-

national 13, 25–34.

Ushio, K., Ebara, K., Yamashita, T., 1991. Selective inhibition

of r-enzymes by simple organic acids in yeast-catalysed

reduction of ethyl 3-oxobutanoate. Enzyme Microbial

Technology 13, 834–839.

Wasserman, G.S., 1996. Parameter design with dynamic char-

acteristics: A regression perspective. Quality and Reliability

Engineering International 12, 113–117.

Wasserman, G.S., 1998. The use energy-related characteristics

in robust product design. Quality Engineering 10, 213–

222.

Yang, K., 1996. Improving automotive dimensional quality by

using principal component analysis. Quality and Reliability

Engineering International 12, 401–409.


	Dynamic multiple responses by ideal solution analysis
	Introduction
	Literature review
	Dynamic system
	Multiple responses optimization
	Principal component analysis
	TOPSIS

	Proposed procedure
	Illustrative example
	Conclusion
	References


