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We propose a modified plane-wave expansion method to calculate transmittivity and reflectivity of a semi-
infinite photonic crystalsPCd with interface. This method is based on an expanded completeness basis, includ-
ing both the propagation and evanescence modes. We use this approach to deal with two kinds of problems:
one is to determine the normal direction of the largest attenuation strength for a semi-infinite PC in the gap
frequencies; the other is to calculate the transmittivity and reflectivity of a PC slab. To demonstrate the
extensive utilization of our approach, we revisit the same system as studied by K. Sakoda[Phys. Rev. B52,
8992 (1995)] and find that our results are in good agreement with ones obtained by Sakoda’s paper.
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Since Yablonovitch and John[1–3] proposed the concept
of the photonic crystalssPC’sd, the studies of the properties
of the PC’s and their fabrications have attracted great inter-
est. PC’s are of artificial materials having the periodical
modulation of dielectric function in space and there exist
photonic band gapsPBGd structures for electromagnetic
sEMd waves. Many novel features of PC’s have been pre-
dicted and a lot of potential applications are suggested[4–6].
Most of the studies focus on the PBG structures with the use
of the conventional plane-wave expanded methodsPWEMd
[7,8]. Subsequently, various calculation methods are pre-
sented to investigate physical properties, such as the trans-
mission, reflection, and the penetration depth of the incident
EM waves through the finite-sized PC’s[9–12].

Motivated by these works, we now present a different
calculation method to ease the calculations of the transmis-
sion, reflection, and wave penetration depth for finite-sized
PC’s with interfaces or surface. Our approach is a natural
generalization of the original PWEM and it is based on an
expanded basis, including both the propagation modes and
the evanescence modes in the PC’s. Our approach possesses
several advantages: First, it makes it easier to flexibly track
and analyze the properties of the PC’s; second, in our
method the frequency is initially given and regarded as a
known variable, rather than an argument, thus the value of
frequency can be always set to be positive real even for the
complex systems with real(imaginary, or complex)
frequency-dependent permittivity or permeability; third, the
resonant feature of transmittivity generated from the finite
size of the PC’s can be easily analyzed. We numerically
demonstrate that our approach has a more powerful and ef-
ficient method to track the above-addressed problems, com-
pared to the conventional PWEM.

In an isotropic medium with spatial modulated permittiv-
ity esr d and permeabilitymsr d, according to Maxwell equa-
tions, the magnetic fieldHsr d satisfies

¹ 3
1

esr d
¹ 3 Hvsr d = msr dv2Hvsr d. s1d

As esr d andmsr d are periodical modulation functions in the
PC’s, we can then expand them and the magnetic field in
terms of Fourier series asHvsr d=o

G
eisk+Gd·rHk,G; esr d

=o
G

eiG·reG; andmsr d=o
G

eiGrmG. HerehGj denotes the recip-

rocal lattice vector. Equation(1) can then be rewritten as

− o
G8

sk + Gd 3 eG−G8
−1 sk + G8d 3 Hk,G8 = v2o

G8

mG−G8Hk,G8.

s2d

In two-dimensionals2Dd systems, the electromagnetic wave
equation(2) can be decoupled to two separate equations for
the E polarizationsTEd (in-pane electric field) andH polar-
ization sTMd (in-plane magnetic field) modes:

