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Abstract

Let MPT(v; �) denote a maximum packing of triples of order v with index � and TS(u; �) denote a triple system of
order u with index �. For �¿ 1 and v¿ 6, it is proved in this paper that the necessary and su4cient conditions for the
embedding of an MPT(v; �) in a TS(u; �) are �(u− 1) ≡ 0 (mod 2), �u(u− 1) ≡ 0 (mod 6) and u¿ 2v + 1.
c© 2003 Published by Elsevier B.V.
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1. Introduction

Let V be a v-set, B a collection of 3-subsets (called blocks or triples) of V . A pair (V; B) is called a partial triple
system of order v with index � and denoted by PTS(v; �) if each 2-subset of V is contained in at most � triples.

Let (V; B) be a partial triple system of order v and index �. (V; B) is called a maximum partial triple system if |B|¿ |C|
for any partial triple system PTS(v; �) (V; C). A maximum partial triple system of order v and index � is also called a
maximum packing of triples (or simply a maximum packing) of order v with index � and denoted by MPT(v; �).

Let (V; B) be an MPT(v; �), the leave of (V; B), denoted by L(v; �), is a multigraph (V; E) where an edge {x; y} ∈E with
multiplicity m if and only if the corresponding 2-subset {x; y} is contained in exactly �−m triples of B. It is well-known
(see, e.g. [2]) that the leave of an MPT(v; �) is empty if and only if �(v− 1) ≡ 0 (mod 2) and �v(v− 1) ≡ 0 (mod 6). In
this case, the MPT(v; �) is called a triple system and denoted by TS(v; �). For =xed �, if there exists a TS(v; �), then v
is called �-admissible.

For v¿ 6, by Mendelsohn et al. [11], the only graphs which can be leaves of an MPT(v; �) are shown in Table 1
(where v and � are reduced modulo 6) with the following abbreviations:

Graphs of odd degrees

1F a matching on v vertices
1FY a matching on v− 4 vertices and a tree on 4 vertices with one vertex of degree 3
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Table 1
Leaves of maximum packings

� \ v 0 1 2 3 4 5

0 ∅ ∅ ∅ ∅ ∅ ∅
1 1F ∅ 1F ∅ 1FY E4
2 ∅ ∅ 2 ∅ ∅ 2
3 1F ∅ 06 ∅ 1FY ∅
4 ∅ ∅ E4 ∅ ∅ E4
5 1F ∅ 1FY ∅ 1FY 2

06(a) 1FH a matching on v− 6 vertices and a graph induced by AB, BC, BD, DF, DG
(b) 1F5 a matching on v− 6 vertices and a tree on 6 vertices with one vertex of degree 5
(c) 1FYY a matching on v− 8 vertices and two vertex-disjoint trees each on 4 vertices with one vertex of degree 3
(d) 1F3 a matching on v− 2 vertices and a triple edge AB, AB, AB
(e) 1F−0− a matching on v− 4 vertices and a graph induced by AB, BC, BC, CD

Graphs of even degrees

2 a double edge AB, AB
E4 (a) C4 a 4-cycle

(b) 4 a quadruple edge AB, AB, AB, AB
(c) 22 2 double edges AB, AB, CD, CD
(d) ∞ AB, AB, BC, BC

Now let (X; A) be a partial triple system. (X; A) is said to be embedded in a partial triple system (Y; B) provided that
X ⊂ Y and A ⊆ B. We also say that (X; A) is a subsystem of (Y; B). The embedding problem is one of the fundamental
problems in design theory. For the embeddings of triple systems, we have the following result:

Theorem 1.1 (Doyen and Wilson [5], Stern [15]). Let u, v be �-admissible and v¿ 3. Then a TS(v; �) can be embedded
in a TS(u; �) if and only if u¿ 2v + 1.

Over the last 30 years much e8ort has been focussed on proving a similar theorem for embedding any PTS(v; �) in a
TS(u; �). The best results to date are the following two theorems:

Theorem 1.2 (Rodger and Stubbs [13]). Let u be odd �-admissible. Then a PTS(v; �) can be embedded in a TS(u; �) if
u¿ 4v + 1.

Theorem 1.3 (Hilton and Rodger [9]). Let u be �-admissible and 4 | �. Then a PTS(v; �) can be embedded in a TS(u; �)
if u¿ 2v + 1.

The embedding problem for maximum packings has been studied extensively [6,7,10]. For �=1, this embedding problem
has been completely solved.

Theorem 1.4 (Mendelsohn and Rosa [10]; Hartman et al. [8]; Hartman [7]; Fu et al. [6]). Let u¿v. Any MPT (v; 1) can
be embedded in an MPT (u; 1) if and only if

(1) if v = 6 then u= 7 or u¿ 10,
(2) if v¿ 6 and v is even then u= v + 1 or u¿ 2v, and
(3) if v¿ 6 and v is odd then u¿ 2v.

An MPT(v; �) is called simple if it contains no repeated triples. In 1995, Milici et al. [12] proved that for v¿ 3 and
any even �, a simple MPT(v; �) can be embedded in a simple MPT(u; �) if and only if u¿ 2v+ 1. As a consequence of
this result, we then have the following theorem.

Theorem 1.5 (Milici et al. [12]). Let v¿ 6 and � ≡ 0 (mod 2). An MPT (v; �) can be embedded in an MPT (u; �) if and
only if u¿ 2v + 1.
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For �¿ 1, it is easy to prove the following lemma by Table 1 and simple counting.

Lemma 1.6. Let u be �-admissible, v¿ 6 and �¿ 1. Then a necessary condition for the embedding of an MPT (v; �) in
a TS(u; �) is u¿ 2v + 1.

In this paper, by proving the following theorem, we show that the necessary condition of Lemma 1.6 is also su4cient
for the embedding of any MPT(v; �) in a TS(u; �) for �¿ 1.

Theorem 1.7. Let v¿ 6 and �¿ 1. Then an MPT (v; �) can be embedded in a TS(u; �) if and only if �(u−1) ≡ 0 (mod 2),
�u(u− 1) ≡ 0 (mod 6) and u¿ 2v + 1.

