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Robust Cerebellar Model Articulation Controller
Design for Unknown Nonlinear Systems

Chih-Min Lin, Senior Member, IEEE, Ya-Fu Peng, and Chun-Fei Hsu

Abstract—1In this study, a robust cerebellar model articulation
controller (RCMAC) is designed for unknown nonlinear systems.
The RCMAC is comprised of a cerebellar model articulation con-
troller (CMAC) and a robust controller. The CMAC is utilized to
approximate an ideal controller, and the weights of the CMAC are
on-line tuned by the derived adaptive law based on the Lyapunov
sense. The robust controller is designed to guarantee a specified
H* robust tracking performance. In the RCMAC design, the
sliding-mode control method is utilized to derive the control law,
so that the developed control scheme has more robustness against
the uncertainty and approximation error. Finally, the proposed
RCMAC is applied to control a chaotic circuit. Simulation results
demonstrate that the proposed control scheme can achieve favor-
able tracking performance with unknown the controlled system
dynamics.

Index Terms—Cerebellar model articulation controller
(CMAC), chaotic system, robust control, sliding-mode control.

I. INTRODUCTION

ECENTLY, there has been some increasing interest on the

study of analysis and control of the nonlinear systems.
Various control methodologies have been developed by many
researchers from a point of view of dynamic system theory
and traditional feedback control. However, since these design
methods are based on a good understanding of the controlled
system dynamics and its environment; the objection for the
real-time application is unrealizable for the unknown systems.
To tackle this problem, some intelligent control techniques
(e.g., fuzzy control, neural network and neuro-fuzzy control)
have represented a design method for control of unknown
dynamic systems [2], [S]-[7]. Neural network is a model-free
approach, which is generally considered suitable for controlling
imprecisely defined systems. The success key element is the
neural network can approximate a mapping through choosing
adequate learning method. In recent years, the cerebellar model
articulation controller (CMAC) has been adopted widely for
the control of complex dynamical systems owing to its fast
learning property, good generalization capability, and simple
computation compared with the neural networks [3], [4], [8].
The application of CMAC is not only for the control problems
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but also for model-free function approximation. The CMAC
has been already validated that it can approximate a nonlinear
function over a domain of interest to any desired accuracy.

If the exact model of the controlled system is well known,
there exists an ideal controller to achieve favorable control per-
formance by possible canceling all the system uncertainties.
Since the system parameters and the external disturbances may
be perturbed or unknown, the ideal controller is always unob-
tainable. To overcome this problem, a robust design technique
termed as sliding-mode control has been presented to confront
these uncertainties [9]. However, to satisfy the existence condi-
tion of the sliding mode, sliding-mode control suffers from large
control chattering that may excite the unmodeled high frequency
response of the systems due to the discontinuous switching and
imperfect implementations.

This study successfully develops a robust cerebellar model
articulation controller (RCMAC) to achieve H° robust
tracking performance. Three important control design tech-
niques, i.e., CMAC control approach, H>° tracking theory, and
sliding-mode control design have been employed together to
develop the robust control algorithm. The developed RCMAC
is comprised of a CMAC and a robust controller. The CMAC is
designed to mimic an ideal controller and the robust controller
is designed to attenuate the effect of the approximation error
between the CMAC and the ideal controller. Thus, the derived
control scheme has more robustness against the uncertainties
and approximation error. To investigate the effectiveness of
the proposed control scheme, it is applied to control a chaotic
circuit. The major contributions of this study are: 1) the
successful investigation of the RCMAC system without using
prior knowledge of the controlled plant and (2) the successful
application of the RCMAC system for the accuracy control of
a chaotic circuit system.

II. PROBLEM STATEMENT AND IDEAL CONTROL

Consider the nth-order nonlinear system of the form
™ = f(x)+u 1)

where x = [2,%,... ,x("_l)]T € R" is the state vector of
the system, which is assumed to be available for measurement,
f(x) is the nonlinear system dynamics which can be unknown,
and v € R is the input of the system. The tracking control
problem of the system is to find a control law so that the state
trajectory = can track a reference command z.. The tracking
error is defined as

e=1T,— 1. ()
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Fig. 1. Network structure of a CMAC.

Assume that the parameters of the controlled system in (1) are
well known, there exits an ideal controller [9]

uw = —f(x)+ 2 + ke A3)
where e = [e, ¢, ...,e(""V]T € R™ is the tracking error vector

and k = [kn, ..., ks, k1]T € R",in which k; (i = 1,2,...,n)

are positive constants. Applying the ideal controller (3) to
system (1) results in the following error dynamics:

™ 4 ke D 4 p ke =0. “4)

If k;,i = 1,2,...,n are chosen such that all roots of the poly-
nomial A(s) 2 n + ki1s" ' 4+ - .- + k,, lie strictly in the open
left half of the complex plane, then it implies that lim; ., e = 0
for any starting initial conditions. The error dynamics (4) can be
rewritten in a vector form as

é=A_ e 5)
where
0 1 0o ---0
A _ : SURNUU
0 0 1
—k, —kn_1 —kq

If the system dynamics f(x) cannot be exactly obtained,
the ideal controller is unobtainable. Thus, a model-free design
method termed as the RCMAC will be developed for the
unknown nonlinear systems.