o
G8

eG−G8
−1 sk + Gd · sk + G8dHk,G8 = v2o

G8

mG−G8Hk,G8

s3d

for the TM modes.
Apparently, Eq. (3) belongs to a standard eigenvalue

equation when the permittivity and permeability are real and
frequency independent. In an infinite extended periodic sys-
tem, the frequencies of the propagating modes for a given
real k can be obtained straightforwardly. However, in a PC
slab or semi-infinite PC, the calculations of the transmission
and reflection of the EM waves are not simple. Various cal-
culation methods such as the Layer-Korringa-Kohn-Rostoker
(LKKR ) method [8,9,11], the transfer matrix method
[12–15], and the scattering matrix method[16–18] have been
proposed.
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We propose an alternative method to calculate the trans-
mitted and reflected wave fields for a PC slab. This method
still relies upon Eq.(3), but we employ an alternative view
angle to deal with this equation, different from the standard
eigenequation method. To clearly look at the central point of
this method, we revisit the standard eigenequation method in
some detail. At the beginning, thekx andky are initially cho-
sen in the first Brillouin zone as the known parameters, and
the eigenfrequencyv can thus be determined through solv-
ing a standard eigenequation. For the infinitely extended sys-
tem, there exist only propagation modes, however, for a PC
slab or semi-infinite system, there exists at least one inter-
face. At interfaces, the periodicity of structure is broken and
the evanescent modes are generated. Using the conventional
eigenequation method Eq.(3) it is quite difficult to find the

evanescent modes because it belongs to a search for the real
eigenfrequency solution but with a complex number ofk. In
general, the complexv is the result of Eq.(3) whenk is an
arbitrary complex number. However, the complexv is unac-
ceptable or unavailable. Consequently, one natural and im-
portant question arises: Can we have a new solving method
to automatically obtain the evanescence modes of Eq.(3)?
The answer is positive. For different goals, there are two
kinds of the calculated schemes: One is that from initially
choosing the unit vectorial direction ofk and a given fre-
quency, one then searches for the solution to Eq.(3); the
second scheme is when initially givenky and frequency, one
then searches for the solution to Eq.(3). We now discuss
them in detail. For the first scheme, we reform Eq.(3) as

S 0 Î

eG−G9fv
2mG9−G8 − eG9−G8

−1 G9 ·G8g − eG−G9feG9−G8
−1 k̂ · sG9 + G8dg

DSHG8

kHG8
D = kSHG8

kHG8
D , s4d

whereHG8, Î , andk̂ denote the abbreviation ofHk,G8, dG,G8,
and unit vector ofk, respectively. Regarding the second
scheme, Eq.(3) can be rewritten in another form as

S 0 Î

eG−G9fv
2mG9−G8 − eG9−G8

−1 sG9 + kyŷd · sG8 + kyŷdg P̂
D

3S HG8

kxHG8
D = kxSHG8

kxHG8
D , s5d

where ŷ denotes the unit vector of they direction andP̂
=−eG−G9feG9−G8

−1 sGx9+Gx8dg. It is worth pointing out an impor-
tant fact that in these equations, we have extended the origi-
nal basis ofhHG8j to an expanded basis ofhsHG8 ,kHG8dj.
The matrix on the left side of Eq.(4) no longer presets Her-
mitianity now. Therefore Eq.(4) belongs to the pseudoeigen-
value problem with complex number ofk. The eigenfunc-
tions of the expanded basis contain the propagation and
evanescence modes both. The modes having the complexk
correspond to oscillatory decay or growing modes. All these
modes can be automatically obtained by using this approach.
It is noted that there exists a simple transform between these
two equations: Ifk andG in Eq. (4) are taken on a rotation

operatorQ̂, i.e., rotatingk̂ to be parallel to thex direction,

Q̂k̂ = x̂, and we defineG̃;Q̂G, then Eq.(4) will transform

to Eq.(5) except for the replacement ofG by G̃ andky=0. In
this sense, Eq.(4) can be referred to as a master equation.
Through solving this master equation, the penetration depth

of the incident waves along directionk̂ can be easily evalu-
ated.

