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Abstract

We derive stringy Ward identitiefsom the decoupling of two typed @ero-norm states in the old
covariant first quantized (OCFQ) spectrum of open bosonic string. These Ward identities are valid to
all energya’ and all loop orderg in string perturbation theory. The high-energy limit— oo of
these stringy Ward identities can then be used tthiexproportionality constds between scattering
amplitudes of different string states algebraicaliyhout referring to Gross and Mende’s saddle point
calculation of high-energy string-loop amplitudes. As examples, all Ward identities for the mass
level M2 = 4, 6 are derived, their high-energy limits aralculated and the proportionality constants
between scattering amplitudes of different string states are determined. In addition to those identified
before, we discover sonmew nonzero components ofdti-energy amplitudesot found previously
by Gross and Manes. These components are essential to preserve massive gauge invariances or
decouple massive zero-norm statéstang theory. A set of massive scattering amplitudes and their
high-energy limits are calculated explicitly for each mass l@¥él= 4, 6 to justify our results.

0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is often of fundamental importance to study the high-energy behavior of a local
qguantum field theory. In the quantum chromodynamics, for example, the renormalization
group and the discovery of asymptotic freed¢bh turned out to be one of the most
important properties of Yang—Mills theoriesn@he other hand, the spontaneously broken
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symmetries are often hidden at low energy, but become evident in the high-energy behavior
of the theory. In string theory, one expects even more rich fundamental structures at high-
energy since only then will an infinite number of particles be excited. Being a consistent
guantum theory with no free parameter, it is conceivable that an huge symmetry group
or Ward identities get restored at high-enengfich are responsible for the ultraviolet
finiteness of string theory.

Recently it was discovered thf2] the high-energy limitsx’ — oo of stringy Ward
identities can be used to fix the proportionalignstants between scattering amplitudes
of different string states algebraicallyithout referring to Gross and Mend€3] saddle
point calculation of high-engy string-loop amplitudes. ®se proportionality constants
are, as conjectured by GrogY, independent of the scattering angley and the order
x of string perturbation theory. As a result, all high-energy string scattering amplitudes
can be expressed in terms of those ohtamns. These Ward identities, which are valid
to all energye’ and all loop orders in string perturbation theory, are derived from the
decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ)
spectrum of open bosonic string. A prescription to explicitly calculate zero-norm states for
arbitrary mass levels, or stringy symmetry charges with arbitrarily high spins, was given
in [5]. The importance of zero-norm states and their implication on stringy symmetries
were first pointed out in the context of massivemodel approach of string theof@].

These stringy symmetries were also dematstt recently in Witten’s string field theory
(WSFT), and the background ghost fields in the off-shell BRST spectrum were identified,
in a one to one manner, to the lifting of the on-shell conditions of zero-norm states in
the OCFQ approacfr]. On the other hand, zero-norm states were also shH&mo

carry the spacetime., symmetry charges of toy 2D string theory, and the corresponding
ws Ward identities were powerful enough to det@rethe tachyon scattering amplitudes
algebraicallywithout any integratiorf9].

In this paper, all Ward identities for the mass lewé? = 4, 6 will be derived, their
high-energy limits are calculated and theoportionality constants between scattering
amplitudes of different string states are determined directly from these Ward identities.
General formula of high-energy amplitudes for arbitrary mass levels will be given in terms
of those of tachyons. In addition to those identified before, we discover some new nonzero
components of high-energy amplitudes at eaxss level not found previously by Gross
and Maneg10]. These components are essential to preserve massive gauge invariances or
decouple massive zero-norm states of stringmheA set of massive scattering amplitudes
and their high energy limits are calculated explicitly for each mass &k 4,6 to
justify our results. This paper is organized as following Section 2 we derive stringy
Ward identities for the mass lev&? = 4[11], and then take high-energy limits of them to
determine the proportionality constants betwseattering amplitudes of different string
states algebraically. At the subleadingder energy, one finds 6 unknown amplitudes
and 4 equations. Presumably, they are praportional to each other the proportional
coefficients do depend on the scattering angdgs. This result will be confirmed at
Section 3 In Section 3 the high energy limits of a set of string-tree level amplitudes with
one tensor at mass lev#!2 = 4 and three tachyons are explicitly calculated to justify
the results oSection 2 The whole program is then generalized to mass |88k 6 in
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Section 4 We make a comparison of our results with those of Gross and Maofgmn
Section 5Finally a brief conclusion is given iSection 6

2. High-energy stringy Ward identities of masslevel M2 =4

In the OCFQ spectrum of open bosonic string theory, the solutions of physical states
conditions include positive-norm propagating states and two types of zero-norm states
which were neglected in the most literature. They[4&]

Typel: L_1|x), whereLi|x)=La|x)=0, Lo|x)=0; (2.1)

Type Il: (L_z + 2L21> %), whereL1|%) = Ly|%) =0, (Lo+ 1)|%)=0.
(2.2)

Egs. (2.1) and (2.2an be derived from Kac determinant in conformal field theory. While
type | states have zero-norm at any spacetime dimension, type Il states have zero-norm
only at D = 26. The existence of type Il zero-norm states signals the importance of zero-
norm states in the structure of the theory of string. In the first quantized approach of string
theory, the stringyn-shell Ward identities are proposed @ (for our purpose we choose
four-point amplitudes in this paper)

