
The Journal of Systems and Software 72 (2004) 281–294

www.elsevier.com/locate/jss
Prototyping an integrated information gathering system on CORBA

Yue-Shan Chang a,*, Kai-Chih Liang b, Ming-Chun Cheng b, Shyan-Ming Yuan b

a Department of Statistics, National Taipei University, 151 Da Xue Rd, San Xia Town, Taipei County 237, Taiwan, ROC
b Department of Computer and Information Science, National Chiao Tung University, Hsin-Chu 31151, Taiwan, ROC

Received 6 November 2001; received in revised form 8 April 2002; accepted 12 July 2002
Abstract

The sheer volume of information and variety of sources from which it may be retrieved on the Web make searching the sources a

difficult task. Usually, meta-search engines can be used only to search Web pages or documents; other major sources such as data

bases, library corpuses and the so-called Web data bases are not involved. Faced with these restrictions, an effective retrieval

technology for a much wider range of sources becomes increasingly important. In our previous work, we proposed an Integrated

Retrieval (IIR), which is based on Common Object Request Broker Architecture, to spare clients the trouble of complicated

semantics when federating multiple sources. In this paper, we present an IIR-based prototype for integrated information gathering

system. It offers a unified interface for querying heterogeneous interfaces or protocols of sources and uses SQL compatible query

language for heterogeneous backend targets. We use it to link two general search engines (Yahoo and AltaVista), a science paper

explorer (IEEE), and two library corpus explorers. We also perform preliminary measurements to assess the potential of the system.

The results shown that the overhead spent on each source as the system queries them is within reason, that is, that using IIR to

construct an integrated gathering system incurs low overhead.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Information gathering and integration; Search service; Information retrieval; CORBA; XML
1. Introduction

With the advances in the Internet and the World

Wide Web (for short Web), many more types of infor-

mation sources are becoming available. Legacy systems

are increasingly moving to the Web: finance, education,

travel, business, and digital libraries. The sheer volume

of information and its variety of sources makes retrieval
very difficult. Many well-known search engines, for

example Yahoo, AltaVista, Lycos, and WebCrawler,

can be helpful but have their limitations (Selberg and

Etzioni, 1995; Chang et al., 2000; Meng et al., 2002).

None of them individually is sufficient and they suffer

poor scalability in searching. Researchers have thus

constructed meta-search engines (MSE) for querying

more than on search engine at the same time (Selberg
*Corresponding author. Tel.: +886-2-86746782; fax: +886-2-

86715907.

E-mail addresses: ysc@mail.ntpu.edu.tw (Y.-S. Chang), smyuan@

cis.nctu.edu.tw (S.-M. Yuan).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(03)00086-4
and Etzioni, 1995; Dreilinger and Howe, 1997; Chang

et al., 2000; Sato et al., 2001; Meng et al., 2002).

1.1. Problems and motivations

In general, MSEs only search Web pages or docu-

ments but not other sources, such as Web data bases

(Bouguettaya et al., 2000) or library corpuses. The rea-
son is that these other sources are designed using pro-

prietary technology, and general search engines cannot

retrieve from them. Searches may encounter query fail-

ures or returns of unrelated results when the requested

information is not in the Web page of a particular do-

main client. In addition, an expert user cannot query

certain related sources in a unified environment. For

example, a student or a scientist can find information
about particular keywords from web pages, science

paper explorers, and library corpus systems simulta-

neously. Obviously, general MSEs or Web data bases

cannot achieve this objective. Furthermore, not all

search engines and query systems support a unified

interface and a flexible environment to allow expert

mail to: ysc@mail.ntpu.edu.tw


282 Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294
clients to select and query heterogeneous sources. An

effective retrieval technology has thus become increas-

ingly important.

The retrieval of information dispersed among mul-

tiple and heterogeneous sources requires a general

familiarity with their contents and structures, with their
query languages, and with their location on existing

methods. In addition, each type of information source

has its own proprietary protocol over standard trans-

port protocol. A client that wants to retrieve infor-

mation from those information sources has to follow

their protocols as well as the standard transport pro-

tocols. Therefore, the development of software to ease

the integration and interoperation of existing infor-
mation sources is one of the most significant chal-

lenges currently facing computer researchers and

developers.

Many systems, such as Manifold (Levy et al., 1996),

InfoSleuth (Bayardo et al., 1997), TSIMMIS (Garcia-

Molina et al., 1995, 1997), OBSERVER (Mena et al.,

1998, 1999), SIMS (Arens et al., 1993, 1996a,b), and

WebFINDIT (Bouguettaya et al., 2000), gather and
integrate sources, no matter distributed, heterogeneous,

or autonomous. Most, however, share one or more of

the following problems:

• They were developed with proprietary technologies,

which is a deterrent.

• They do not support an Applications Programming

Interface (API), or, when they do, the programmer
needs to spend extra effort on information deliv-

ery over the network. (An industrial standard and

modularized programming environment helps an

applications developer to create elaborate applica-

tions.)

• They do not provide flexibility, extensibility, and sca-

lability whenever their space dynamically changes.

• They do not provide metadata management of
sources during retrieval and extraction. (Systems

should provide for accessing and maintaining the

metadata of sources to guarantee the consistency of

the ontology and to provide a robust updating capa-

bility for sources.)

• They lack a unified API. (Being much more informed

about sources and interfaces, the service provider is

better placed than the system developer to use source
wrappers.) This is not easily achieved with existing

systems.

1.2. Objectives

In a previous paper, to solve the above-mentioned

problems, we proposed an Integrated Information Re-

trieval (IIR) framework (Chang et al., 2001) based
on Common Object Request Broker Architecture

(CORBA) (Object Management Group, 1998). This
helps a client avoid complicated semantics when han-

dling a number of sources in parallel.

Mediator/wrapper architecture is a popular means for

handling heterogeneous web documents. A query picked

up by a mediator is conveyed to a target by a wrapper,

which then translates the result into a structure specified
by the client. Every source connected to the system has

its own wrapper. The codes of a wrapper are tightly

coupled with the format or structure of a specified

source.