III. ROBUST CONTROL SYSTEM DESIGN VIA SLIDING-MODE
CONTROL TECHNIQUE

The developed RCMAC is comprised of a CMAC and a ro-
bust controller. The CMAC is utilized to approximate the ideal
controller and the robust controller is designed to achieve a spec-
ified H®° robust tracking performance. The detail is described
as follows.

A. Description of CMAC

A CMAC neural network is depicted in Fig. 1, which can be
considered as “1”-layer feedforward neural network with input
preprocessing element [8]. If o( - ) is a continuous discriminate
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function, the neural network output performs the mapping ac-
cording to

N
y= wioi(pi) ©)
i=1

where w; are the output layer weight values, p; are the network
input to the ith neuron, o( - ) : R — R is the activation function,
and NV is the number of units (also called nodes and neurons)
in the hidden layer. For ease of notation, the neural network
equation (6) can be expressed in a compact vector form as

T

y=wa (N
where w = [wi,ws,...,wy]T € RN and ¢ =
[01,02,...,0n]F € RN. It has been proven that there

exists a neural network approximator in (7) such that it can uni-
formly approximate any nonlinear even time-varying function
h [4]. By the universal approximation theorem, there exists an
ideal neural network approximator y* such that

h=y* +e(t)=wTo+e(t) (8)

where w* is the optimal vector of w and (¢) denotes the ap-
proximation error. The approximation error generally decreases
as the number of the neurons N increases. In fact, the optimal
vector that is needed to best approximate a given nonlinear func-
tion h is difficult to determine and might not even be unique.
Thus, a neural network estimator is defined as

j=wlo )

where W = [y, 2, ..., wn]T € RY is the estimated vector
of w*. Define the estimated error % as

j=h—g=y"—j+e=Wwlo+e (10)

where w = w* — Ww. In the following, an update law will be

derived to on-line tune the estimated vector to achieve favorable
estimation.

B. RCMAC Design

The developed RCMAC feedback control system is shown
in Fig. 2. The RCMAC is comprised of a CMAC and a robust
controller as follows:

Y

where the CMAC ucwmac is designed to approximate the ideal
controller u*, and the robust controller u  is designed to achieve
H* robust tracking performance. Substituting (11) into (1),
yields

. T
% = UCMAC T UR = W 0 + UR

™ = f(x) + ucnac + ur- (12)

Using (3) and (12), the error dynamic equation is obtained as

€= Ape+ by (u" — ucmac — ur) (13)
where by, = [0,...,0,1]7 € R".
Define a sliding surface as [10]
t
s(t) = C(e) — C(eg) — / agie) A edr (14)
Jo
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Fig. 2. RCMAC feedback control system.
R

where C(e) is a function to be designed, and e is the initial
state of e(t). Differentiating (14) with respect to time and using
the error dynamic equation (15) gives

. 0C(e). 0C(e)
T T0e ©7 oe
where C(e) satisfies (0C(e)/0e) = [0,...,0,1]. Since

ucMmac 18 used to approximate w*, using the approximation
error in (10), (15) can be rewritten as

Ane=u" —ucmac —ur (15)

5(t) = wlo +e(t) — up. (16)
In case of the existence of £(¢), consider a specified H>
tracking performance [2], [7]

/T (1) dt < $2(0) + %vv(owv(o) 4+ 8 /T 2yt (17)

where « is a positive gain and 6 is a prescribed attenuation
constant. If the system starts with initial conditions s(0) = 0
and w(0) = 0, the H* tracking performance in (17) can be
rewritten as

sup M <6 (18)
ceLfo,7) le]]

where [|s|2 = [ s2(t)dt and ||e]|> = [ e2(t)dt. If 6 =
00, this is the case of minimum error tracking control [2], [7].
Therefore, the following theorem can be stated and proved.
Theorem 1: Consider the nth-order nonlinear system ex-
pressed by (1). If the RCMAC system is designed as (11), in
which the adaptation law of W is designed as (19), and the

robust controller is designed as (20)

W= —W = Kso (19)
(62 +1)s

= —0 20

R 552 (20)
where ~ presents a learning rate, then the desired robust tracking
performance in (17) can be achieved for a prescribed attenuation

level 6.

Proof: Define a Lyapunov function in the following form:

1 wliw
V(s,W,t) = =5 .
(s, W,1) = 58"+ =5,
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Fig. 3. Chua’s chaotic circuit.