2. Basic construction techniques

Let A1 + A2 + · · · + An denote the union of multisets A1; A2; : : : ; An−1 and An (so if e occurs ki times in Ai for any
16 i6 n, then it occurs k1 + k2 + · · · + kn times in A1 + A2 + · · · + An). If A1 = A2 = · · · = An = A, then let nA denote
A1 +A2 + · · ·+An. Let �Kn denote the multigraph on n vertices in which each pair of vertices is joined by exactly � edges.
Let V (G) and E(G) denote the vertex set and edge set of a multigraph G respectively. Given two multigraphs G and H ,
the union G∪H is the graph with V (G∪H)=V (G)∪V (H) and E(G∪H)=E(G)+E(H). If V (G)∩V (H)=∅, then the
join G ∨H is the graph with V (G ∨H) =V (G) ∪V (H) and E(G ∨H) =E(G) +E(H) + {{x; y}|x∈V (G); y∈V (H)}. If
G is a multigraph, then let �G denote the graph with V (�G) = V (G) and E(�G) = �E(G). Let KG denote the complement
of the graph G. We refer to [4] for an overview on graph theory.

Construction 2.1. Suppose (X; A) is an MPT(v; �1) with leave L(v; �1) and (X; B) is an MPT(v; �2) with leave L(v; �2). Let
u¿v, and u be both �1-admissible and �2-admissible. If the MPT(v; �1) can be embedded in a TS(u; �1), the MPT(v; �2)
can be embedded in a TS(u; �2) and L(v; �1)∪L(v; �2) is a L(v; �1 + �2), then an MPT(v; �1 + �2) with leave L(v; �1 + �2)
can be embedded in a TS(u; �1 + �2).

Proof. Let V ( KKv) = X , V (Ku−v) = Z and X ∩ Z = ∅. We recall that embedding an MPT(v; �1 + �2) in a TS(u; �1 + �2)
is equivalent to partitioning the set of edges in (�1 + �2)( KKv ∨ Ku−v) ∪ L(v; �1 + �2) into triples. The union of the graph
�1( KKv∨Ku−v)∪L(v; �1) and the graph �2( KKv∨Ku−v)∪L(v; �2) is exactly the graph (�1 +�2)( KKv∨Ku−v)∪L(v; �1 +�2) since
L(v; �1) ∪ L(v; �2) = L(v; �1 + �2). Since each of the set of edges in �1( KKv +Ku−v) ∪ L(v; �1) and �2( KKv +Ku−v) ∪ L(v; �2)
respectively can be partitioned into triples, the conclusion follows.

Theorem 2.2. Let u¿v¿ 6, v ≡ 0; 4 (mod 6), u ≡ 5 (mod 6). Then an MPT (v; 3) can be embedded in a TS(u; 3) if
u¿ 2v + 1.

Proof. We prove the theorem for the case v ≡ 0 (mod 6), the case v ≡ 4 (mod 6) can be dealt with in a similar way.
Let X be a v-set, Y = X ∪ Zu−v and X ∩ Zu−v = ∅. By Mendelsohn and Rosa [10] there exists an MPT(u; 1) (Y; B1)
with leave {{0; 1}; {1; 2}; {2; 3}; {0; 3}} containing an MPT(v; 1) (X; A1) as a subsystem. By Milici et al. [12] there exists
an MPT(u; 2) (Y; B2) with leave {{0; 2}; {0; 2}} containing a TS(v; 2) (X; A2) as a subsystem. Let A = A1 + A2 and
B=B1 +B2 + {{0; 1; 2}; {0; 2; 3}}. Then (X; A) is an MPT(v; 3) and (Y; B) is a TS(u; 3) containing (X; A) as a subsystem.
This completes the proof.

By using Theorems 1.1, 1.4, 1.5, 2.2 and Construction 2.1, we have the following theorem:

Theorem 2.3. Let v¿ 6, �¿ 1, and let u be �-admissible. If u¿ 2v + 1, then any MPT (v; �) can be embedded in a
TS(u; �) with the following possible exceptions:

(1) v ≡ 2 (mod 6), � ≡ 3 (mod 6), and the leave of MPT (v; �) is 1F5, 1FH or 1FYY , and
(2) v ≡ 2 (mod 6) and � ≡ 5 (mod 6).

In order to eliminate all of these possible exceptions, by Construction 2.1 and Theorem 2.3, we only need to embed
an MPT(v; �) in a TS(u; �) for v ≡ 2 (mod 6), � = 3 or 5, and all admissible u¿ 2v + 1.

Now let X be a v-set and v¿ 2. A collection F of 2-subsets (called pairs) of X is called a partial �-factor if each
vertex of X is contained in at most � pairs of F , and F is called a �-factor if each vertex of X is contained in exactly
� pairs of F . If F is a partial �-factor and a∈X , then let a ∗ F denote the multiset {{a; x; y}|{x; y} ∈F}.
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Construction 2.4. Let u¿v¿ 6, �=2�0 +1¿ 3, u be �-admissible, V (Kv)=X ={ai|16 i6 v}, V (Ku−v)=Z , X ∩Z= 
and Y = X ∪ Z . Let (X; A) be an MPT(v; �) with leave L(v; �). If we can remove enough triples (denoted the collection
of all these triples by H) from G = �( KKv ∨ Ku−v) ∪ L(v; �) such that G − H satis6es:

(1) each edge of L(v; �) has been removed;
(2) there are only 2�0 edges joining x and z for each x∈X and z ∈ Z ; and
(3) the subgraph of G − H induced by Z is a 2�0v-regular subgraph, then an MPT(v; �) with leave L(v; �) can be

embedded in a TS(u; �).

Proof. As 2�0v is even, by Petersen [3] the subgraph of G − H induced by Z has a 2-factorization C = {Fij|16 i6 v;
16 j6 �0}. For any 16 i6 v, let Bi = ai ∗ Fi1 + ai ∗ Fi2 + · · · + ai ∗ Fi�0 . Let B = A + H + B1 + B2 + · · · + Bv. Then
(Y; B) is a TS(u; �) containing (X; A) (MPT(v; �)) as a subsystem. This completes the proof.

3. 1-factors and partial 1-factors in complete graphs

Lemma 3.1. Let n=6t+ s+4, s=0; 2 or 4, n¿ 14, and V (Kn)= {a; b; c; d;∞}∪Z6t+s−1. Then Kn contains a subgraph
whose edge set can be partitioned into 7 partial 1-factors each missing exactly the four vertices of {a; b; c; d} and
6t + s− 8 1-factors each containing no edges of the complete graph K4 on {a; b; c; d}.