On the other hand, Eq.(5) can be used to deal with the
incline incident case with an incident angleu between the
normal of the interface andk. Here we define tanu
=ky/Îsv /cd2−ky

2. Employing a matching technique, the rela-
tionship between theH fields in region I and region II can be
established,

S − kx0yuHm
I l kx0yuHm

II l
− kx0yue−1]xuHm

I l kx0yue−1]xuHm
II l
DSkHm

I ur̂ uH0
I l

kHm
II ut̂ uH0

I l
D

= S kx0yuH0
I l

kx0yue−1]xuH0
I l
D , s6d

where r̂ and t̂ represent the reflection and transmission op-
erators.Hm

I sHm
II d corresponds to themth reflected(transmit-

ted) mode in region IsII d, andH0
I to the incident field(see

Fig. 1).
Theoretically, as long as we obtain overall eigenvectors of

the system, the transmission and reflection spectra can then
be determined fully. However, for a semi-infinite PC, we
only need the special modes with the parallel wave vector
componentky identical to that of incident light wave owing
to the conservation of theky in either sides of interface. We
now assume that the wave vector of the incident light isk
=skx

I,i ,kyd, according to the Bloch theory, the magnetic field
in region II can be expressed asHsr d=oGHGexpfisk II, t

+Gd ·r g, whereG denotes the reciprocal vector. By using the
matching technique, for the reflection modes and transmis-
sion modes, their wave vectors should bek ref=skx

I,r ,ky+Gyd
and k trans=skx

II, t+Gx,ky+Gyd, where kx
I,r

=−Îsv /cd2−sky+Gyd2, andkx
II, t’s are obtained from solving

Eq. (5). Hence, in thek space, Eq.(6) can be expressed as

Y.-C. HSUE AND T.-J. YANG PHYSICAL REVIEW E70, 016706(2004)

016706-2



ÂSkHm
I ur̂ uHI0l

kHm
II ut̂ uHI0l

D = S HGy,0
I,i

kGy,x
I,i HGy,0

I,i D , s7d

where

Â =1 − HGy,m
I,r o

Gx

HG,m
II, t

− kmx
I,r HGy,m

I,r o
Gx,G8

e0eG−G8
−1 skmx

II, t + Gx8dHG,m
II, t 2 ,

e0 is the dielectric constant of vacuum andHG,m is themth
mode obtained from the solution to Eq.(5). Regarding the
eigenvectors in region I(for instance, in vacuum), they are of
plane waves, only depending onGy, so their Fourier compo-
nents are abbreviated asHGy,m instead ofHG,m. To evaluate
the transmission and reflection coefficients, we have to first
decide the direction of the Poynting vector of every mode.
When k is real, it can either be obtained fromvg=¹kv or
from

vg = E
cell

ReH−
i

ve
H* ¹ HJdr2

= o
G,G8

ReH 1

v
Hk,G

* eG−G8
−1 sk + G8dHk,G8J . s8d

However, whenk is complex, from the physical consider-
ation, the right-forward propagation mode should correspond
to Imskxd.0. When the group velocity andHG of each mode
are known, the transmittanceT and reflectanceR can be
calculated from them and the accuracy is estimated from the
derivation degree ofR+T from unity. Sometimes, it is pos-
sible that detuA u approaches zero, if so, it demands that Eq.
(7) has nonzero solutions in the absence of the incident light
field. This kind of wave fields corresponds to surface states,

i.e., the counterpart of surface plasmons propagating along
the surface of a metal.

It is worth emphasizing that there exists more interesting
matter among these three equations, Eqs.(3)–(5): they can be
intertransformed with each other. For instance, the second
line of matrices on the left-hand side of Eqs.(4) and(5) just
is identical to Eq.(3) when fixedhGj. Thus any eigenfunc-
tion derived from one of these three equations will satisfy the
other two equations. It leads to two useful conclusions:(i)
the contours of realk obtained by these three equations ex-
hibit the same patterns;(ii ) the choice of the set ofhGj does
not require any change when employing these three equa-
tions to track different problems. For instance, when seeing
what happens near the band gap, we first need to find where
the band edges are located by solving Eq.(3) and then sub-
stitute a frequencyv0 near the band edges into Eqs.(4) and
(5), the penetration depth of the incident wave into the inter-
face of sample can then be computed by Eq.(4). Similarly,
the transmittivity can be calculated if we first solve Eq.(5)
and then substitute the obtained quantities into Eq.(6).