/

Dg.
T, (ki) = g2 / —~ Dx" exp(—;"—n f a2 ﬁg“ﬂaaX“aﬁXu)

4
x [ vitki =0, (2.3)
i=1

where at least one of the 4 vertex operators corresponds to the zero-norm state solution of
Egs. (2.1) or (2.2)in Eg. (2.3)g. is the closed string coupling constanf,is the volume of

the group of diffeomorphisms and Weyl rescalings of the worldsheet metria; énd are

the on-shell vertex operators with momekgtar he integral is over orientable open surfaces
of Euler numbery parametrized by moduf with punctures a4;. The simplest zero-norm
statek - «_1]0, k), k% = 0 with polarizationk is the massless solution &f. (2.1) which
reproduces the Ward identity of string QED when substituting Edo (2.3) A simple
prescription to systematically sol¥gys. (2.1) and (2.2pr an infinite number of zero-norm
states was given ifb]. A more thorough understanding of the solution of these equations
and their relation to spacetinag, symmetry of toyD = 2 string was discussed [B]. For

our purpose here, there are four zero-norm states at massével4, the corresponding
Ward identities were calculated to [l ]

kO T + 26, T =0, (2.4)
5
(51%1@9; + nu”e;)zguw + 9k,.0, T + 66/, T} =0, (2.5)

1
(5@1@9A + 2nwex>7)§m> + 9,60, 7" — 60, TI" =0, (2.6)
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(gk#km + gnwkk)TX(““” + Oy + 2V k)T + 25, T =0, (2.7)
where 6,,, is transverse and traceless, afidand 0, are transverse vectors. In each
equation, we have chosen, say(kp) to be the vertex operators constructed from
zero-norm states ankl, = kp,. Note thatEq. (2.6)is the inter-particle Ward identity
corresponding taD, vector zero-norm state obtained by antisymmetrizing those terms
which contaimﬁlaiz in the original type | and type Il vector zero-norm states. We will

use 1 and 2 for the incoming particles and 3 and 4 for the scattered partidiess.I(2.4)—

(2.7), 1, 3 and 4 can be any string states (including zero-norm states) and we have omitted
their tensor indices for the cases of excited string states. For example, one can choose
v1(k1) to be the vertex operator constructed from another zero-norm state which generates
an inter-particle Ward identity of the third massive level. The resulting Ward-identity of
Eq. (2.6)then relates scattering amplitudes of particles at different mass [Eysl.in

Egs. (2.4)—(2.7)gre the mass levelf? = 4, xth order string-loop amplitudes. At this
point, {Z,**?, T/, T}'} is identified to be theamplitude triplet of the spin-three state.

TX[’“’] is obviously identified to be the scattering amplitude of the antisymmetric spin-two

state with the same momenta ﬁ)é"“). Eq. (2.6)thus relates the scattering amplitudes
of two different string states at mass levgl = 4. Note thatEgs. (2.4)—(2.7pre valid
order by order and arautomatically of the identical form in string perturbation theory.
This is consistent with Gross’s argument through the calculation of high-energy scattering
amplitudes. However, it is important to note thzads. (2.4)—(2.7are, in contrast to the
high-energyr’ — oo result of Gross, valid tall energye’ and their coefficients do depend
on the center of mass scattering angts, which is defined to be the angle betwdan
and—ks, through the dependence of momentkm

We will calculate high energy limit cEqgs. (2.4)—(2.7yithout referring to the saddle
point calculation if3,4,10] Let us define the normalized polarization vectors

1 ko
ep = _(E27 k27 O) =, (28)
m2 ma
1
ey = _(k27 EZ? 0)? (2'9)
m2
er =(0,0,1) (2.10)
in the CM frame contained in the plane of scattering. They satisfy the completeness relation
= ellesn, (2.11)
a.f

whereu,v=0,1,2 anda, 8 = P, L, T. Diagn** = (-1, 1, 1). One can now transform
all u, v coordinates irEgs. (2.4)—(2.7)o coordinatesg, 8. ForEq. (2.4) we haved*’ =
ehe) —ehel or 91 =elel + elre} . In the high energys — oo, fixed anglepewm limit,
one identifiesep = ¢; andEq. (2.4)gives (we drop loop ordeg here to simplify the
notation)

TS =T + Ty — Ty =0, (2.12)
T2+ T i) =0. (2.13)
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In Egs. (2.12) and (2.13Wwe have assigned a relative energy power for each amplitude.
For each longitudinal. component, the order 82 and for each transvergecomponent,

the orderisE. This is due to the definitions ef, ander in Egs. (2.9) and (2.10Wwheree,,

got one energy power more thap. By Eq. (2.12) the E® term of the energy expansion
for 7.1 is forced to be zero. As a result, the possible leading order tedif.iSimilar

rule applies to7z .7 in Eq. (2.13) For Eq. (2.5) we haved’” = e}/ or 6'* = ¢/; and one
gets, in the high energy limit,

1075, + 1% + 187}, + 67,7 =0, (2.14)
107,572 + T%r + 1813 1) + 6T = 0. (2.15)