In this paper, we present an integrated information

gathering system (InGa) based on IIR for retrieving

information from heterogeneous sources. The prototype

offers a unified interface for querying sources having
their own interfaces or protocols, and uses SQL com-

patible language to query heterogeneous backend tar-

gets. In addition, it can easily link with other sources

because IIR provides a flexible, extensible, and scalable

framework. We link two general search engines (Yahoo

and AltaVista), a science paper explorer (IEEE), and

two library corpus systems.

Its major advantages are as follows. First, it is based
on a CORBA that is a distributed object-oriented

environment of an approved standard. We integrate the

three above heterogeneous sources with a unified client

and application programming interface.

Second, the CORBA model is of a standard widely

accepted by the industry and, therefore, by clients and

programmers. This fact recommends it to application

developers looking for an integrated retrieval system.
The unified programming interface easily allows service

providers, who are far more informed about sources, to

use wrappers in the CORBA environment and speeds

up system development. The system, therefore, is scal-

able.

Third, each of the sources mentioned has its own

query language, schema, and attribute, which means

that InGa must be extensible and integrate any future
variety of sources. Our extensible environment permits

source providers to define their own query interface and

schema in a well-known object model and language, so

that application programmers using the IIR framework

need not query the source interface.

Finally, we adopt structured query language (SQL)

for transparently querying heterogeneous sources. We

do this not only in the relational database but also in
HTML-based and XML-based documents. InGa can

combine references seamlessly to the Web with refer-

ences to the relational database.

The paper is organized as follows. Section 2 describes

other gathering and integrating systems. In Section 3, we

examine query language and design issues relating to

IIR architecture. Section 4 evaluates describes the use

and performance of the system. Section 5 discusses the
application of IIR and the future work. Section 6 pre-

sents conclusions.



Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294 283
2. Related works

InGa is basically a gathering system. Broking systems

are solutions for data sharing in a large and dynamic

space. We now discuss a range of other gathering and

integration systems.
The Information Manifold (IM) is a project based at

AT&T Bell Laboratories (Levy et al., 1996). It provides

uniform access to collections of heterogeneous sources

on the WEB and a high-level query system that describes

the content and capabilities of the sources. In addition,

it uses declarative descriptions of the sources, and ap-

plies algorithms that prune them for a given query,

generating executable query plans. IM also applies a
conjunctive query that specifies which data of the global

schema are represented by the source to query the

backend sources. The query processing algorithms that

allow such transformations to be accomplished take into

account the query processing capabilities of the different

sources. The main components of IM are the domain

model, the plan generator, and the execution engine.

The domain model is the knowledge base. The contents
and capabilities of the sources are actually described as

queries over a set of relations and classes.

InfoSleuth is a Microelectronics and Computer

Technology Corporation (MCC) research project

(Bayardo et al., 1997) that draws on work carried out by

the Carnot project (Singh et al., 1997). It is designed for

retrieval and processing in a dynamic environment such

as the Web. Its functionalities include gathering from
databases and semi-structured (Suciu, 1998) sources

distributed across the Internet, polling and notification

for monitoring changes in data, and analyzing gathered

information. The system has a collection of communi-

cating agents, each taking responsibility for a particular

aspect of the system, for instance, the client agent to

control interaction and the resource agent to wrap a

source. A broker agent controls the integration of
sources and a resource agent advertises their particular

content. Infosleuth uses a frame-slot data model with

standard data types: integer, float, string, date, frames,

and relationships. Its emphasis is on being able to add

new sources, which have local autonomy. A so-called

dynamic binding of resources allows the broker agent to

invoke any currently available source.

OBSERVER is associated with the InfoQuilt project
at the University of Georgia (Mena et al., 1998, 1999). It

handles broking in global systems. It supports queries

over existing sources, where each source is associated

with an ontology that describes its contents. Hence, each

data repository is attached to one or more ontologies,

and clients formulate queries using terms relating to the

selected ontology. The data are stored in a repository

that comprises several sources. OBSERVER can thus be
used either to interoperate existing ontologies or to

integrate sources, first by using the ontology to describe
the contents of the source, and then by relating one

ontology to another. Its approach for broking or for

mapping between ontologies and underlying sources is

not straightforward.

The University of Southern California SIMS project

(Arens et al., 1993; Arens et al., 1996a; Arens et al.,
1996b) has a mediator that supports declarative query-

ing of heterogeneous sources with the purpose of inte-

grating them. The integration is based on Loom

knowledge representation language. Its architecture is

similar to tightly coupled federated databases.

The Stanford University TSIMMIS project (Garcia-

Molina et al., 1995, 1997) has a framework and a col-

lection of tools to assist the integration of sources that
are expected to have not regular schemes but volatile

and highly variable content, structure and accessibility.

Its architecture belongs to a hierarchy of simple medi-

ators using substantial wrappers. The automated gen-

eration of both mediators and wrappers is from simple

high-level descriptions of their functions. In TSIMMIS,

queries are expressed through a web-based object

browser, MOBIE, or directly in LOREL, an OQL-based
query language. In addition, TSIMMIS uses a common

‘‘lightweight object model’’ termed the Object-Exchange

Model (OEM) to express queries and to communicate

between mediators and wrapper. The objects they export

are not required to produce uniform objects. The

declarative Mediator Specification Language (MSL)

used for queries is the specification language for medi-

ators and the query language for wrappers. TSIMMIS
primarily focuses on the semi-automatic generation of

wrappers and mediators that allows integration and

access to underlying sources when processing OEM-

based queries.

WebFINDIT project (Bouguettaya et al., 2000) is

used to describe, locate, and access data in large net-

works of databases, especially for a World Wide

Database (WWD). It aims at making the Web a
friendly platform for accessing and managing hetero-

geneous and autonomous databases. Data organiza-

tion, discovery, and sharing are facilitated through

coalitions and service link concepts. In WebFINDIT, a

codatabase is linked to and stores relevant metadata on

sources. In addition, it offers a variety of tools to locate

the sources of interest. The WWD-QL language pro-

posed in the project, whose purpose is to educate cli-
ents about the available space, enables a database to

know what other databases contain without violating

their autonomy, to locate and access data in large

networks of databases, and to maintain the codata-

bases.