Proof. The seven partial 1-factors are:

Fsi = {{i + j; i − j}|j∈ Z3t+s=2 \ {0}} ∪ {{i;∞}};
6t + s− 86 i6 6t + s− 2:

Let m= 1 − (−1)t . For 06 i6 3t + s=2 − 5, let

Fs2i = {{a; 3t + 2i + s=2 − 2}; {b; 3t + 2i + s=2 + 1}; {c; 3t + 2i + s=2}}
∪ {{3t + 2i + 2j + s=2 + 2; 3t + 2i − 2j + s=2 − 3}|

06 j6 (6t + s− m− 8)=4}
∪ {{3t + 2i + 2j + s=2 + 3; 3t + 2i − 2j + s=2 − 4}|

06 j6 (6t + s + m− 12)=4}
∪ {{d; 3t + 2i + s=2 − 1}; {2i;∞}}; and

Fs2i+1 = {{a; 3t + 2i + s=2 + 1}; {b; 3t + 2i + s=2}; {c; 3t + 2i + s=2 − 1}}
∪ {{3t + 2i + 2j + s=2 + 4; 3t + 2i − 2j + s=2 − 3}|

06 j6 (6t + s + m− 12)=4}
∪ {{3t + 2i + 2j + s=2 + 3; 3t + 2i − 2j + s=2 − 2}|

06 j6 (6t + s− m− 8)=4}
∪ {{d; 3t + 2i + s=2 + 2}; {2i + 1;∞}}:

Then Fs0 ; F
s
1 ; : : : ; F

s
6t+s−9 are the desired 6t + s− 8 1-factors. This completes the proof.

Since there are 6 edges in the complete graph K4, the following lemma is obvious:

Lemma 3.2. Let n= 6h+ s+ 4, s= 0 or 2, n¿ 12, and V (Kn) = {a; b; c; d;∞} ∪ Z6h+s−1. Then Kn contains a subgraph
whose edge set can be partitioned into 6h + s − 4 1-factors each containing no edges of the complete graph K4 on
{a; b; c; d}.
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Lemma 3.3. Let n = 6h + 9¿ 15 and V (Kn) = {a; b; c; d; e;∞} ∪ Z6h+3. Then 2Kn contains a subgraph whose edge set
can be partitioned into 6h+ 9 partial 1-factors F0; F1; : : : ; F6h+7 and F6h+8 satisfying the following properties:

(1) for any 06 i6 3h, each of F2i and F2i+1 misses exactly the vertex i and contains no edges of the complete graph
K5 on {a; b; c; d; e};

(2) for any 6h+ 26 i6 6h+ 8, Fi misses exactly the 6ve vertices of {a; b; c; d; e}.

Proof. Set t = h in Lemma 3.1, and let Fi+6 = F4
i for any i where 6h − 46 i6 6h + 2. Now choose 4h 1-factors

F4
0 ; F

4
1 ; : : : ; F

4
4h−2 and F4

4h−1 in the proof of Lemma 3.1. For any i where 06 i6 2h − 1, we replace the vertex i in F4
2i

and F4
2i+1 by e. Then we obtain 4h partial 1-factors (denoted by F0; F1; : : : ; F4h−2 and F4h−1 correspondingly) in 2Kn. It

is easy to check that there exist no repeated edges in these 4h partial 1-factors. So we can again choose 2h+ 2 1-factors
F4

0 ; F
4
1 ; : : : ; F

4
2h and F4

2h+1 in the proof of Lemma 3.1. Let *= (0; 2h)(1; 2h+ 1) : : : (h; 3h) be a permutation of V (Kn). For
any i where 2h6 i6 3h, let k = i − 2h and set

F0i = *(F4
2k) = {{*(x); *(y)} | {x; y} ∈F4

2k}; and

F1i = *(F4
2k+1) = {{*(x); *(y)} | {x; y} ∈F4

2k+1}:
If we replace the vertex i in F0i and F1i by e for any i where 2h6 i6 3h, then we obtain 2h+2 new partial 1-factors

(denoted by F4h; F4h+1; : : : ; F6h and F6h+1 correspondingly) in 2Kn. It is also easy to check that there exist no repeated
edges in all these 2h + 2 partial 1-factors. Therefore, F0; F1; : : : ; F6h+7 and F6h+8 are the desired 6h + 9 partial 1-factors.
This completes the proof.

Similarly, the following lemma can also be proved, we omit the details here.

Lemma 3.4. Let n = 18h + 21¿ 21 and V (Kn) = {a; b; c; d; e;∞} ∪ Z18h+15. Then Kn contains a subgraph whose edge
set can be partitioned into 6h + 9 partial 1-factors F0; F1; : : : ; F6h+7 and F6h+8 satisfying properties (1) and (2) of
Lemma 3.3.

Lemma 3.5. Let n=6t+s+2, s=2 or 4, t¿ 1 and V (Kn)={a; b;∞}∪Z6t+s−1. Then Kn contains a subgraph whose edge
set can be partitioned into 5 partial 1-factors each missing exactly the two vertices of {a; b} and 6t + s − 6 1-factors
each containing no edge {a; b}.

Proof. The =ve partial 1-factors are:

Fsi = {{i + j; i − j}|j∈ Z3t+s=2 \ {0}} ∪ {{i;∞}};
6t + s− 66 i6 6t + s− 2:

Let m= 1 − (−1)t . For 06 i6 3t + s=2 − 4, let

Fs2i = {{a; 3t + 2i + s=2 − 2}; {b; 3t + 2i + +s=2 + 1}; {2i;∞}}
∪ {{3t + 2i + 2j + s=2; 3t + 2i − 2j + s=2 − 1}|

06 j6 [6t + 2s− (−1)s=2m− 8]=4}
∪ {{3t + 2i + 2j + s=2 + 3; 3t + 2i − 2j + s=2 − 4}|

06 j6 [6t + (−1)s=2m− 8]=4}; and

Fs2i+1 = {{a; 3t + 2i + s=2 + 1}; {b; 3t + 2i + s=2}; {1 + 2i;∞}}
∪ {{3t + 2i + 2j + s=2 + 2; 3t + 2i − 2j + s=2 − 1}|

06 j6 [6t + (−1)s=2m− 4]=4}
∪ {{3t + 2i + 2j + s=2 + 3; 3t + 2i − 2j + s=2 − 2}|

06 j6 [6t + 2s− (−1)s=2m− 12]=4}:
Then Fs0 ; F

s
1 ; : : : ; F

s
6t+s−7 are the desired 6t + s− 6 1-factors. This completes the proof.
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We also need the following theorem in Section 4.