For theD, Ward identity,Eq. (2.6) we haved” = ¢} or 6 = ¢/ and one gets, in the high
energy limit,

TS5+ T + 9512 - 3772 =0, (2.16)
T573 + Ty + 9734, — 3T =0. (2.17)

Itis important to note the[, 1) in Eq. (2.16)originate from the high energy limit &fp 1,
and the antisymmetric property of the tensor forces the leaifrigrm to be zero. Finally
the singlet zero norm state Ward identigg. (2.7) implies, in the high energy limit,

347,51 + 9T,y + 84T 1 ) + 9T 7, + 50T/ =0. (2.18)

One notes that all components of high eryeagnplitudes of symmetric spin three and
antisymmetric spin two states appear at least onéggm (2.12)—(2.18)t is now easy to
see that the naive leading order amplitudes correspondirif tappear inEgs. (2.12),
(2.14), (2.16) and (2.18)However, a simple calculation shows tHEf; , = 7,4, =
TZ"L = 0. So the real leading order amplitudes correspond:fo which appear in
Egs. (2.13), (2.15) and (2.17) simple calculation shows that

Terr T Tapy Top =8:1:—1:—1 (2.19)

Note that these proportionality constants are, as conjectured by [3logsdependent of
the scattering anglécym and the loop ordeg of string perturbation theory. They are also
independent of particles chosen for verigx 4. Most importantly, we now under stand that
they originate from zero-norm states in the OCFQ spectrum of the string! The subleading
order amplitudes corresponding & appear inEgs. (2.12), (2.14), (2.16) and (2.18)
One has 6 unknown amplitudes and 4 equationssiimably, they are not proportional to
each other or the proportional coefficisido depend on the scattering angtgs. We will
justify this point later in our sample calculation$®ction 3Our calculation here is purely
algebraiaonithout any integration and is independent of saddle point calculatiof8id,10]

It is important to note that our result Bq. (2.19)is gauge invariant as it should be since
we derive it from Ward identitie€.4)—(2.7) On the other hand, the result obtainedifi]

with 7,3, o« 7,2, and7,3 , = 0 in the leading order energy at this mass level is, on the

contrary,not gauge invariant. In fact, witle’LT =0, an inconsistency arises, for example,
betweerEgs. (2.13) and (2.15WVe give one example here to illustrate the meaning of the
massive gauge invariant amplitude. To be more specific, we will use two different gauge
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choices to calculate the high-energy scattering amplitude of symmetric spin three state.
The first gauge choice is

(Euvkaﬁ‘ik + G(Mv)aﬁlaiz) 10, k),
3
€(uv) = —Ek)‘e,w)\, kK" €03 =0, "Y€ = 0. (2.20)

In the high-energy limit, using the helicity, decomposition and writpg, = Za,ﬂﬁ ey x
efeiua,%; o, B,6=P,L, T, weget

(ew;\af‘i’\ + e(w)aﬁlaﬂz) 10, k)
=[uprr(6alLT + 606(}10&)2)
+ uTTp(SaZ{P — 3O(LLP + 30((_T T) — 30(<Ll 5)2)
+urrL(3alTE — o ) +urrr (of TTT — 3 EM)]10, k). (2.21)
The second gauge choice is
B!V 10.K),  KMEa =0,  nMVEu,=0. (2.22)
In the high-energy limit, similar calculation gives
10, k) = [arrr (3Tt — ol E8) +iirrr (@fTT — 3¢ELT)](0, k). (2.23)

It is now easy to see that the first and second termEmf(2.21)will not contribute
to the high-energy scattering amplitudes, of the symmetric spin three state due to the spin
two Ward identitiesEgs. (2.13) and (2.12) we identify ep = ez. Thus the two different
gauge choiceg&qgs. (2.20) and (2.23)ive the same high-energy scattering amplitude. It
can be shown that this massive gauge symmetry is valid to all energy and is the result of
the decoupling of massive spin two zero-norm state at mass M%et 4. Note that the
aLLT term of Eq. (2.23) which corresponds to the amplitudg’, -, was missing in the
calculation of Ref[10]. We will discuss this issue iSection 5

To further justify our result, we give a sample calculatiorsection 3

3. A sample calculation of masslevel M2 =4

In this section, we give a detailed calculation of a set of sample scattering amplitudes
to explicitly justify our results presented Bection 2 Since the proportionality constants
in Eq. (2.19)are independent of particles chosen for verigy 4, for simplicity, we will
choose them to be tachyons. For the string-tree lgvel1, with one tensop, and three
tachyonsuy 34, all scattering amplitudes of mass leveP = 4 were calculated ifil1].
They are

4
Tﬂvk — / dei (eiklx3XﬂaxvaxkeikzXeiksXeiImX)
i=1
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(5Dl (=51
L5 +2)
+3(s/2+ Dt/2(t/2+ DK Kk — 35/2(s/2+ 1) (t/2 + Dk} k5k;
+5/2(s%/4— 1)kLk3K5], (3.1)

[—t/2(c2/4 — 1)k4 kY

4

Ty — / dei (eileBZX(uaXv)eingeingeik4X>
i=1

F(—$—Dr(-5-1

[1/2(:?/4 — 1)k k]