Below, we summarize and compare the above systems

in detail. The matters we are concerned with are Data

Model, Query Language, Client Interaction, Source
Integration, Wrappers, and Sources. Table 1 shows the

comparison.



Table 1

Comparison of selected systems

Data model Query language User

interaction

Source

integration

Wrappers Information sources

Information

manifold

Relational model with

some object-oriented

features

Conjunctive queries Query Rewriting Database Structured and semi-

structured data

InfoSleuth Frame-slot data model

with standards data

types

SQL or graphical

interface for a

particular domain

Query Model match-

ing, rewriting

Relational

database, flat

file

Structured and

semi-structured data

OBSERVER OBSERVER’S domain

model with some ob-

ject-oriented futures

Description logic

expressions

Query Rewriting Database, flat

file, process

system

Structured and

semi-structured data

SIMS SIMS’ domain model

(object-oriented)

Loom query language Query Rewriting Database,

process system

Databases or

knowledge bases

TSIMMIS Object exchange model LOREL for OEM

objects

Browse, query View creation Database, flat

file, process

system

Structured and

semi-structured data

WebFINDIT CORBA object model World wide database

query language

(WWD-QL)

Browse, query View creation Database,

process system

Structured

284 Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294
We deduce the following:

1. The ends and means for achieving data sharing are

distinct, so that wrappers and sources are developed

for heterogeneous sources.

2. The data model in Table 1 shows that all the systems

except WebFINDIT have proprietary approaches.

3. Query languages are diverse, with no system using a
well-known standard.

4. All systems support data sharing for browsing and

querying of interested sources only.

In addition, most systems support GUI (Graphical

Client Interface) for querying rather than API pro-

gramming serviceable applications. In the next sec-

tion, we present API-supported retrieval based on
CORBA.
3. Overview of integrated information retrieval

A flexible architecture and framework improves

transparency of access, and the scalability and extensi-

bility of a system. A system developer needs a uniform
access interface as well as a unified data model to rep-

resent query results. The design of our IIR architecture

and interface follows the style of the Common Object

Service Specification (COSS) of CORBA. All the IIR

components are used as CORBA objects. With IIR, by

invoking a specific object based on the CORBA object

model, a standard query interface is quite enough for

heterogeneous sources. They can be wrapped into a
CORBA object. Any source can at any time be

dynamically linked into such a system. The IIR frame-

work is briefly described next. For further details, please

refer to (Chang et al., 2001).
3.1. IIR architecture

IIR architecture is simple but complete. Fig. 1 shows

that it comprises InformationRetriever, MetaData,

Wrapper, and Collector. A client program first obtains an

InformationRetriever object from a Factory object and

then sends a query request to the source. The client

queries the source by invoking InformationRetriever,
which acts as a mediator that sends the query to the

source wrapper and then retrieves the result. Informa-

tionRetriever activates one or more corresponding

wrapper(s) according to the query string involved in the

parameter of the request.

Metadata management and the extensibility and

scalability of the system are important supporting fea-

tures. The purpose of MetaData is to make the federa-
tion of heterogeneous sources as simple as possible. The

client can obtain a description of sources by checking

their metadata in IIR, as follows. First, the client queries

MetaData, constructs a world view and formulates a

query string if it is not familiar with the schema and the

semantics of the source. Second, metadata is the onto-

logy for the source. InformationRetriever and the

Wrapper share metadata in querying the source and in
translating the content of the query. Information-

Retriever, on receiving the query, refers to metadata to

judge the query string and determine the relevant

wrapper. Finally, IIR is needed to enable management

of the metadata when the source dimension changes,

that is, for example, for adding or deleting a wrapper of

a source. Obviously, using IIR to query sources means

that neither the query sequence in the client program
nor the wrappers in IIR need to be changed. Informa-

tionRetriever refers the metadata to translate query

string and judges the meaning of the query sequence.

IIR therefore has extensibility and scalability.



Fig. 1. IIR architecture.

Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294 285
Wrapper is responsible for translating the query re-

quest into a format supported by the source, and local

system data results to the IIR system. The wrapper is

used as an agent that acquires demanded information

from those sources, which, if heterogeneous, are filtered.
The wrapper activates the Filter object according to the

source. The result is packed into a standard format, for

example XML, and put into Collector, which then

translates it into an export view. Thus, IIR supports a

unified invocation approach for querying sources and

obtaining results.

A further clear advantage to our system is that pro-

grammers can use the wrappers in their own applica-
tions and enable the applications to provide a search

service. Because we have a uniform interface-IIR, add-

ing other agents into our system is made easy.
3.2. Query language

SQL is the most popular language for querying

relational databases and Web-based documents (Spertus
and Stein, 2000; Deutsch et al., 1999; Konopnicki and

Shmueli, 1998). Spertus and Stein (2000) demonstrate its

many merits. We decided to adopt the SQL as the query

language rather than invent a new one. In this way, the

query language of IIR provides programmers with the

illusion that the sources are stored and organized in a

relational database.

Generally, because they have a single interface to
query inner data via a Common Gateway Interface

(CGI) program, Web-based documents or processing

systems involve a table. This is so even if they have

heterogeneous backend physical databases. Examples

are a search engine or a biographical query system. We

can assume that all such systems contain only one table.

The table name is defined as the service name in the

InGa. Usually, wish to obtain the title, description, and
URL associated with a specific keyword. In this way a

search engine can be seen as a single table database with

three fields, even if most search engines consist of many

backend physical databases, and clients can query spe-

cific keyword through the table. Not all sources com-
prise only one table in their database. The service

provider identifies the table number and name in a

source.

We now show examples of how the query language is

used to make a query. It is assumed that the engine

schema involves description, title, and URL. Each engine

has its own search conditions, which form the WHERE

clause of the SQL language.