Differentiating (21) with respect to time and using (16), (19),
and (20), gives

< - (22)

Assumee € L»[0,T),VT € [0, 00). Integrating the above equa-
tion from¢ = 0 to ¢t = T yields

1, Lo [T,
V(T)-V(0) < —= sTdt+ -0 e”dt. (23)
2 Jo 2 Jo
Since V(T') > 0, it implies the following inequality:
e 1, [T
—/ szdtSV(0)+—52/ e? dt
2 Jo 2 Jo

Using (21), the above inequality is equivalent to the following

(24)

T 1 T
/ s2dt < 5%(0) + EVV(O)TW(O) + &2 / e2dt. (25)
JO J0

Thus, the proof is completed. O
In the following, the design algorithm of the developed
RCMAC scheme is summarized as follows:
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Fig. 4. Simulation results of RCMAC for the Chua’s chaotic circuit system. (a) State response z1 . (b) State response x». (c) State response x3. (d) Associated
effort u (for 6 = 1.0). (e) State response ;. (f) State response x». (g) State response 5. (h) Associated effort u (for 6 = 0.1).

Step 1) Select control parameters k;,7 = 1,2,...,n such
that the roots of (4) are in the open left half plane
and with desired convergent performance for e; and
then define the sliding surface as (14).

Step 2) The CMAC is given as (9) with w on-line tuned by
(19).

Step 3) The robust controller is designed as (20) where 6 is
an attenuation constant specified by the designers.

Step 4) The RCMAC is given as (11).

IV. SIMULATION RESULTS

In this section, the proposed design technique is applied to

control a chaotic circuit system to verify its effectiveness. It
should be emphasized that the development of the RCMAC does

not need to know the system dynamic function of the controlled
system.

A third-order Chua’s chaotic circuit, as shown in Fig. 3, is a

simple electronic system that consists of one linear resistor (R),
two capacitors (C,Cs), one inductor (L), and one nonlinear
resistor (A) [1], [11]. It has been shown to own very rich non-
linear dynamics such as chaos and bifurcations. The dynamic
equations of Chua’s circuit are written as

,[}Cl = Cil (% (UCQ - vcl) - A (UC2)>
o= (L w
UCQ - 02 R vCl UC2 lL
1, = —Z’Ucl (26)
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where the voltages v¢, , vc,, and current 4, are state variables,
and A denotes the nonlinear resistor, which is a function of the
voltage across the two terminals of Cy. The A is defined as a
cubic function as

A(ve,) = ave, + evg,  (a <0,¢>0). (27)
Choose the parameters as R = 10/7,C1 = 1,0y = 19/2,L =
19/14,a = —4/5, and ¢ = 2/45 [11]. Furthermore, the state
equations in (26) are not in the standard canonical form in (1).
Therefore, a linear transformation is needed to transform them
into the form of (1). According to [11], the dynamic equations
of transformed Chua’s circuit can be rewritten as

il = T2
i?g = T3
3= f(x)+u (28)

where f(x) = (14/1805)z1 — (168/9025)x5 + (1/38)x3 —
(2/45)((28/361)z1 + (7/95)w2 + x3) and x = [z, T2, 3]T
is the state vector of the system which is assumed to be avail-
able, and u is the control effort. Following the design proce-
dure, the control parameters and sliding surface are chosen as
ki =3,k =3,ks = Land s = é—&(0)+ [ (3¢ + 3¢ + ¢) dt.
The CMAC is given as (9) with W on-line tuned by (19) where
k is chosen as 20; and the robust controller is given as (20).
Then, the RCMAC is given as (11). The simulation results of
the RCMAC feedback control system are shown in Fig. 4. The
state responses x1, T2, and z3 are shown in Fig. 4(a), (b), and
(c), respectively, and the associated effort is shown in Fig. 4(d)
for 6 = 1.0. Meanwhile, The state responses x1, x5 and x3 are
shown in Fig. 4(e), (f), and (g), respectively, and the associated
effort is shown in Fig. 4(h) for 6 = 0.1. From Fig. 4(e), (f), and
(g), the state responses can achieve faster tracking performance
than the control results proposed in [11]. Furthermore, the asso-
ciated effort u of the RCMAC is smaller than the control effort
proposed in [11]. From these simulation results, it can be seen
that favorable tracking performance can be achieved for the pro-
posed RCMAC by specifying a small attenuation constant.

V. CONCLUSION

This study has successfully developed a RCMAC system,
which is comprised of a CMAC and a robust controller. The
CMAC is utilized to approximate an ideal controller and the
robust controller is utilized to attenuate the tracking error with
a specified H° tracking performance. The developed control
scheme has the advantages that it can on-line tune the parame-
ters of the CMAC even unknown of the system dynamics and
it can achieve a specified robust tracking performance. For in-
vestigating the effectiveness of the proposed RCMAC system, it
is applied to control a chaotic circuit system. Simulation results
indicate that favorable tracking performance can be achieved by
specifying a small attenuation constant.
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