I'(z+2
— (s/24 D1/2(t/2+ DAYy + 5/2(5/2 + 1)(1/2 + Dky'k})
—5/2(s?/4— 1)kh k3], (3.2)
4
TH — % / l_[d-xi <eik1X33X;Leik2Xeik3Xeik4X)
i=1
_F(—%—l)l“(—%—l) 2,0 1\t _ 2,0 1\pH
= FG+2 [s/2(s“/4— 1)k5 —1/2(17/4 — 1)k} (3.3)
4

T[/Ll)] — / l_ld-xi <eik1XaZX[/LBXv]eikzXeik3Xeik4X>
i=1
_D(=3-Dr (=51 [(s +1
B r'%+2 2
wheres = — (k1 +k2)2, r = —(k1+k3)2 andu = — (k1 +k4)? are the Mandelstam variables.
In derivingEgs. (3.1)—(3.4)we have made th&_(2, R) gauge fixing by choosing; =0,
0=x2=1x3=1 x4 =o00. To calculate the high energy expansionst (— oo, 7 =
fixed) of these scattering amplitudes, one needs the following energy expansion formulas

—2E? m2—2\ 1
k= 1— (-2 il 3.5
e (mz )[ ( 4 )EZ} (35)
= _2E?2 1 m%—Z 1 m% 1 m‘zl—Zm% 1
=\ )T )T\ )BT T e )

4 0(%)} (36)

er -k1:0, (37)

)(s/2+ D(t/2+ 1)k[3“k;]}, (3.4)

+(252—1)(@>2%+0(%>}, (3.8)
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E2 m2 1 m2 1
o (S [ee-alie ()

4 262 2
my —4m5E° + 86— 4\ 1 1
+( G )EJFO(ﬁ)}, (3.9)
2 1
er k3= (—2En)E — (%) + (%) — (EEZ) + 0<E7> (3.10)

Whergs =sin ¢% andn = cos"’CT“". The high-energy expansions of Mandelstam variables
are given by

s=(E1+ E2)?=4E?, (3.11)
1 1
t= (—4&2)E2+(m§—6)52+ é(m§—|-2) (1—2¢ )——|—0< ) (3.12)
We can now explicitly calculate all amplitudeskq. (2.19) After some algebra, we get

slns—l—tlnt—l—ulnu>
2

Trrr = —8E96Xp<—0{/
3 5 5 1
in3
sin 1+ —=+———=+0| = )|, 3.13
x ¢cm[ +t o2t g age <E8>:| (3.13)

In tint In
TLLT:—EQexp(—o/S sHrinitu u)

2

1
[sm ¢cm + (6 sinpem CoS gem) -

2
—Sin¢cm(%15in2¢cw|— )— ( )] (3.14)

In tint In
7TLT]=Egexp(—o/s S+ > tu u)

X |:Sin3¢CM — (2 singcm cod (]Scm)%

+ Sin(bCM(gSinz(ﬁCM — 2)% + 0(%)}, (3.15)

In tint In
T(LT)=E9€‘XD<—0/S S+ > tu u)

3 1
[sm dcm + singem (E —10cospem — = coszquM) il

E2
. 1 1
— Singcm (Z + 10cospcm + — COS2 ¢CM> — + 0 (E—>:| (3.16)

We thus have justifiedEq. (2.19)with 7,3, = 8E95|n3 pom exp(—q/ Snstrinrtuin,
and7,% , = 0. We have also checked ttgf, , = 7,4, = 7,4, = T(Z‘L) =0 as claimed
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in Section 2 Note that, unlike the leadingz® order, the angular dependences@forder
are different for each amplitudes. The seduding order amplitudes correspondingZté
(E8 order) appear ifEgs. (2.12), (2.14), (2.16) and (2.18)ne has 6 unknown amplitudes.
An explicit sample calculation gives

. In tint In

75, = —4E®singcu cospem eXp(—a/s o > Tu u) (3.17)
) sins+tint+ulnu

T/% 1 = —8E®sir? gcm cospem exp(—a’ > ) (3.18)

which show that their angular dependences are indeed different or the proportional
coefficients do depend on the scattering agg.

4. Thecalculation of masslevel M2 =6

In this section we generalize the calculatiorSafctions 2 and & mass level2 = 6.
There are four positive-norm physical propagating states at this masg18yeh totally
symmetric spin four state, a mixed symmetric spin three state, a symmetric spin two state
and a scalar state. There are nine zerametates at this mass level. One can use the
simplified method5] to calculate all of them. The spin three and spin two zero-norm
states are (from now on, unless otherwiseestatach spin polarization is assumed to be
transverse, traceless and is symmetric with respect to each group of indices)

L_1]x) = 6,01 (kg +36"20>,)10,k),  |x) = O,n0*3410, k), (4.1)

L_1|x) = [knOuve o’ 5 + 200" 10’ 510, k),

x) = O 0¥ 5|0, k),  whered,, = —0,,, (4.2)

L_q|x)= [zewa“; 40,0 10" 5 + 200, + kO s
2 noAB
+ §k)\kﬂ9uva_1 10, k);
nov 2 HVA
[x) = | 200 e’ 5 + ék?ﬂuva—l |0, k), (4.3)