1. //Show the content about the ‘‘CORBA’’ from Yahoo

SELECT * from Yahoo Keyword¼ ‘‘CORBA’’;

Here, query is invoked to Yahoo’s wrapper to obtain

all useful (description, title, and URL that is repre-

sented ‘‘*’’) about the keyword ‘‘CORBA’’. IIR ac-

cepts and dispatches the request to the Yahoo

wrappers.

2. //Show the URL about the keyword ‘‘MP3’’ that is in

the tag ‘‘text’’ from Altavista

SELECT URL from Altavista WHERE Keyword¼
‘‘MP3’’ and Tag¼ ‘‘text’’

The query here is invoked with a specific condition
excepting the keyword condition. The condition Tag

means that the keyword is placed in the ‘‘text’’ of the

Web document.

3. //Show the Title and URL for ‘‘Programming Lan-

guage’’ and ‘‘Object-oriented’’ from Yahoo and

Altavista.

SELECT title URL from Yahoo and Altavista

WHERE keyword¼ ‘‘Programming Language’’ and

keyword¼ ‘‘Object-oriented’’;



286 Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294
The query here is invoked in Yahoo and Altavista in

parallel. IIR accepts and dispatches the request to the

Yahoo and Altavista wrappers and the results, when

obtained from the wrappers, are merged.

In addition, combining the second and third examples
creates a problem in which a condition might conform to

the rule of only one of the search engines. For example, a

client may query a certain keyword placed in the

‘‘Anchor’’ tag from Altavista, but may not be able to

do so with Yahoo.

A search engine is a type of Web query system that

has no manifest schemas of sources. The query language

used in one can also be used in other Web query systems
that can be abstracted by SQL syntax, such as Squeal

(Spertus and Stein, 2000), while tying these systems to

IIR. Similarly, other Web-based sources with manifest

schema, such as XML document (Deutsch et al., 1999),

can also use the query language.
Fig. 2. InGa system architecture.

4. InGa system implementation

This section describes the InGa in use and evaluates

its performance. The description includes the develop-

ment environment and the use of InformationRetriever,

Wrapper, Metadata, and Collector. Finally, measure-

ments of the heterogeneous components of the system

for querying sources are made.

4.1. System overview

Our InGa involves three source agents implemented

as CORBA objects, but by the similar way easily allows

us to add other agents to the system.

Fig. 2 illustrates its architecture. The system can tie a

number of sources into the meta-search engine because it

uses IIR IDL (Interface Definition Language), a single,
unified interface. It receives and dispatches a query to a

number of search engines in parallel, and collates the re-

turns.

In this system, a Web client posts a query request via

CommonGateway Interface (CGI). The CGI then forks a

dispatcher for each request. The dispatcher does the fol-

lowing: First it creates a number of threads to perform

the query. Second, it collates,merges and filters the returns
from the agents. Finally, it returns the results to the client.

4.2. Query support

InformationRetriever is responsible mainly for dis-

patching a query to wrappers to query backend sources.

It also determines the sources from the query request

issued from client, invokes relevant wrappers, retrieve
the object references of wrappers, and retrieve the result

from wrappers.
It is also possible that a request may include an im-

plied query that hiding the target from the query con-
text, in which case InformationRetriever cannot

determine the query target from the query context di-

rectly. It needs to parse the query content to determine

which wrappers are invoked.

Clearly, InformationRetriever has important tasks.

The following shows two ways in which Information-

Retriever can retrieve the object reference of a wrapper

and directly invoke the query sequence. In the first, a
client designates an explicit target; we call this a ‘‘single

query’’. In the other, the client may not be explicit about

a target, or the query may contain a number of targets;

we call this a ‘‘compound query’’. The following ex-

plains how the two are handled.

4.2.1. Single query

A client designates a target for which a target wrap-
per is retrieved and invoked. Fig. 3 shows how Infor-

mationRetriever prepares the object reference of the

wrapper. The sequence in the figure does not influence

the client query sequence. First, InformationRetriever

parses the query string from the client and builds the

parse tree of a query string. The details are described in

the Section 4.3. It uses the tree to determine the wrapper

target and retrieves its definition and schema. Next, it
parses the target definition and schema and compares

them with the previously built ones to determine the

correctness of the query content. If the content now

agrees with the said definition and schema, Informa-

tionRetriever then invokes the target’s wrapper and re-

turns it to the client. If not, an error message is returned.



Fig. 3. Algorithm for preparing a wrapper in InformationRetriever.

Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294 287
4.2.2. Compound query

In the case of a compound query, a client issues the

invoke_query(). InformationRetriever parses the query

string to determine which targets are to be queried, re-

ceives the query string and takes the necessary steps to

invoke the wrappers of the relevant targets. Fig. 4 shows
the algorithm for invoking the query sequence.

The top of algorithm has the same sequence as in Fig.

3. These first five steps are used to find the wrapper of a

source and build the desired data structure for it. Then

InformationRetriever uses a comparison to judge whe-

ther the query content conforms to the definition and

schema of target wrapper. Next, InformationRetriever

invokes all the relevant wrappers and retrieves the re-
sults from them. Finally, InformationRetriever packs the

result into an export view and returns that to the client.

A detailed description is given in the following section.

4.3. Query planning

In the previous section, we showed InformationRe-

triever handling two types of queries. Now we discuss
the use of the query plan of the source. This entails

parsing the query content, building the parse tree,

determining the target and retrieving the source. We
Fig. 4. Algorithm for invoking the query
demonstrate the capability of IIR by showing its query

sequence and by using search engines as backend sour-

ces. This can be best done by the use of examples.

When InformationRetriever is used for a request by

invoking prepare() or invoke_query(), the query string

is as follows:

\SELECTURL; TitleFROMYahooWHEREKeyword¼\MP3"

Fig. 5 shows that InformationRetriever first parses the

query string, then builds the parse tree and retrieves the

metadata from the Metadata object. Fig. 6 shows that

the definition, schema and parse tree building are in-

cluded. The ‘‘Condition’’ subtree in Fig. 5 is a subset of

the ‘‘Attribute’’ subtree in Fig. 6, and the ‘‘Construc-

tion’’ subtree is a subset of the ‘‘Schema’’ also in Fig. 6.
The content conforms to the Yahoo metadata. Next,

InformationRetriever retrieves the object reference of

the Yahoo wrapper and then invokes the query se-

quence.