Theorem 3.6 (Colbourn and Rosa [1]). Let n be an odd integer and n �= 9. Then for each 2-regular subgraph Z of Kn,
Kn − Z can be partitioned into triples if and only if 3|(n(n− 1)=2 − |E(Z)|).

4. The case � = 3 and v ≡ 2 (mod 6)

For n ≡ 1 (mod 2), as in [14], let D(n; �) be the multiset �{d|16d6 (n− 1)=2} with elements from Zn. The elements
of D(n; �) are called di8erences. We remark that we also use n− d to represent the di8erence d.

Let a; b; c∈D(n; �), if a+b+c ≡ 0 (mod n) or one is the sum of the others, say, a+b ≡ c (mod n), then D=(a; b; c) is
called a di8erence triple, let (D) denote the set of triples {{0; a; a+b}+i|06 i6 n−1} or {{0; b; a+b}+i|06 i6 n−1},
and we say that (D) is induced by the di8erence triple D. If n ≡ 0 (mod 3), and a= b= c = n=3, then {{0; n=3; 2n=3} +
i|06 i6 n=3 − 1} can form a 2-regular spanning subgraph of Kn on the vertex set Zn. In this case, the di8erence n=3 is
used once. Otherwise, the triple set induced by the di8erence triple (a; b; c) forms a 6-regular spanning subgraph of Kn
on Zn.

In this section, let v ≡ 2 (mod 6), v¿ 8, V (Kv) =V ( KKv) =X = {ai|06 i6 v− 1}, and let (X; A) be an MPT(v; 3) with
leave L(v; 3) = 1F5; 1FH or 1FYY . Let u¿v, Y = X ∪ Zu−v, X ∩ Zu−v = ∅ and V (Ku−v) = Zu−v. Set

1F5 = {{a0; ai}|16 i6 5} ∪ {{a2i ; a2i+1}|36 i6 v=2 − 1};

1FH = {{a0; a1}; {a1; a2}; {a1; a3}; {a3; a4}; {a3; a5}} ∪ {{a2i ; a2i+1}|36 i6 v=2 − 1};

1FYY = {{a0; a1}; {a0; a2}; {a0; a6}; {a4; a5}; {a3; a4}; {a4; a7}}
∪ {{a2i ; a2i+1}|46 i6 v=2 − 1; v¿ 8};

A0 = {{a1; 1; 4}; {a1; 2; 3}; {a2; 0; 2}; {a2; 3; 4}; {a3; 1; 3}; {a3; 0; 4};
{a4; 0; 1}; {a4; 2; 4}; {a5; 0; 3}; {a5; 1; 2}} ∪ {{a0; ai; i − 1}|16 i6 5};

A1 = {{a0; a1; 0}; {a1; a2; 1}; {a1; a3; 2}; {a3; a4; 3}; {a3; a5; 4}; {a1; 3; 4};
{a2; 2; 4}; {a2; 0; 3}; {a3; 0; 1}; {a4; 1; 2}; {a4; 0; 4}; {a5; 1; 3}; {a5; 0; 2};
{a0; 1; 4}; {a0; 2; 3}}; and

A2 = {{a0; a1; 0}; {a0; a2; 1}; {a4; a5; 2}; {a3; a4; 3}; {a2; 0; 3}; {a3; 1; 4}; {a3; 0; 2};
{a2; 2; 4}; {a1; 1; 2}; {a1; 3; 4}; {a5; 0; 4}; {a5; 1; 3}; {a0; 2; 3}; {a4; 0; 1}}:

Lemma 4.1. Let v ≡ 2 (mod 6), v¿ 8 and u ≡ 1 (mod 6). If u¿ 2v + 1, then an MPT (v; 3) with leave 1F5, 1FH or
1FYY can be embedded in a TS(u; 3).

Proof. Write v=6h+8 and u− v=6t+5. By Theorem 1.2, we can suppose 2v+16 u6 4v, so 16 h+16 t6 3h+3.
Case 1: h = 0 and t = 1. We take 6 1-factors F0, F1, F2, F3, F4 and F5 in 2K6 on {5; 6; 7; 8; 9; 10} such that each of

the edges {5; 6} and {9; 10} is not contained in any of the above 1-factors. Let

B1 = {{4; a6; a7}; {0; 5; a6}; {1; 6; a6}; {2; 7; a6}; {3; 8; a6}; {9; 10; a6}; {0; 7; a7};
{1; 8; a7}; {2; 9; a7}; {3; 10; a7}; {5; 6; a7}; {0; 1; 4}; {2; 3; 4}};

B2 = {{0; 1; 3} + i|06 i6 10}, B3 =
⋃5
i=0(ai ∗ Fi), and B4 = (B1 \ {{a6; a7; 4}}) ∪ {{4; a0; a6}; {4; a4; a7}}. Set

H =



A0 + B1 + B2 + B3; if L(v; 3) = 1F5;

A1 + B1 + B2 + B3; if L(v; 3) = 1FH; and

A2 + B2 + B3 + B4; if L(v; 3) = 1FYY:
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Case 2: t = h + 1¿ 2. By Lemmas 3.1 and 3.2, 2K6h+11 contains 7 partial 1-factors F0, F1, F2, F3, F4, F5 and
F each missing exactly the =ve vertices of {0; 1; 2; 3; 4} and 6h + 2 partial 1-factors F6; F7; : : : ; F6h+6 and F6h+7 each
missing exactly the vertex 4 and containing no edges of K4 on {0; 1; 2; 3}. Suppose F = {{2i − 1; 2i}|36 i6 3h + 5}.
Let B1 = {{4; a2i ; a2i+1}|36 i6 3h+ 3}, B2 = (