We now turn to demonstrate the utilizations of our ap-
proach via some examples. Figure 2 displays the calculated
frequency dispersion spectrum of the 2D PC by Eq.(2). The
sample is composed of a square lattice of GaAs dielectric
circular cylinders withr =0.15a and e /e0=11.43 in air. The
solid and dashed curves represent the TE and TM modes,
respectively. The inset shows the unit cell of the PC.

For another application example, we investigate the guid-
ance rule to decide the favorable normal direction of the
incident light waves at interface of a semi-infinite PC sample
for supporting the function of the most isolating of the light
wave fields in the sample. We solve Eq.(4) at a given fre-
quency of 0.4s2pc/ad around the mid gap of the TE modes
(see Fig. 2). Figure 3 displays the distribution of possiblek
for this given frequency. The solid square frames indicate the
first Brillouin zone boundaries and all data available should
be located at interior of this zone.(a) and (b) correspond to
the TM modes(H polarization); (c) and(d) correspond to the
TE modes(E polarization). (a) and (c) display the equifre-
quency contours for the TM and TE modes, respectively,

FIG. 1. Schematic view of the system used in this paper. The
system is composed of a semi-infinite PC(referred to as Region II),
positioned at thexy plane, embedded in a vacuum(referred to as
Region I ). The gray, dotted, and black arrows indicate the direc-
tions of the wave vectors for the incident, reflected, and transmitted
waves, respectively. The superscriptsi, r, andt denote the incident,
reflective, and transmitted fields, respectively.

FIG. 2. Calculated frequency dispersion spectrum of a 2D PC
by Eq. (2). The sample is composed of a square lattice of GaAs
dielectric circular cylinders withr =0.15a and e /e0=11.43 in air.
The solid and dashed curves represent the TE and TM modes, re-
spectively. The inset shows the unit cell of the PC.
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whenk of propagating waves takes pure real number. Simi-
larly, (b) and(d) show the contours of Rehkj for the TM and
TE evanescent modes with complexk. The spots in(b) and
(d) correspond to the situations with the smallest Imfksudg or
longest penetration depth. It is clearly seen from Fig. 3(c)
that there are not any real number solutions ofk inside the
first Brillouin zone due to the fact that the given frequency
v=0.4s2pc/ad is located at the mid gap of the TE modes.
However, whenk is allowed to expand outside or far away
from the first Brillouin zone, thus the solution of the real
numberk for this same frequency can be found. Such solu-
tions are missed owing to the finite number of the basis used
in the calculations. To find the interfacial direction in which
the penetration depth has the largest value, we first fix a

direction k̂ and use Eq.(4) to find a wave vector ofk that
corresponds to the smallestuImskdu value, denoted askIsud,
and it decides the primal decay trend for a propagating wave

along k̂. The second step is to scan the incident angle ofu
from 0° to 45° (if the considered system has a symmetry
lower than the present discussed sample, the scanning range
of the angle should be extended from 0° to 180°) to find an
angleu0, corresponding to the maximumkIsud. The contour
of minimum value of imaginary part ofk of the TE modes

for every given incident angleu, denoted askIsud, is shown
in Fig. 4. The penetration depths, defined by 2p /kIsud, are
6.8540a and 3.3272a at the incident angle of 0° and 45°,
respectively. This implies that when cutting a sample along
45°, it just needs four or five layers, enough to sufficiently
block the incident light waves withv=0.4s2pc/ad and TE
polarization through the sample at all, instead of seven or
eight layers needed for the 0°-cut sample.