InformationRetriever first follows the query plan

phase. Then it accepts a request, initiates the sequence

for a compound query, invokes the relevant wrappers,

retrieves the object reference and returns it to client. In
IIR, all wrapper objects have the same interface. Infor-

mationRetriever, regardless of which type of query it
operation in InformationRetriever.



Fig. 5. Parsing tree of query string.

288 Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294
initiated, needs to know which wrapper is in use, i.e.

InformationRetriever needs to know the relationship
between the source and the wrapper in use.

4.4. The development environment

There are now several commercial ORBs that are

CORBA-compliant: IONA’s Orbix, IBM’s SOM, Sun’s

NEO, and Borland’s VisiBroker. Most support C and

C++ mapping. In addition, Orfali and Dan (1997) list
some benefits using Java-implemented CORBA objects.

Fortunately, some ORB manufacturers define and use

Java-IDL mapping to invoke CORBA objects from

Java objects, or example, Joe for NEO, OrbixWeb for

Orbix and VisiBroker for Java.
Fig. 6. Example of metadata o

Fig. 7. Wrapper algorithm for quer
In our system, components are used like in the Bor-

land’s (Visigenic) VisiBroker for Java (version 4.5) that

is a CORBA client and server ORB written in Java. All

VisiBroker ORBs make full use of the IIOP, which

makes it easy for C++ objects to invoke methods on

Java objects, and vice versa. VisiBroker for Java sup-
ports both static and dynamic CORBA method invo-

cations. Methods on a server can be invoked by

Java client applications or by applets within a browser.

Visigenic intends to fully comply with the OMG

CORBA binding for Java as soon as it becomes avail-

able. The VisiBroker IDL compiler generates skeleton

code for the server objects in C++ or Java; it also gen-

erates Java stubs for the client side.
The version 4.5 Release has been tested on Java 1.3.0

Java Virtual Machines and has been certified for Win-

dows NT 4.0 with both Service Packs 3 and 5, Windows

98, Windows 2000, and Solaris 2.6, 2.7, 2.8. Our choice

is Windows 2000.

4.5. Wrapper

A wrapper is an agent that acquires desired data from

corresponding sources. It is responsible for translating

the form of a client query into the form of the source

and form of a result (import view) into the form of the
export view. Fig. 7 shows the algorithm for the wrapper.

First, the wrapper parses the query string to verify the

correctness of its content. This step is same as the action

in InformationRetriever. Then it changes the form of
f Yahoo search engine.

ying the information source.



Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294 289
content into the form of the source, sends the change to

the source, and waits for the return. Finally, it does the

view translation and returns the result to client. If a

source crashes, the wrapper returns an error message.

InGa can also link other types of sources, such as

relational databases, flat files, and processing systems,
by developing and registering corresponding wrappers.

The wrapper translates the request into the target’s

format and invokes the exported interfaces provided by

source providers. For example, Z39.50 is a well-known

standard retrieval protocol defined by the National

Standards Organization and widely used in corpus re-

trieval applications. InGa thus ties a Z39.50 server by

developing a Z39.50 wrapper, which translate client re-
quests into a Z39.50 server and invokes an exported

Z39.50’s interface (Lo et al., 2000).

4.6. Metadata

Metadata stores metadata for source, similar to the

way that a files directory stores files. We can store

metadata in an off-the-shelf directory service, such as a
Lightweight Directory Access Protocol (LDAP) server,

and on that basis use an LDAP adapter in a CORBA

object, such as (Burghart, 1998). LDAP is well suited as

a gateway between directory clients and distributed

objects. Combining it with CORBA provides a secure

means for standard off-the-shelf applications to trans-

parently access data in system-specific object schemas at

relatively low cost. Because the metadata is formulated
in a string, its content is easily stored in a flat file. For

speedy use, we store the metadata as flat files in local

storage. A future task is to store it in a LDAP server.

4.7. Collector

Collector gathers returns from sources in IIR. It is

created by Wrapper object when source accomplishes
the query request. The Filtering object filters the results

to avoid repetition of results.

In Collector, to speed up coding and for greater

simplicity, JavaSoft’s 1-JAXP parses the XML files

gathered by Collector from all the are Wrappers into a

W3C’s 2 DOM (Document Object Model) tree. The

wrappers return results are all formatted as XML files.

The DOM tree generated by JAXP provides methods
for manipulating and traversing the tree. The sequence

in Collector is used to traverse the DOM tree and re-

trieve the content of tree. The system is thus reduced due

to the simplified and unified document object model.

Clients can use Collector to create an Iterator object to

retrieve results successively. When a client retrieves a

Collector object, it can then invoke createiterator() to
1 Web.javasoft.com.
2 Web.w3c.org.
retrieve Iterator. Then, Collector builds Iterator, to which

it conveys the root node of the DOM tree. That allows

Iterator to re-parse the XML file returned from the

Wrapper. Invoking the JAXP method is simply done,

either by getNextSibling() or getPreviousSibling().

Other methods in Iterator are same as in Collector, i.e.,
traverse the DOM tree and retrieve its content one by

one.

Finally, we explain the use of Filtering object. Be-

cause all of query results of aWrapper are inserted into a

DOM tree, it is necessary to parse throughout the nodes

of DOM tree while checking if a URL duplicated or not.

The approach of checking duplication we used is to

compare the URL in the node of DOM tree is existence
in hash table or not. If not so, put the URL into hash

table. Otherwise, delete the node because it is a dupli-

cated result. The method we used to delete a node is

removeChild() in DOM API.

4.8. User view

In order to improve the system performance, the
system assigns a dedicated thread of a mediator to each

query request. Since the mediator sends the request to a

number of search engine agents it must create a number

of client threads.