3 - 15
(Lz + §L21> |%) = |:39,wot’“£ + 89Wotﬁlaz3 + (k;ﬁw + ?k(xéuu))a)”’iazz

2 2

1 3
+ <_7Mﬁ9;w + _k)\kﬁeuv>au‘ixﬁi||o» k),
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wherea"] = o’ &, etc. There are two type | degenés vector zero-norm states which
can be calculated as following:

Ansatz: |x)=[a(0-a—3)+ bk -a_2)(O-a—1)+clk-a_1)(O a_2)
+d(e—1-a_1)O 1)+ f(k-a_1)?® -a-1)]|0, k). (4.5)
The L1 and L3 constraints oEq. (2.1)give
a—2c=0, b+c+d—6f=0 3a—12b+28]—6f=0, (4.6)

which can be easily used to determine, for examplgh:c:d: f = 26:5:13:0:3 or
0:81:0:39:20. This gives two type | vector zero-norm states

L_a|x)=[3a(0 -a-a)+2bk-a3)(0 -a_1)+ 2c+a)k-a_1)6-a_3)
+O+o)k-a2)O-a2)+b+2f) k- a-1)k-a_2)(O a_1)
+2d(a—2-a-1)O -a-1) + (c+ fHk-a_1)%O -a_2)
+d(a-1-a-1)0 -a2)+dk-a-1)(a-1-a-1)0 -a-1)

+ fk-a-1)%6 - a-1]I0,k). (4.7)
The type Il vector zero-norm state is

3 2 -
(L—Z + EL_1>|x>
= [33(9 co—g) +A4k-a—3)(0 - a-1) +22(k - a—1)(0 - ax-3)
21 11
+ 7(k ca-2)(0-a—2) + 7(k ca—1)(k - a—2)(0 - a-1)
15 5 3
+ 7(k ca-1)(0 - a_2) + E(a—l ~a—1)(0 - a—2)

1 3
+ 5k a1 @)@ o) + S(k-a-p)*@ -al>] 10, k),

%) =[3(0 - a—2) + (k- 1) (0 - @—1)]|0, k). (4.8)
The type | singlet zero-norm state was calculated to be the follof@hg
Ansatz: |x) = [a(k . a_1)3 +bk-a_1)(o—1-0_1)+clk-a_1)(k-a_p)
+d(o—1-0a_2) + f(k-a_3)]|0,k). (4.9)

The L1 and L, constraints ofEqg. (2.1)can be easily used to determiaeb:c:d: f =
37:72:261:216:450. This gives the type | singlet zero-norm state

Loglx) =[atk-a-)* +b(k-a-)?(@-1-a-1) + @b+ d) (k- a-1)(@-1-a-2)
+(c+3a)k-a_1)?k-a_2)+ctk-a_2)’+d(a_2-a_2)
+bk-a—2)(e-1-a-1)+ @2c+ [k -a-3)(k-a-1)
+2d(e—1-a_3)+3f(k-a_a)]0, k). (4.10)

Finally, the type Il singlet zero-norm state can be calculated to be
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3 5\,
L o+ EL,]_ |xX)

= |:11a(k ~a_4)+ (6a +8c)(k-a_3)(k-a_1) +8b(a_1-a_3)

5 3 17
+ (Ea + 3c> k-a_2)?+ (éa + 7c) k- a1k - o_2)

5 1
+3b(a—2-a_2) + <§b + §a> (@-1-a-1)(k-a_2)

+6b(k-a_1)(a_2-a_1)+ (gb + %c) k-o—1)%(a—1-a_1)
3 1
+ Ec(k o)+ Eb(ot—l . 06—1)2} 0, k),

%) = [a(k - a—2) + b(@-1-a-1) +c(k - a-1)?]|0, k) (4.11)

wherea:b:c=75:39:19. We are now ready to calculate the high-energy Ward identities.
The high-energy limit of stringy Ward identity correspondindeip. (4.1)are

VO(=T,%1% +3T, % rr) +3(-T1%. + 3T 57) =0, (4.12)
V(37,7115 + T,5r1) +3(=3T 7 + Tirr) =0, (4.13)
where7,,; is the amplitude correspondingdﬁ‘l”a’l)z. Egs. (4.12) and (4.13)orrespond
to 91" = —ejeje; + 3e(jeper, and 017 = —3e(jej ey + epeyel respectively.
Similarly, Eq. (4.2)gives
T 7+ V612, =0, (4.14)

where ﬁw is the amplitude corresponding tmﬁlai3 and ﬁw,)\ is the amplitude
corresponding to mixed symmetric partmﬂo&z, that is, first symmetrizing w.r.fuwv
and then antisymmetrizing w.rjtx. This is exactly the amplitude for the positive-norm

mixed symmetric spin three state. The type | symmetric spin two zero-norntsjafé.3)
gives, in the high-energy limit,

. 160 -
27,515 = T3rr) + 2VO[(T3L — Trr) + 3 (TS p+ T4 1)]
+2(T1) — T5r) + (T, — Tfr) =0, (4.15)