⋃6h+7
i=0 ai ∗ Fi) ∪ {{4; 2i − 1; 2i}|36 i6 3h+ 2} and * = (4h+ 5; 6h+ 5)

be a transposition of Z6h+11. Now in the third copy of K6h+11 we take the di8erence triple (2h; 2h + 1; 2h + 10). Let
B0 = {{0; 2h; 4h+ 1} + i|06 i6 4; 2h+ 56 i6 6h+ 10}, B3 = {{4; a2i ; a2i+1} | 46 i6 3h+ 3} ∪ {{4; a0; a6}; {4; a4; a7}},
and B4 = {{0; 1; 4}; {2; 3; 4}}. Set

H =



A0 + B1 + B2 + B4 + *(B0); if L(v; 3) = 1F5;

A1 + B1 + B2 + B4 + *(B0); if L(v; 3) = 1FH; and

A2 + B2 + B3 + B4 + *(B0); if L(v; 3) = 1FYY:

Case 3: 26 h + 26 t6 3h + 2. By Lemma 3.1, Ku−v contains 7 partial 1-factors F0, F1, F2, F3, F4, F5 and F each
missing exactly the =ve vertices of {0; 1; 2; 3; 4} and 6h + 2 partial 1-factors F6; F7; : : : ; F6h+6 and F6h+7 each missing
exactly the vertex 4 and containing no edges of K4 on {0; 1; 2; 3}. Suppose F = {{2i− 1; 2i}|36 i6 3t + 2}. Let B1, B2

and B3 be the same as de=ned in Case 2.
Choose di8erences of D(6t + 5; 2) to form the following collection T of 2t + 1 di8erence triples:

(1; 2t + 2; 2t + 3); (2t; 2t + 2; 2t + 3); (2; 2t − 3; 2t − 1);

(3; 2t − 2; 2t + 1); (2t; 2t + 1; 2t + 4);

(2i; 3t − i + 2; 3t − i + 3) : 16 i6 t − 2; t¿ 3; and

(2i − 1; t + i + 1; t − i + 2) : 16 i6 t − 2; t¿ 3:

From T \ {(1; 2t+2; 2t+3); (2t; 2t+2; 2t+3)}, choose 3t− 3h− 3 di8erence triples D1; D2; : : : ; D3t−3h−4 and D3t−3h−3.
Let B4=(D1)+(D2)+· · ·+(D3t−3h−3), B5={{0; 2t; 4t+2}+i|06 i6 4; 2h+56 i6 6t+4}∪{{0; 1; 2t+3}; {1; 2; 2t+4}},
the vertex set V1 = {0; 1; 2; 2t + 3; 2t + 4}, and the vertex set V2 = {i|56 i6 2h + 4; 2t + 56 i6 2t + 2h + 4; 4t +
76 i6 4t+2h+6}. Clearly, 1 V1 ∩V2 = , so there exists a permutation * of Z6t+5 such that *(0)=0, *(1)=4, *(2)=2,
*(2t + 3) = 1, *(2t + 4) = 3 and *(V2) = {i|56 i6 6h+ 4}. Set

H =



B1 + B2 + *(B4) + *(B5) + A0; if L(v; 3) = 1F5;

B1 + B2 + *(B4) + *(B5) + A1; if L(v; 3) = 1FH; and

B2 + B3 + *(B4) + *(B5) + A2; if L(v; 3) = 1FYY:

Case 4: t = 3h+ 3¿ 3. Let the partial 1-factors F0; F1; : : : ; F6h+7 and F in K18h+23 be similar to Case 3, B1 and B3 be
the same as de=ned in Case 2, and B2 =(

⋃6h+7
i=0 ai ∗Fi)∪{{4; 2i−1; 2i}|36 i6 3h+4}. Let C1 denote any (6h+4)-cycle

on the vertex set {i|56 i6 6h + 8}, and C2 any (18h + 19)-cycle on the vertex set {i|46 i6 18h + 22}. By Theorem
3.6, the graph 2K18h+23 − (C1 ∪ C2) can be partitioned into a collection B4 of triples. Set

H =



B1 + B2 + B4 + A0; if L(v; 3) = 1F5;

B1 + B2 + B4 + A1; if L(v; 3) = 1FH; and

B2 + B3 + B4 + A2; if L(v; 3) = 1FYY:

It can be checked that in each of the above cases, 3( KKv ∨Ku−v) ∪ L(v; 3) −H satis=es conditions (1)–(3) of Construction
2.4. The conclusion follows.

Lemma 4.2. Let v ≡ 2 (mod 6), v¿ 8 and u ≡ 3 (mod 6). If u¿ 2v + 1, then an MPT (v; 3) with leave 1F5, 1FH or
1FYY can be embedded in a TS(u; 3).

Proof. Write v = 6h+ 8 and u− v = 6t + 7. Suppose 16 h+ 16 t6 3h+ 2.

1 Remark. If h = 0, then both of the subset {{4; 2i − 1; 2i}|36 i6 3h + 2} of B2 and the subset {{4; a2i ; a2i+1}|46 i6 3h + 3} of
B3 are  , so is the vertex set V2. Also, for the following cases in this paper we have similar results.



242 R. Su et al. / Discrete Mathematics 284 (2004) 235–245

Case 1: t=h+1¿ 1. Let partial 1-factors F0; F1; : : : ; F6h+7 and F in 2K6h+13 be similar to Case 2 in the proof of Lemma
4.1. If h¿ 1, then we choose two di8erence triples, (2h; 2h + 1; 2h + 12) and (1; 2h + 10; 2h + 11), from di8erence set
D(6h+13; 1). Let the vertex set V ={i|06 i6 2h−1; 2h6 i6 4h−1; 4h+16 i6 6h}. Then there exists a permutation
* of Z6h+13 such that *(V ) = {i|56 i6 6h + 4}. Let B1, B2 and B3 be the same as de=ned in Case 2 in the proof of
Lemma 4.1, B5 = {{0; 1; 4}; {2; 3; 4}}, B6 = {{0; 1; 4h+ 3} + i|06 i6 6h+ 12} ∪ {{0; 2h; 4h+ 1} + i|2h6 i6 6h+ 12},

B4 =

{
*(B6); if h¿ 1;

{{0; 1; 4} + i|06 i6 12} ∪ {{0; 2; 7} + i|06 i6 12}; if h= 0; and

H =



B1 + B2 + B4 + B5 + A0; if L(v; 3) = 1F5;

B1 + B2 + B4 + B5 + A1; if L(v; 3) = 1FH; and

B2 + B3 + B4 + B5 + A2; if L(v; 3) = 1FYY:

Case 2: 16 h + 16 t6 3h + 1. Let the partial 1-factors F0; F1; : : : ; F6h+7 and F in Ku−v be similar to Case 3 in the
proof of Lemma 4.1. Choose di8erences of D(6t + 7; 2) to form the following collection T of di8erence triples:

(2i; 3t − i + 3; 3t − i + 4) : 16 i6 t; and

(2i − 1; t + i + 1; t − i + 2) : 16 i6 t + 1:

From T \ {(2t − 2; 2t + 4; 2t + 5); (1; 2t + 1; 2t + 2)}, choose 3t − 3h − 2 di8erence triples D1; D2; : : : ; D3t−3h−3 and
D3t−3h−2. Let B4 = (D1) + (D2) + · · · + (D3t−3h−2), B1, B2 and B3 be the same as de=ned in Case 2 in the proof of
Lemma 4.1, B5 = {{4t − 1; 4t; 6t + 1}; {4t; 4t + 1; 6t + 2}} ∪ {{0; 2t − 2; 4t + 2} + i|2h6 i6 6t + 6}, and the vertex set
V = {i|06 i6 2h− 1; 2t − 26 i6 2t + 2h− 3; 4t + 26 i6 4t + 2h+ 1}. Clearly, there exists a permutation * of Z6t+7

such that *(4t − 1) = 0, *(4t) = 4, *(6t + 1) = 1, *(4t + 1) = 2, *(6t + 2) = 3 and *(V ) = {i|56 i6 6h+ 4}. Set

H =



B1 + B2 + *(B4) + *(B5) + A0; if L(v; 3) = 1F5;

B1 + B2 + *(B4) + *(B5) + A1; if L(v; 3) = 1FH; and

B2 + B3 + *(B4) + *(B5) + A2; if L(v; 3) = 1FYY

Case 3: t = 3h+ 2¿ 2. Let the partial 1-factors F0; F1; : : : ; F6h+7 and F in K18h+19 be similar to Case 3 in the proof of
Lemma 4.1. Choose di8erences of D(18h+ 19; 2) to form the following collection T of di8erence triples:

2{(3h+ 3; 3h+ 4; 6h+ 7);

(3i + 1; 4h− i + 5; 4h+ 2i + 6) : 06 i6 h;

(3i + 3; 6h− 2i + 5; 6h+ i + 8) : 06 i6 h− 1; h¿ 1;

(3i + 2; 8h− i + 8; 8h+ 2i + 10) : 06 i6 h}:

From T \ {(3h + 3; 3h + 4; 6h + 7); (2; 8h + 8; 8h + 10)}, choose 6h + 4 di8erence triples D1; D2; : : : ; D6h+3 and D6h+4.
Let B1, B2 and B3 be the same as de=ned in Case 2 in the proof of Lemma 4.1, B4 = (D1) + (D2) + · · · + (D6h+4),
B5 = {{2h+ 1; 2h+ 3; 10h+ 11}; {2h+ 3; 2h+ 5; 10h+ 13}} ∪ {{0; 3h+ 3; 6h+ 7} + i|2h6 i6 18h+ 18}, and the vertex
set V = {i|06 i6 2h− 1; 3h+ 36 i6 5h+ 2; 6h+ 76 i6 8h+ 6}. Clearly, there exists a permutation * of Z18h+19 such
that *(2h+ 1) = 0, *(2h+ 3) = 4, *(10h+ 11) = 1, *(2h+ 5) = 2, *(10h+ 13) = 3 and *(V ) = {i|56 i6 6h+ 4}. Set

H =



B1 + B2 + *(B4) + *(B5) + A0; if L(v; 3) = 1F5;

B1 + B2 + *(B4) + *(B5) + A1; if L(v; 3) = 1FH; and

B2 + B3 + *(B4) + *(B5) + A2; if L(v; 3) = 1FYY:

It can be checked that in each of the above cases, 3( KKv∨Ku−v)∪L(v; 3)−H satis=es conditions (1)–(3) of Construction
2.4. The conclusion follows.
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Lemma 4.3. Let v ≡ 2 (mod 6), v¿ 8 and u ≡ 5 (mod 6). If u¿ 2v + 1, then an MPT (v; 3) with leave 1F5, 1FH or
1FYY can be embedded in a TS(u; 3).

Proof. Write v = 6h+ 8 and u− v = 6t + 9. Suppose 06 h6 t6 3h+ 2.
Case 1: t = h = 0. Let {F0; F1; F2} be a 1-factorization of K4 on {5; 6; 7; 8}, B1 = (

⋃2
i=0 ai ∗ Fi) ∪ (

⋃5
i=3 ai ∗ Fi−3) ∪

{{0; 1; 4}; {2; 3; 4}}, B2 = {{aj; i; i + 5}|06 i6 3; j = 6; 7} ∪ {{4; a6; a7}}, and B3 = {{aj; i; i + 5}|06 i6 3; j = 6; 7} ∪
{{4; a0; a6}; {4; a4; a7}}. Set

H =



B1 + B2 + A0; if L(v; 3) = 1F5;

B1 + B2 + A1; if L(v; 3) = 1FH; and

B1 + B3 + A2; if L(v; 3) = 1FYY:

Case 2: t = h¿ 1 and L(v; 3) = 1F5 or 1FH . By Lemma 3.3, 2K6h+9 contains 6 partial 1-factors F0, F1, F2, F3, F4

and F5 each missing exactly the =ve vertices of {0; 1; 2; 3; 4} and 6h+ 2 partial 1-factors F6; F7; : : : ; F6h+6 and F6h+7 such
that each of F2i and F2i+1 misses exactly the vertex i+ 2 for each i where 36 i6 3h+ 3. Let *= (3h+ 6; 2h+ 4) be a
transposition of Z6h+9, B1=(

⋃6h+7
i=0 ai∗Fi)∪{{i+2; a2i ; a2i+1}|36 i6 3h+3}, and B2={{0; h+2; 2h+5}+i|06 i6 h+1}.