The sources here are Yahoo and AltaVista, the IEEE

and the two library corpus engines. As Fig. 8 shows, the

query forms for them are; Fig. 8(a) Alta Vista with the

string ‘‘SELECT TITLE, URL, DESCRIPTION
FROM YAHOO, ALTAVISTA WHERE KEY-

WORD¼XML’’; Fig. 8(b) IEEE with the string ‘‘SE-

LECT TITLE, PROCEEDING, FULLTEXT_URL

FROM IEEE WHERE KEYWORK¼XML’’; Fig. 8(c)

the corpus engines with the string ‘‘SELECT BOOK-

NAME, AUTHOR, INDEX FROM NCTU_LIB,

NTHU_LIB WHERE KEYWORD¼ database’’. Fig. 8

lists the results in an organized and unified form.

4.9. Performance evaluation

The system uses CORBA/Java and Web technology.
The CORBA ORB is VisiBroker for Java version 4.5

and the components use Java language. All the com-

ponents are run on Windows 2000 with Celeron-800

CPU, 128 M Bytes RAM, and 100 Mbps Ethernet.

In the absence of benchmarking, we did certain

experiments to measure critical components. The la-

tency of the components is measured by determining the

time each spends on a query, separately measured from
Client View, which queries the system, and System View,

which relates to Server. Client View measurements are:

Bind Factory, Create InformationRetriever; Get Meta-

data, Prepare Wrappers, and invoke query to remote

source (Yahoo) and to local source (National Chiao-

Tung University library). The sequence is invoked by

http://Web.javasoft.com
http://Web.w3c.org


Fig. 9. Client view and one information source.

Fig. 8. Search result of our system: (a) the result of meta-search from our system, (b) the result from IEEE explorer, (c) the result of library search

from our system.

290 Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294
the client. System View measurements are: Information-

Retriever Parsing, Get Metadata, Create Wrappers,

Wrappers execution, the time spent in remote and local

Source, Collector; and Filtering. All the components are

used as CORBA objects and are invoked in turn when a

request is submitted. The time taken by the components

is the overhead of InGa. Data relating to 200 executions

of each query were collected. The measurement included

the time ORB takes to transmit messages over the net-
work. We evaluate the total overhead in InGa.

Fig. 9 shows the result for Client View, which ties the

sources of the Yahoo search engine and the National

Chiao-Tung University library, when a request to them

was submitted. This measurement for both sources is

just 200 searches, although the search engine sometimes

exceeded this number. Obviously, when querying a

source with IIR in such as a search engine, maximum
overhead occurs when a request is submitted and a re-

sult obtained from the source.
The result clearly shows that less than 5.2% total

overhead is spent invoking certain components, such as
binding to Factory, creating InformationRetriever, get-

ting Metadata, and preparing Wrapper; in the course of

invoking remote sources. The figure for local sources is

less than 16.3%. Thus, client programs spend slightly

longer invoking remote sources and reasonable extra

time invoking local ones.



Fig. 10. System view and one information source.

Fig. 12. System view and two information source.

Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294 291
Fig. 10 shows the time that system components spend

on executing requests. The overhead spent in querying a

source is major on invoking query on the source. It is

less than 1% when invoking other components when

querying a remote source in the server side. Less than

4.6% is spent on local sources. It is obvious that the

overhead is slight. Figs. 9 and 10 shows that an inte-
grated gathering system using IIR incurs very low

overhead for both client and server.

Fig. 11 shows the client submitting a query request

to Yahoo and Altavista in parallel with the following

string: ‘‘SELECT Title, URL, Description FROM

Yahoo, Altavista WHERE Keyword¼ ‘‘XML’’. Fig. 12

shows the time that the system components spent exe-

cuting request and that the difference between the re-
turns is only slight. The record for Yahoo is 200 and

that for Altavista 1000. Despite that difference, the re-

cords for the different sources do not affect perfor-

mance. A comparison of Figs. 10 and 12 shows that the

only component affected is the I.S., whereas Informa-

tionRetriever Parsing, Get Metadata, Create Wrappers,

Wrappers execution, Collector; and Filtering do not

differ very much. The major overhead is in querying
backend targets. In short, the overhead for all InGa

components is the same, irrespective of the number of

linked sources.

In our system, performance is seriously affected by

many components working in parallel. We improve

matters by the following strategies: multi-threading and

a number of wrappers configured on a number of hosts.
Fig. 11. Client view and two information source.
Multi-threaded programming is a well-known tech-

nology for improving server performance. In our sys-

tem, the InformationRetriever component and all

the wrappers are multi-threaded. When an Information-

Retriever thread is created, it immediately creates a

multi-threaded wrapper. We assign each wrapper to

a dedicated host. This is easily done in the CORBA

environment. Thus, the strategy balances the overhead
of our system. We also consider object migration tech-

niques to balance any future system load.

We perform the preliminary measurements shown in

Fig. 13 to assess the latency of the system that tying

Yahoo and AltaVista search engines, IEEE paper ex-

plorer, and two library corpus systems respectively. In

the figure, the XXX shows the access time of source and

the XXX_OH shows the round trip time for the packet
from system to source. For example, Yahoo shows the

access time of the Yahoo search engine, and Yahoo_OH

shows the packet round trip time for Yahoo. The

Yahoo_+Yahoo_OH show the response time for que-

rying search engines. Clearly, when the system queries

those targets, the overhead for the sources is within a

reasonable range.
5. Discussions and future works

5.1. Extensions

Although the InGa presented here successfully links

the three information sources, the requirements of ex-

perts who have different application domains are not
satisfied. InGa must be able to tie more. Connecting

the sources so that they can be queried by InGa users

is easy because we provide a flexible, extensible, scal-

able framework for the system developer. The first task

is to extend the capability of InGa to develop a source-

related wrapper object based on the wrapper’s IDL of

IIR. In general, similar sources have similar query

interfaces and protocols. Wrapping the sources needs
only the development of corresponding wrappers by

changing their source codes. When wrapping different

sources, the system developer needs only to follow the

query sequence of a source, translate a query into a

source-accepted format and invoke a wrapped source



Fig. 13. Performance measurement of InGa system: (a) Yahoo performance evaluation, (b) AltaVista performance evaluation, (c) IEEE performance

evaluation, (d) Nctu_Lib performance evaluation, (e) Nthu_Lib performance evaluation.