1- -
27,177 + @[ZTE’LT + gTE’L,T} + 210 + T =0, (4.16)

where7,, is the amplitude correspondingmé_‘;. The ES order off’P‘SLfL“ in Eq. (4.15)is
forced to be zero in the high-energy lintitp = ¢) due to the antisymmetric property of
the tensof7,,, , w.r.t. uA. Itis important to note that in derivinggs. (4.15) and (4.16)ve

have made the following irreducible decomposition of the term

1 1
kot , = [g(k)\ew ki + koBr) + 5 (Krby — kvéuk)}akqazz (4.17)
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in Eq. (4.3) The first term with totally symmetric spin three index corresponds to the gauge
artifact of the positive-norm spin four state, and the mixed symmetric tensor structure of
the second term is exactly the same as that of the positive-norm spin three state. In general,
there are three other possible mixed symmetric spin three terms, which do not appear in
Eq. (4.17) This is a nontrivial consistent check of zero-norm states spectrum in the OCFQ
string. We shall see another similar mechanism happens in our later calculations. The type
Il symmetric spin two zero-norm stakg. (4.4)gives, in the high-energy limit,

17 1 17
T3S - 5 Trr = 5T+ 5 V8 (T~ Ti)

2V6 26,4 4 = =2 2
+ 3 (TLL,;1 + TL4T,T)i| + 8(T<Z‘L) ~ 1)) + 3(7,1 — Tr7r) =0, (4.18)
75 5 4V6 - 5 J6T5 =3 3
187 i+ Toprr + 3 Trpr+17V6T r + 16774+ 67,7 =0. (4.19)

Two type | vector zero-norm stat&sy. (4.7)give, in the high-energy limit,

6vV6f 7,510 +V6dTS rp +6(b+c+3T5, +3dT Y + (4b— 8058
+ 826+ 2c + )T}, + (26— 2c — )T PP+ VB + O TS,
+ 3072 =0, (4.20)

6V6/ T, 17 + 64T +6(b+c+ 31T L +3dT 5 — (4b— SC)iPSZ%
+V6(2b +2c + )T 3 )+ V6(2b — 2c — a)T}3
+V6(b+ )T +3aTH=0, (4.21)
where7,, is the amplitude correspondingdé_‘4. Note that’fL‘S;;‘ in Eq. (4.20)is identical
to 7,574 in Egs. (4.15) and (4.18) the high-energy limit. Howevet,?, , and7;3 , can

be different. AIsdfP5P’T in Eq. (4.21)is zero since it equals tiifLT in Eq. (4.14) which

is zero, in the high-energy limit. Howevef,3, . and7;3 ;. can be different. In deriving

Egs. (4.20) and (4.21)n addition to &.17), one needs another projection formula
Kok Ovaa
1 2 P
= §(k,\k#9v + ky kO + kyky0,) + é(kkkﬂeu — kyky0) 0" jal,. (4.22)

Again, the first term oEq. (4.22)with totally symmetric spin three index corresponds to

the gauge artifact of the positive-norm spin four state, and the mixed symmetric tensor
structure of the second term is exactly the same as that of the positive-norm spin three
state. This is another consistent check of zero-norm states spectrum in the OCFQ string. In
the following, we will useEgs. (4.17) and (4.22yhenever they are needed. Type Il vector
zero-norm stat&q. (4.6)gives, in the high-energy limit,
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s 6 3 By
N TLGLTT + 7875, + ETLA'TT +2TL4T,T

- . . 21
+38T,% 7 + 2667} ) — 187,177 + V6T, +337,7 =0, (4.23)
5 V6 3
T+ = > Ty + 7875 + ETTSTT
- . . 21
+ 3877, +26V67 3y, — 1877, + S V6T + 337} =0, (4.24)

Note that]’ r1.2 In Eg. (4.23)is identical toTT5P p in Eq. (4.21)in the high-energy limit.
Finally, type I and type Il singlet zero-norm states give, in the high-energy limit,

TAT 72 + 2475 rp + 124V67,5 | + 2467, — 86T, 1
+3241 7, 4877 =0, (4.25)

13 -
3427, 15 + 1367, 1y + S Ty + 548V6T .5, +123V6T, 51 +8V6T ] ¢
+12041 7, + 4897, =0. (4.26)

This completes the calculatimf high-energy Ward identities. It is easy to count the high-
energy amplitudes for each tensor. By, one haslz 11, Torer, Toerr, Torrr and
TTTTT- For IZZW)” one haSTLLL,'TLLT, 'TLTT andTTTT. For 'j;w,)” one haSj'LL,T and
Tir.7. ForT,,, one hasly;, 7.t andTrr. For 7, one hasl;; 7.7 Tty andZrr.

For 7,,, one hasZ; and7r. Itis very important to note that in the* order, one gets one
more amphtudeTL“P »» and in theE? order, one gets another amphtuﬂﬁp r described
afterEq. (4.21) It can be checked bEgs. (4.12)—(4.26hat all the amplitudes of orders
E8 E7 E6 and E® are zero. So the real leading order amplitudes correspond,tevhich
appear inEgs. (4.12), (4.15), (4.18), (4.20), (4.23), (4.25) and (4.R®}e that there are
two equations for4.20. We thus end up with 8 equations and 9 amplitudes. A calculation
by Gauss elimination shows that