Set

H =

{
B1 + *(B2) + A0; if L(v; 3) = 1F5; and

B1 + *(B2) + A1; if L(v; 3) = 1FH:

Case 3: t = h¿ 1 and L(v; 3) = 1FYY . By Lemmas 3.1 and 3.3, 2K6h+9 contains 6 partial 1-factors F0, F1, F2, F3, F4

and F5 each missing exactly the =ve vertices of {0; 1; 2; 3; 4} and 2 partial 1-factors F6 and F7 each missing exactly the
vertex 4 and containing no edges of K4 on {0; 1; 2; 3} and 6h partial 1-factors F8; F9; : : : ; F6h+6 and F6h+7 such that each
of F2i and F2i+1 misses the vertex i + 1 for each i where 46 i6 3h + 3: Let * = (2h + 5; 3h + 5) be a transposition of
Z6h+9, B1 = (

⋃6h+7
i=0 ai ∗ Fi) ∪ {{0; 1; 4}; {2; 3; 4}}, B2 = {{i + 1; a2i ; a2i+1}|46 i6 3h + 3} ∪ {{4; a0; a6}; {4; a4; a7}}, and

B4 = {{0; h; 2h+ 1} + i|56 i6 h+ 4}. Set

H = B1 ∪ B2 ∪ *(B4) ∪ A3:

Case 4: 16 h + 16 t6 3h + 1. Let the partial 1-factors F0; F1; : : : ; F6h+7 and F in Ku−v be similar to Case 3 in the
proof of Lemma 4.1. Choose di8erences of D(6t + 9; 2) to form the following collection T of di8erence triples:

(2i; 3t − i + 4; 3t − i + 5) : 16 i6 t + 1; and

(2i − 1; t + i + 1; t − i + 2) : 16 i6 t + 1:

From T \ {(2t − 2; 2t + 5; 2t + 6); (1; 2t + 1; 2t + 2)}, choose 3t − 3h − 1 di8erence triples D1; D2; : : : ; D3t−3h−2 and
D3t−3h−1. Let B1, B2 and B3 be the same as de=ned in Case 2 in the proof of Lemma 4.1, B4 = (D1) + (D2) + · · · +
(D3t−3h−1), B5 = {{4t; 4t+ 1; 6t+ 2}; {4t+ 1; 4t+ 2; 6t+ 3}} ∪ {{0; 2t− 2; 4t+ 3} + i|2h6 i6 6t+ 8}, and the vertex set
V = {i|06 i6 2h− 1; 2t − 26 i6 2t + 2h− 3; 4t + 36 i6 4t + 2h+ 2}. Clearly, there exists a permutation * of Z6t+9

such that *(4t) = 0, *(4t + 1) = 4, *(4t + 2) = 2, *(6t + 2) = 1, *(6t + 3) = 3 and *(V ) = {i|56 i6 6h+ 4}. Set

H =



B1 + B2 + *(B4) + *(B5) + A0; if L(v; 3) = 1F5;

B1 + B2 + *(B4) + *(B5) + A1; if L(v; 3) = 1FH; and

B2 + B3 + *(B4) + *(B5) + A2; if L(v; 3) = 1FYY:

Case 5: t = 3h + 2¿ 2 and L(v; 3) = 1F5 or 1FH . By Lemma 3.4, K18h+21 contains 6 partial 1-factors F0, F1, F2,
F3, F4 and F5 each missing exactly the =ve vertices of {0; 1; 2; 3; 4} and 6h + 2 partial 1-factors F6; F7; : : : ; F6h+6 and
F6h+7 such that each of F2i and F2i+1 misses exactly the vertex i + 2 and contains no edges of K5 on {0; 1; 2; 3; 4}
for each i where 36 i6 3h + 3. Let C1 denote a (15h + 15)-cycle on the vertex set {i|3h + 66 i6 18h + 20}, C2 a
(18h + 21)-cycle on Z18h+21. By Theorem 3.6, the graph 2K18h+21 − (C1 ∪ C2) can be partitioned into a collection B2 of
triples. Let B1 = (

⋃6h+7
i=0 ai ∗ Fi) ∪ {{i + 2; a2i ; a2i+1}|36 i6 3h+ 3}. Set

H =

{
B1 + B2 + A0; if L(v; 3) = 1F5; and

B1 + B2 + A1; if L(v; 3) = 1FH:
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Case 6: t = 3h + 2¿ 2 and L(v; 3) = 1FYY . By Lemmas 3.1 and 3.4, K18h+21 contains 6h + 8 partial 1-factors
F0; F1; : : : ; F6h+6 and F6h+7 which satisfy the following properties:

(1) for any 06 i6 5, Fi misses exactly the =ve vertices of {0; 1; 2; 3; 4};
(2) for any 36 i6 3h + 2, each of F2i and F2i+1 misses exactly the vertex i + 1 and contains no edges of K5 on

{0; 1; 2; 3; 4};
(3) each of F6h+6 and F6h+7 misses exactly the vertex 4; and
(4) for any 06 i6 6h+ 7, Fi contains no edges of {{5; 6}; {4; 5}; {4; 6}}.

Let B1=(
⋃5
i=0 ai∗Fi)∪(

⋃6h+5
i=6 ai+2∗Fi)∪(a6∗F6h+6)∪(a7∗F6h+7)∪{{i+1; a2i ; a2i+1}|46 i6 3h+3}∪{{4; a0; a6}; {4; a4; a7};

{4; 5; 6}}, and let C1 denote a (15h+18)-cycle on the vertex set {i|3h+56 i6 18h+20}∪{5; 6}, C2 a (18h+21)-cycle
on Z18h+21. By Theorem 3.6, the graph 2Ku−v − (C1 ∪ C2) can be partitioned into a collection B2 of triples. Set

H = B1 + B2 + A2:

It can be checked that in each of the above cases, 3( KKv∨Ku−v)∪L(v; 3)−H satis=es conditions (1)–(3) of Construction
2.4. This completes the proof.

5. The case � = 5 and v ≡ 2 (mod 6)

In this section, let v ≡ 2 (mod 6), v¿ 8, V (Kv) =V ( KKv) =X = {ai|06 i6 v− 1}, and let (X; A) be an MPT(v; 5) with
leave L(v; 5)={{a0; ai}|16 i6 3}∪{{a2i ; a2i+1}|26 i6 v=2−1}. Let u¿v, V (Ku−v)=Zu−v, Y =X ∪Zu−v, X ∩Zu−v=∅
and A3 = {{0; a0; a1}; {1; a0; a2}; {2; a0; a3}; {a1; 1; 2}; {a2; 0; 2}; {a3; 0; 1}}.