292 Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294
by a specific interface of a protocol, such as the rela-

tional Database. For detail of how to use the wrapper,

please refers to Section 4. For the second task, the

system developer also needs to define the meta-data of

the source in XML’s DTD and register it in InGa. The

meta-data comprises the interface and schema of the

source. Of course, being much more informed about
sources and interfaces, the service provider is better

placed than the system developer to use source wrap-

pers.

5.2. Automatic wrapper generation

The codes of a wrapper are tightly coupled with the

format or structure of a specified source. That is, if the
format of the web document changes, the client usually

has to modify the codes of the wrapper accordingly.

Most web documents change format frequently, and

new sources are added apace, so an automated frame-

work for wrapper generation or modification is very

helpful.

Mediator-based architecture for retrieval can be used

in many ways. Most focus on analyzing and translating
results. Many researchers have proposed wrapper gen-

eration, focusing on how to translate the structure of

sources into representing queries from the mediator, but

this is not enough for a retrieval application developer.

The developer must have a framework for quick and
easy development of wrappers, which must not only be

XML-compliant for easy data exchange but also

CORBA-compliant for easy heterogeneous communi-

cation. Moreover, the client or the retrieval application

should be able to extract the useful data from different

sources, using a mediator/wrapper framework in high-

level query scheme such as SQL.
For most of these approaches, defining a good and

structured set of extraction rules is difficult and tedious

work for an application developer and requires a good

knowledge of web documents. In addition, the returned

result is designed for a human user, not for a program.

Communication with a program by these approaches

increases the workload the wrapper programmer. The

solution is a framework for automated XML-based
wrapper generation with a unified interface based on

CORBA. Here, the XML data model is used to express

the metadata of sources, and the output file of the results

is in XML format too. CORBA is used to define the

uniform interface for the gathering system. With this

framework, not only a human user but a retrieval

application can communicate with heterogeneous

wrappers through the CORBA standard, acquiring re-
sults in a popular and structured data model. Further-

more, because XML is a popular standard for data

representation and exchange nowadays, the wrapper

programmer need not learn a new extraction language

for wrapper generation.



Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294 293
6. Conclusions

In this paper, we have presented a prototype based

on IIR for integrated gathering (InGa) from three

kinds of sources. The system uses CORBA/Java and

Web technology. InGa offers a unified interface for
querying heterogeneous interfaces or protocols of

sources. SQL compatible query language is used to

query a number of backend targets. InGa tied two

general search engines, IEEE document explorer, and

two library corpus systems, can easily tie extra sources,

since IIR provides a flexible, extensible, and scalable

framework. We demonstrated how to base the system

on an approved standard of distributed object-oriented
environment.

Compared to the systems listed in Section 1, ours

has the following major advantages. First, the CORBA

object model is the widely accepted standard, which

recommends it to most application developers for

integrated retrieval systems. Service providers are far

more informed about sources and, because of the unity

of the programming interface, they can easily source
use wrappers on the CORBA environment and thus

speed up system development. The system, therefore,

has scalability. Second, it is easy for programmers to

build applications that need search ability. Application

programmers utilizing the interface to search for

information in their application can hide the com-

plexity from network programming and concentrate

most effort on other significant value-added services.
After the search engine returns the results, the program

does not need to extract the information from the

complicated format. Because they are all based on the

same interface, applications are undiscerning when

querying wrappers. Third, each type of source has its

own query language, schema, and attribute. With this

approach, it is necessary to support an extensible

environment that allows integrating a number of
sources must be supported. That environment permits

source providers to define their own query interface

and schema in a well-known object model and lan-

guage. As for application programmers, in the IIR

framework they need not explore query source inter-

faces when querying. Finally, for transparently query-

ing a number of sources in parallel, we adopted SQL,

not only in relational databases but also in HTML-
based and XML-based documents. InGa combines

references seamlessly to the Web with references to the

relational database.

We then performed preliminary measurements to

assess the potential of the system. The results shown in

Section 4 verifies that the overhead spent on each source

as the system queries them is within reason, that is, that

using IIR to construct an integrated gathering system
incurs low overhead.
Acknowledgements

We are grateful for the many excellent comments and

suggestions made by the anonymous referees. This work

was supported in part by the Nation Science Council of

Republic of China under Grant no. NSC90-2213-E-159-
005 and the Ministry of Education’s Program of

Excellence Research under Grant no. 89-E-FA04-1-4.
References

Arens, Y., Chee, C.Y., Hsu, C., Knoblock, C.A., 1993. Retrieving and

integrating data from multiple information sources. International

Journal of Intelligent and Cooperative Information Systems 2 (2),

127–158.

Arens, Y., Knoblock, C.A., Hsu, C., 1996a. In: Tate, A. (Ed.), Query

Processing in the SIMS Information Mediator Advanced Planning

Technology. AAAI Press, Menlo Park, Cliff.

Arens, Y., Knoblock, C.A., Shen, W.M., 1996b. Query reformulation

for dynamic information integration. Journal of Intelligent Infor-

mation System 6 (2/3), 99–130.

Bayardo, R.H., et al., 1997. InfoSleuth: agent-based semantic integra-

tion of information in open and dynamic environments. In:

Proceedings of the ACM SIGMOD, pp. 195–206.

Bouguettaya, A., Benatallah, B., Hendra, L., Ouzzani, M., Beard, J.,

2000. Supporting dynamic interactions among web-based infor-

mation sources. IEEE Transactions on Knowledge and Data

Engineering 12 (5), 779–801.

Burghart, T., 1998. CORBA as an LDAP Server Datastore: an

architecture for intranet directory services. http://idm.internet.

com/features/corba-ldap.shtml.

Chang, Y.-S., Yuan, S.-M., Lo, W., 2000. A new multi-search engine

for querying data through internet search service on CORBA.

International Journal of Computer Networks 34 (3), 467–480.

Chang, Y.-S., Ho, M.-H, Yuan, S.-M., 2001. A unified interface for

integrating information retrieval. Computer Standards and Inter-

faces 23 (4), 325–340.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D., 1999. A

query language for XML. In: Proceedings of Eighth International

World Wide Web Conference, Elsevier, Amsterdam, 1999.