The second example is that fixedky and frequency, one
searches for thekx satisfied Eq.(5), and then computes the
transmittivity. For providing a better comparison, we con-
sider a similar sample discussed in Ref.[9]. The sample is a
16-layer PC slab; the PC consists of a square lattice of air
circular rods with a radius of 0.43077a (a is the lattice con-
stant) in the dielectric PbO materialse=2.72e0d. The trans-
mission spectrum of this sample can be calculated by Eqs.
(5) and(7), as shown in Fig. 5, for two polarizations:(a) for
TE and(b) for TM modes. The curves with dots are drawn
by data excerpted from Ref.[9]. The solid and dashed curves
correspond to our results(our sample corresponds to a semi-
infinite PC, rather than a PC slab) for two different manners
of cutting plane as making the surface of the semi-infinite PC
sample: The solid curve that corresponds to the cutting plane
is the same as that in Ref.[9], whereas the dashed curve
corresponds to another manner of cutting plane which just
passes through the central line of hole rods at the surface
layer. The inset shows a magnified plot of(a) in part for a
clearer view of(a). The frequency regime now is settled
from 0.72 to 0.85, indicated by↔.

Our sample is semi-infinite in space therefore our results
are significantly different from those obtained by Sokoda[9].
The main difference is summarized below.

(i) It is clearly seen that the solid and dashed curves al-
most exhibit smooth varying behavior except for some parts
near the gap regime and at some special frequencies, for
instance, atv=0.74 and 0.85 in the TE mode. However, the
solid curves with dots correspond to the Sakoda’s results in
Ref. [9], they exhibit strongly oscillatory behavior owing to

FIG. 3. Distribution of possiblek values for a given frequency
v=0.4s2pc/ad. The parameters of this system are the same as those
of Fig. 2. The solid square frames indicate the first Brillouin zone
boundaries and all the data available should be located at interior of
this zone.(a) and(b) correspond to the TM modes(H polarization);
(c) and(d) correspond to the TE modes(E polarization). (a) and(c)
display the equifrequency contours for the TM and TE modes, re-
spectively, whenk of propagating waves takes pure real number.
Similarly, (b) and (d) show the contours of Rehkj for the TM and
TE evanescent modes with complexk. The spots in(b) and (d)
correspond to the situations with the smallest Imskd or longest pen-
etration depth.

FIG. 4. Contour of minimum value of imaginary part ofk of the
TE modes for each given incident angleu, denoted bykIsud. kIs0°d
andkIs45°d are 0.1459 and 0.3006, respectively. The real part ofk
is shown by spots in Fig. 3(d).
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the finite thickness of his sample. This oscillation structure
can be interpreted by a rough argument with the use of the
average dielectric constant, given byē;kelcell. In the low
frequency regime, the most important contribution toeG
comes from the terms ofeG=0 (i.e., ē) in the series expansion.
Thus a 16-layer PC slab can be treated as a single dielectric
plate with an effective uniform dielectric constantē
=1.7173e0 and a width of 16a, surrounded by air. This is a
typical 1D problem and the fields in both sides of this plate
are connected by a transfer matrix as

M vSeik16a 0

0 e−ik16aDM v
−1,

where M v represents a 232 matrix with detuM vuÞ0, de-
pendent on the optical impedance contrast and the incident
angle.k=vÎēm0 is the effective wave number,m0 is per-
meability in free space. It is evident that the middle propa-
gating matrix equals ±I when k16a=np, where n is an
integer number, so does the total transfer matrix. This
manifests that the frequency spacing between two neigh-
boring peaks is

Dṽ =
1

32Îē/e0

=
1

32Î1.7173
. 0.0238,

where ṽ=vsa/2pcd. We find that the average spacing of
two consecutive peaks in Fig. 5 is 0.0222 over the range of
ṽ=f0.5,0.7g therefore we can safely conclude that the os-
cillations in Fig. 5 come definitely from the effect of finite
thickness of the sample.

(ii ) In the vicinity of ṽ.0.74, the transmittivity is ex-
pected to be ascended rapidly with the increase ofṽ because
this frequency approaches the expanded band edge. How-
ever, the realistic situation exhibits different varying behav-
ior; see the inset of Fig. 5(a). The transmittivity at the begin-
ning ascended quickly and subsequently it drops rapidly to
zero. This phenomenon can be interpreted by the fact that
there are two propagation modes with near zero group veloc-
ity svg.0d, consequently, they make small contribution to
the transmittivity.