4 .74 .74 .74 .74 .44 .44 .44 .54
TTTTT'TTTLL /TLLLL TTTL /TLLL ,TLTT ,TLP,P'/TLL'/TLL

4.1 4f f 2f

Note that these proportionality constants again, as conjecturdaly Gross, independent
of the scattering anglécy and the loop ordey of string perturbation theory. They are
also independent of particles chosen for vertgx 4. The subleading order amplitudes
corresponding toE® appear inEgs. (4.13), (4.14), (4.16), (4.19), (4.21) and (4.24)
Note that there are two equations fa¥.Z1). One has 7 equauons with 9 amplitudes,
T T T Trr I 1 Tp o0 Ti T3y, @nd 2. Presumably, they are
not proportional to each other or the proportlbmze1%|C|ents do depend on the scattering
angle gcm. Our calculation here is again purely algebraichout any integration and

is independent of saddle point calculation[814,10] It is important to note that our
result inEq. (4.27)is gauge invariant. On the other hand, the result obtain¢tihwith
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Tfyprr < Tpr < T, and T =T, =Ty = T = T p = 1,7 =0inthe
leading order energy is, on the contramgt gauge invariant. In fact, with only three non-
zero amplitudes, it would be very difficult to satisfy all 8 equations. The situation gets even
worse if one goes to higher mass level where number of zero-norm states, or constraint
equations, increases much faster than that of positive-norm ggté&se further justify our
result, we give a sample calculation in the following.

Since the proportionality constantskig. (4.27)are independent of particles chosen for
vertexwvs 3.4, for simplicity, we will choose them to be tachyons. For the string-tree level
x =1, with one tensor, and three tachyons 3 4, all scattering amplitudes for mass level
M? =6 were explicitly calculated ifiL4]. They are

4
THveb — f [ [dxi(e® X oxmax"ax0xP el*eX gihaX oikaX)
i=1

M=% — DO(=5 — D[ /s 52 ,
= — — — ) 2 04 54
r+2) [(4 )(4 )3333

2 Gipvparh)  SSL(S t (o P)

52 Wpvparh o (12 2 1 o
- s(z - 1) (1 + DS RKEKD (Z - t) (Z - 1)k1 k{ki‘kl},

(4.28)

4
Tuv)» — / dei (eile3Xuaxv32XAeik2Xeik3Xeik4X)
i=1

M~ —DI(=4 - D[ (52 §2
= (= — — ) 298
rs+2) [ (4 )(4 )3 37
t2 1 s 1 Ay (g v)
o7 1) (51 )Rk e
t t
- SZ(% + 1) (E + 1) (KRS + K k3kg)

52 1 Ay (qv) 12 2 My
+s Z_l §+1 k3ky k3’ — Z_t Z_l ki kiky |, (4.29)

4
THY — / l_ld-xi <eik1X82XuBZXUeikzxeik3Xeik4X>
i=1

T3 - D=y~ D[ N
- rs+2) [(Z_S><Z_l>k3k3

t t ) 12 12
+ %(% + 1) (E + 1>k§“k3) + (Z - z) (Z - 1)k’fk{}, (4.30)
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4
Fuv _ } dei (eiklxaxu 33Xveik2Xeik3Xeik4X)
2
i=1

P3PS =D[(2 (% Ny
=T TG (o) (a2
s (52 ¢ (2 s
— E(Z - 1) (5 + 1)kfk; - E(Z — 1) (5 + 1>k§k;
12 12
+ (Z - t) (Z - 1>k’1‘k;], (4.31)

4
TH — é / | | dxi <elk1X84Xuezk2Xelk3Xezk4X>
i=1

ISR () (s
I +2) 4 4 3

(-5 2] (4.32)

We can now explicitly calculate all amplitudes Eg. (4.27) After a lengthy algebra,

we have justifiedEq. (4.27)with 7,4, = 16E2sin® gom exp(—a’ SNstlitulnu
: g, 6 6 6

tpe hlgh-?nergy limit. V\!e have :’;l|SO checked tﬂ”ﬁLL =T 0. =T1. =TrrL =

1% p =15 p=0and7? , =T , as claimed above. The calculation®f. .., for

example, gives

[(—% - DI(=L —1)[ [ s2 2
Tioss == 2r(%)+(2>2 )KSZ_S)(SZ_l)(“k?‘)A

2
— (SZ — 1) (t +2)(erk3)>(eLk1)

3 R
GG

(= -1 + 2)(eLka)(erk1)® + r_ = —1)(erkn)?
f<1 )(S )(eLk3)(eLk1) (I t)(l )(Ll) .
(4.33)

By usingEgs. (3.6), (3.9), (3.11) and (3.12hd after a lengthy algebra, we find that the
contributions of order&1® and E14 of 77,1 ; are zero. The leading ord&r'? term gives

L sint pom exp(—o/ st NtuInG 55 expected froriq. (4.27) Similar calculations apply
to other 8 amplitudes. Finally, B¥gs. (3.1), (3.7), (3.10) and (4.28)is easy to deduce in
general that

7;'TT‘.‘ — [(_2)11E3n sin ¢CM]T7 (434)

wheren is the number ofl’ and 7 = exp(—¢/ s 10ituiney s the high energy four
tachyons amplitude. As a result, all higheegy string scattering amplitudes can be
expressed in terms of those of tachyons.
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5. A comparison with saddle point calculation