Dreilinger, D., Howe, A.E., 1997. Experience with selecting search

engines using metasearch. ACM Transactions on Information

Systems 15 (3), 195–222.

Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,

Ullman, J., Widom, J., 1995. Integrating and accessing hetero-

geneous information sources in TSIMMIS. In: Proceedings of

the AAAI Symposium on Information Gathering, Stanford,

California, pp. 61–64.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A.,

Sagiv, Y., Ullman, J., Vassalos, V., Widom, J., 1997. The

TSIMMIS approach to mediation: data models and languages.

Journal of Intelligent Information Systems 8 (2), 117–132.

Konopnicki, D., Shmueli, O., 1998. Information Gathering in the

World Wide Web: The W3QL Query Language and the W3QS

System. ACM Transactions on Database Systems 23 (4), 369–410.

Levy, A.Y., Rajaraman, A., Ordille, J.J., 1996. Query heterogeneous

information sources using source description. In: Proceedings of

the 22th VLDB, pp. 251–262.

Lo, W., Chang, Y.-S., Chou, C.-L., Sheu, R.-K., Yuan, S.-M., 2000.

An Information Store and Retrieval Facility on CORBA. In:

Lecture Notes in Computer Science (LNCS), vol. 1846. Springer-

Verlag, Heidelberg, Germany, pp. 374–379.

http://idm.internet.com/features/corba-ldap.shtml
http://idm.internet.com/features/corba-ldap.shtml


294 Y.-S. Chang et al. / The Journal of Systems and Software 72 (2004) 281–294
Mena, E., Kashyap, V., Illarramendi, A., Seth, A.P., 1998. Domain

Specific Ontologies for Semantic Information Broking on the

Global Information Infrastructure. In: Proceedings of the Inter-

national Conference on Formal Ontologies in Information Systems

(FOIS’98).

Mena, E., Illarramendi, A., Kashyap, V., Seth, A.P., 1999. OBSER-

VER: an approach for query processing in global information

systems based on interoperation across pre-existing Ontologies,

Parallel and Distributed Databases, 1999.

Meng, W., Yu, C., Liu, K.L., 2002. Building efficient and effective

metasearch engines. ACM Computing Surveys 34 (1), 48–89.

Object Management Group, Inc., 1998. The Common Object request

Broker (CORBA): Architecture and Specification. v2.2, February

1998.

Orfali, R., Dan, H., 1997. Client/Server Programming with JAVA and

CORBA. John Wiley, New York.

Sato, N., Uehara, M., Sakai, Y., Mori, H., 2001. A distributed Search

Engine for Fresh Information Retrieval. In: Proceedings of 12th

International Workshop on Database and Expert Systems Appli-

cation, 3–7 September, Munich, Germany, pp. 211–216.

Selberg, E., Etzioni, O., 1995. Multi-engines search and comparison

using the MetaCrawler. In: Proceeding of the Fourth World Wide

Web Conference’95, Boston, USA.

Singh, M.P. et al., 1997. The carnot heterogeneous database project:

implemented applications. Distributed and Parallel Databases

Journal 5 (2), 205–227.

Spertus, E., Stein, L.A., 2000. Squeal: a structured query language for

the Web. International Journal of Computer Networks 33, 95–103.

Suciu, D., 1998. An overview of semistructured data. In: Vianu, V.

(Ed.), Database Theory Column. Sigact News 29 (4), 28–38.

Yue-Shan Chang was born on August 4, 1965 in Tainan, Taiwan,
Republic of China. He received the B.S. degree in Electronic Tech-
nology from National Taiwan Institute of Technology in 1990, the
M.S. degree in Electrical Engineering from the National Cheng Kung
University in 1992, and the Ph.D. degree from Computer and Infor-
mation Science at National Chiao Tung University in 2001. Dr. Chang
joined the Department of Electronic Engineering of Ming Hsing
Institute of Technology (MHIT) as a lecturer in August 1992. Since
from August 2001, he became an associate professor. He now is the
Director of Computer Center of MHIT. His research interests are in
Distributed Systems, Object Oriented Programming, Information Re-
trieval and Integration, and Internet Technologies.

Kai-Chih Liang received his BS and MS degrees in computer and
information science from National Chiao Tung University, Taiwan, in
1994 and 1996 respectively. He is now the PhD candidate in computer
science of the same school. His current research interests include Web
technology, distributed object computing architecture, high confidence
middleware, enterprise application integration and software engineer-
ing.

Ming-Chun Cheng received the B.S. degree in computer and informa-
tion science from National Chiao Tung University, Taiwan, in 1999.
Currently, he is a Ph.D. candidate in the Institute of Computer and
Information Science, National Chiao Tung University, Taiwan. His
research interests include web technology, distributed system and
mobile computing.
Shyan-Ming Yuan was born on July 11, 1959 in Mauli, Taiwan,
Republic of China. He received the B.S.E.E degree from National
Taiwan University in 1981, the M.S. degree in Computer Science
from University of Maryland Baltimore County in 1985, and the
Ph.D. degree in Computer Science from University of Maryland
College Park in 1989. Dr. Yuan joined the Electronics Research and
Service Organization, Industrial Technology Research Institute as a
Research Member in October 1989. Since September 1990, he had been
an Associate Professor at the Department of Computer and Infor-
mation Science, National Chiao Tung University, Hsinchu, Tai-
wan. He became a Professor in June 1995. His current research
interests include Distributed Objects, Internet Technologies, and
Software System Integration. Dr. Yuan is a member of ACM and
IEEE.


	Prototyping an integrated information gathering system on CORBA
	Introduction
	Problems and motivations
	Objectives

	Related works
	Overview of integrated information retrieval
	IIR architecture
	Query language

	InGa system implementation
	System overview
	Query support
	Single query
	Compound query

	Query planning
	The development environment
	Wrapper
	Metadata
	Collector
	User view
	Performance evaluation

	Discussions and future works
	Extensions
	Automatic wrapper generation

	Conclusions
	Acknowledgements
	References