Lemma 5.1. Let v ≡ 2 (mod 6), v¿ 8 and u ≡ 3 (mod 6). If u¿ 2v + 1, then an MPT (v; 5) can be embedded in a
TS(u; 5).

Proof. Write v = 6h + 8 and u − v = 6t + 7. Suppose 16 h + 16 t6 3h + 2. By Lemma 3.5, Ku−v contains 5 partial
1-factors F0, F1, F2, F3 and F each missing the three vertices of {0; 1; 2} and 6h+4 partial 1-factors F4; F5; : : : ; F6h+6 and
F6h+7 each missing exactly the vertex 2 and containing no edge {0; 1}. Suppose F = {{2i− 1; 2i}|26 i6 3t+3}, and let
B1 = {{2; 2i− 1; 2i}|26 i6 3h+ 3} ∪ (

⋃6h+7
i=0 ai ∗Fi) ∪ {{2; a2i ; a2i+1}|26 i6 3h+ 3}. Choose di8erences of D(6t+ 7; 4)

to form the following collection T of di8erence triples:

2{(2t + 1; 2t + 4; 2t + 2); (1; 2t; 2t − 1); (2; 2t + 1; 2t + 3);

(2i; 3t − i + 3; 3t − i + 4) : 16 i6 t − 1; t¿ 2;

(2i − 1; t + i + 1; t − i + 2) : 16 i6 t − 1; t¿ 2}:
From T \ {(2t + 1; 2t + 4; 2t + 2); (2t + 1; 2t + 4; 2t + 2)}, choose 5t− 5h− 2 di8erence triples D1; D2; : : : ; D5t−5h−3 and

D5t−5h−2. Let B2 = (D1) + (D2) + · · · + (D5t−5h−2), B3 = {{0; 2t + 1; 4t + 3}; {0; 2t + 1; 4t + 3}} + {{0; 2t + 1; 4t + 3} +
i|16 i6 2t − 2h}, the vertex set V = {i; 2t + i + 1; 4t + i + 3|16 i6 2t − 2h}. Clearly there exists a permutation * of
Z6t+7 such that *(0) = 0, *(2t + 1) = 1, *(4t + 3) = 2 and *(V ) = {i|6h+ 76 i6 6t + 6}. Set

H = B1 + *(B2) + *(B3) + A3:

Then the graph 5( KKv ∨ Ku−v) ∪ L(v; 5) −H satis=es conditions (1)–(3) of Construction 2.4. The conclusion follows.

Lemma 5.2. Let v ≡ 2 (mod 6), v¿ 8 and u ≡ 1 (mod 6). If u¿ 2v + 1, then an MPT (v; 5) can be embedded in a
TS(u; 5).

Proof. Write v = 6h+ 8 and u− v = 6t + 5. Suppose 16 h+ 16 t6 3h+ 3.
Case 1: t = 1. By Lemma 3.5, 2K11 contains 5 partial 1-factors F0, F1, F2, F3 and F each missing exactly the three

vertices of {0; 1; 2} and 4 partial 1-factors F4, F5, F6 and F7 each missing exactly the vertex 2 and containing no edge
{0; 1}. Choose two di8erence triples (3; 3; 5) and (2; 2; 4) from D(11; 3). Suppose F = {{2i − 1; 2i}|26 i6 5}, and let
B1 = {{2; 2i − 1; 2i}|26 i6 4} ∪ {{2; a4; a5}; {2; a6; a7}} ∪ ⋃7

i=0 ai ∗ Fi, and B2 = {{0; 3; 6} + i|06 i6 1; 56 i6 10} ∪
{{0; 2; 4} + i|06 i6 2; 56 i6 10}. Set

H = A3 + B1 + B2:
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Case 2: t ¿ 1. Let the partial 1-factors F0, F1; : : : ; F6h+7 and F in K6t+5 be similar to that in the proof of Lemma
5.1, and B1 = (

⋃6h+7
i=0 ai ∗ Fi) ∪ {{2; 2i − 1; 2i}|26 i6 3h + 4} ∪ {{2; a2i ; a2i+1}|26 i6 3h + 3}. Choose di8erences of

D(6t + 5; 4) to form the following collection T of di8erence triples:

2{(2t + 1; 2t + 1; 2t + 3); (2; 2t + 2; 2t + 4); (3; 2t − 3; 2t);

(2t; 2t + 2; 2t + 3); (2i; 3t − i + 2; 3t − i + 3) : 16 i6 t − 2; t¿ 3;

(2i − 1; t + i + 1; t − i + 2) : 16 i6 t − 2; t¿ 3}:
From T \ {(2t + 1; 2t + 1; 2t + 3); (2t + 1; 2t + 1; 2t + 3)}, choose 5t − 5h − 5 di8erence triples D1; D2; : : : ; D5t−5h−6

and D5t−5h−5. Let B2 = (D1) + (D2) + · · · + (D5t−5h−5), B3 = {{0; 2t + 1; 4t + 4} + i|2h+ 26 i6 6t + 4}, B4 = {{0; 2t +
1; 4t + 3} + i|2t + 16 i6 6t + 4}, the vertex set V1 = {i; 2t + i + 1; 4t + i + 4|06 i6 2h + 1}, and the vertex set
V2 = {i; 2t + i + 1; 4t + i + 4|2h + 26 i6 2t}. Clearly V1 ∩ V2 =  , so there exists a permutation * of Z6t+5 such that
*(V1) = {i|36 i6 6h+ 8} and *(V2) = {i|6h+ 96 i6 6t + 4} ∪ {2}. Set

H = A3 + B1 + *(B2) + *(B3) + *(B4):

It can be checked that in each of the above cases 5( KKv∨Ku−v)∪L(v; 5)−H satis=es conditions (1)–(3) of Construction
2.4. The conclusion then follows.

6. Conclusion

Combining Lemmas 1.6, 4.1–4.3, 5.1–5.2, Theorems 1.1, 2.3, and using Construction 2.1, we have completely proved
Theorem 1.7, the main theorem of this paper. Based on this result, recently we have completely solved the problem
of embedding any MPT(v; �) in an MPT(u; �) in a subsequent paper, and we will continue to consider the embedding
problem for simple maximum packings or the packings which are not maximum.
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