To compare our results with Ref10], we briefly review the works i{3,4,10] In
Ref.[10], it was shown that the high-energy, fixed angle scattering amplitudes of oriented
open strings can be obtained from those of closed strings calculated by Gross and Mende
[3] by using the reflection principle. First, froEq. (2.3) one notes that the high-energy
limit o’ — oo is equivalent to the semi-classical limit of first-quantized string theory. In this
limit, the closed strings-loop scattering amplitudes is dominated by a saddle point in the
moduli spacen. For the oriented open string amplitudes, the saddle point configuration
can be constructed from an associated configuration of the closed string via reflection
principle. It was also found that the Euler numberof the oriented open string saddle
is alwaysy = 1 — G, whereG is the genus of the associated closed string saddle. Thus
the integral inEq. (2.3)is dominated in the/ — oo limit by an associated;-loop closed
string saddle point irk#, m; andé;. The closed string classical trajectory@toop order
was found to behave at the saddle poinf3is

4
i 1

XL (@) =—=) kiInjlz—a|+0[=), 5.1

40 =15 Lhmk-al+o( ) 5.)

which leads to the th order open string four-tachyon amplitude

Ins+zInt +ulnu

T, ~ g2 exp(—o/s ) 5.2

x 8 22— ) (5.2)

Eq. (5.2)reproduces the very soft exponential deca§ e of the well-known string-tree

x = 1 amplitude. The exponent &q. (5.2)can be thought of as the electrostatic energy
E¢ of two-dimensional Minkowski chargels placed ate; on a Riemann surface of
genusG. One can use th&L(2, C) invariance of the saddle to fix 3 of the 4 points

then the only modulus is the cross ratio= (1=9)42=44) " \yhich takes the valug =
(a1—az)(az—as)

A~ —Lasi ‘7’%“" to extremizeE if we neglect the mass of the tachyons in the high-
energy limit. For excited string states, it was found that only polarizations in the plane of
scattering will contribute to the amplitude at high energy. To leading order in the eRergy
the products o7 ande; with 3" X are given by[10]

-1
er - "X ~i(—)" ( ) Esingcm, n >0, (5.3)
. (=1 EZSII’IZ([')CM
X ~i(—) Y > :,\’ 1, 5.4
er i(-) e 2my 2 n> (5.4)
e -3"X~0, n=1, (5.5)

wherem; is the mass of the particle. Now, we would like to point out that naive uses of
Egs. (5.3)—(5.5)ill miss some high-energy amplitudes and will give, for example, a wrong
resuItTL3’LT = 0[10] sinceer, - 3X ~ 0. This is inconsistent with our restHg. (2.19)or

Eq. (3.14) The missing terms can be seen as following. We will useie= 4 string-tree
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x = 1 amplitudeZ; ;7 to illustrate our point. Let us first use the path integral calculation

4
TLLT = / de[ (eileeL -0Xey -0Xer - 8Xeik2Xeik3Xeik4X>, (5.6)
i=1
which is similar to the calculation of moments of the Gaussian integral

o0 an o0
/% / dxx”e_%x2+bx=aw /% / dx e~ 33°+bx, (5.7)
—o00 —00

Forn =1, the value obtained biq. (5.7)is
b b2

—e2a :xe_%xz+bx |

a =a
Whereg is exactly the saddle point of the Gaussian integrand.nF=er2, however, the
value obtained b¥q. (5.7)is

2
b A _a.2 1 2
Z) e 4+ Zemm = x2e 2" +bx| b+ e,
a a =4 a

2
Itis this extra%e% term that was missing in the argument of Section 6 of R&X. Similar
situations happen for > 3 and even more terms were missed. The argument can be easily
generalized td € R® in the space of helicity decompositidgg. (5.6)corresponds to the
case ofn = 3. It can be checked that some terms with the same energy ordgrras
survive in the calculation oEq. (5.6) They will be missing if one misusesgs. (5.3)—
(5.5). Similar wrong calculations will suppress many other should be nonzero high-energy
amplitudes at mass levé!? = 6 stated afteEq. (4.27) Another way to calculatgq. (5.6)
is to use Wick theorem. Again, naive useskafs. (5.3)—(5.5)vill miss some high-energy
amplitudes which correspond to, for example, the contractieffof with e, -9 Xe; -9 X.
We stress here th&qgs. (5.1)—(5.5re still valid as they stand.

6. Conclusion

We have shown that the physical origin of high-energy symmetries and the proportion-
ality constants irEgs. (2.19) and (4.2'@re from zero-norm states in the OCFQ spectrum.
Other related approaches of high-energy stringy symmetries can be foial.ifhe most
challenging problem remained is the calculation of algebraic structure of these stringy sym-
metries derived from the complete zero-norm state solutiorisgsf (2.1) and (2.2)ith
arbitrarily high spins. Presumably, is a complicated 26D generalization ©f, of the
simpler toy 2D string modgB]. Our calculation inEgs. (2.19) and (4.2@re, similar to
the toy 2D string, purely algebraic without any integration which signal the powerfulness
of zero-norm states and symmetries they imply. The results presented in this paper can be
served as consistent checkssaddle point calculation8] and as the realization of high-
energy symmetrigigl] of string theory. The simple idea of massive gauge invariance of our
calculations correct the inconsistenghienergy calculation in Section 6 of REEQ].
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