(iii ) It is clearly seen from the inset of Fig. 5(a) that the
valley of transmittivity nearṽ=0.85 disappears when the
surface is located at the central line of hole rods of the first
layer, different from the solid curve, corresponding to the
surface cut along the middle plane between two adjacent
hole rod layers. This result implies that it is possible to block
the incident light waves at some discrete frequencies by ap-
propriately choosing the cutting plane to serve as the surface
of the semi-infinite PC sample even the frequencies of the
incident light waves fall out off the photonic band gaps.

(iv) It is observed from Fig. 5(b) that there should exist a
forbidden band forṽ=0.75 to 0.78; see the solid curve.
However, the curve with dots never does show this merit.
According to our calculations, the attenuation rate of the in-
cident fields for a 16-layer PC slab sample is about 0.0733,
which agrees with the result shown in the dots curve. This
infers an important conclusion that evanescence modes in-
deed offer the contribution to the transmittivity in a finite
thickness PC slab.

We now conclude that the evanescence modes play a criti-
cal role and they should be taken into account in the studies
of the properties of a semi-infinite PC in air. The proposed
method also can support important information that in the
supercell calculation method how large the spacing between
two defect layers is appropriate when treating them as the
isolated defect layers, neglecting their coupling effect.

Finally, we would indicate the deficiency of the proposed
method. The proposed method may not be sufficiently effi-
cient because we obtain all the solutions in the wholek
space, including both inside and outside the first Brillouin
zone(FBZ). However, only the solutions inside the FBZ are
available because the solutions outside the FBZ only provide
repeated information to be redundant. For example, if we use
N2 bases, there are only 2N available eigenfunctions, but for
the 2D system, it does not cause a big problem. The ex-
amples shown in Figs. 3–5 are calculated on an AMD
1800MP computer, usingMATLAB code, and employing the
number of bases to be 19319. Plotting Figs. 3 and 4 it takes
about 10 min and plotting Fig. 5 takes about 9 h with the use

FIG. 5. Transmittance spectrum of a semi-infinite PC in air for
two polarization states of the incident light:(a) for TE and(b) for
TM modes. The related parameters of the sample have been de-
scribed in the text. The curves with dots are drawn by the data
excerpted from Ref.[9]. The solid and dashed curves correspond to
our results for two different manners of cutting plane to form the
semi-infinite PC sample: the solid curve to the cutting plane being
the same as that in Ref.[9] and shown in Fig. 2, whereas the dashed
curve to another cutting manner of the surface of our sample, the
surface is cut through the central line of hole rods of the first layer.
The inset displays a magnified plot of(a) in part, whose frequency
regime is indicated by a↔.
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of 300 segments in the frequency regime. On the contrary,
this method possesses several dominant advantages. First,
the frequency is first given in the calculations, thus our
method can powerfully deal with the systems involving the
materials with frequency-dependent(or complex number,
i.e., the dissipated system) permeability and permittivity in
arbitrary form. The computing times of the computer in deal-
ing with these different systems is almost the same. Second,
using this method can easily analyze the properties of peri-
odically structural samples with interfaces or surface, and the
computational time is independent of the number of layers in
the samples. Thus, even if the number of layers is very large,
the benefit of the time saving in the computations remains
unchanged. Third, the equifrequency contours are easily de-
termined by Eqs.(4) and (5); these contours can be used in
several different purposes. For instance, as a realizing tool
for studying the phenomena of negative refraction, by using
Eq. (8), we can calculate the density of photonic statesDsvd
as

Dsvd = E
shell

dki

u¹kvu
. s9d

They are especially useful when we aim at evaluating the
density of states in some small frequency regimes. The stud-
ies of the properties of the finite size specimens and the
samples with line defects are progressing smoothly now.
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