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SUMMARY 
A co-rotational finite element formulation for the dynamic analysis of planar Euler beam is presented. Both 
the internal nodal forces due to deformation and the inertia nodal forces are systematically derived by 
consistent linearization of the fully geometrically non-linear beam theory using the d'Almbert principle and 
the virtual work principle. Due to the consideration of the exact kinematics of Euler beam, some velocity 
coupling terms are obtained in the inertia nodal fonxs. An incremental-iterative method based on the 
Newmark direct integration method and the Newton-Raphson method is employed here for the solution of 
the non-linear dynamic equilibrium equations. Numerical examples are presented to investigate the effect of 
the velocity coupling terms on the dynamic response of the beam structures. 

1. INTRODUCTION 

In recent years, the non-linear dynamic behaviour of beam structures, e.g. framed structures, 
flexible mechanisms and robot arms, has been the subject of considerable research.'-13 Hsiao and 
Jan&' presented a co-rotational formulation and numerical procedure for the dynamic analysis 
of planar beam structures. In this formulation the Euler-Bernoulli hypothesis was employed and 
the unit extension of the centroid axis  of the beam element was assumed to be constant. As 
extensively used in the literature, the inertia nodal force vector was obtained simply by the inner 
product of the mass matrix and the nodal acceleration vector. This formulation 
and numerical procedure were proven to be very effective by numerical examples studied in 
Reference 11. However, the inertia nodal forces used in Reference 11 are derived from the linear 
beam theory. As mentioned in Reference 9, the use of linear beam theory cannot account for the 
complete inertia effects. In order to capture all inertia effects and coupling among extensional, 
flexural and torsional deformations for beam elements, the formulation of beam elements might 
be derived from the fully geometrically non-linear beam theory by consistent linearizati~n.~ 
Two consistent co-rotational formulations for three-dimensional beam element are proposed 
by Cri~field'~ and Hsiao," respectively. However, they are only limited for non-linear static 
analysis. 

The objective of this study is to present a consistent formulation for the dynamic analysis of 
planar Euler beam in which the inertia nodal forces and internal nodal forces due to deformation 
are systematically derived by consistent linearization of the fully geometrically non-linear beam 
theory using the d'Alembert principle and the virtual work principle. Here the Euler-Bernoulli 
hypothesis is properly considered.' Following Reference 1 1, the nodal co-ordinates, incremental 
displacements and rotations, velocities, accelerations and the equations of motion of the system 
are defined in terms of a fixed global co-ordinate system, while the total strains in the beam 
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element are measured in element co-ordinates which are constructed at the current configuration 
of the beam element. The element equations are constructed first in the element co-ordinate 
system and then transformed to the global co-ordinate system using standard procedure. The 
dominant factors in the geometrical non-linearities of beam structures are attributable to finite 
rotations, the strains remaining small. For a beam structure discretized by finite elements, this 
implies that the motion of the individual elements to a large extent will consist of rigid-body 
motion. If the rigid-body motion part is eliminated from the total displacements and the element 
size is properly chosen, the deformational part of the motion is always small relative to the local 
element axes; thus, in conjunction with the co-rotational formulation, the higher-order terms of 
nodal parameters in the element internal nodal forces and inertia nodal forces may be neglected. 
Due to the consideration of the exact kinematics of Euler beam, some velocity coupling terms are 
retained in the inertia nodal forces. 

An incremental-iterative method based on the Newmark direct integration method and the 
Newton-Raphson method is employed here for the solution of the non-linear dynamic equilib- 
rium equations. Numerical examples are presented to investigate the effect of the velocity 
coupling terms on the dynamic response of the beam structures. 

2. NON-LINEAR FORMULATION 

2.1. Basic assumptions 

The following assumptions are made in derivation of the non-linear behaviour: 

(1) The Euler-Bernoulli hypothesis is valid. 
(2) The unit extension of the centroid axis of the beam element is uniform. 
(3) The deformational displacements and rotations of the beam element are small. 
(4) The strain of the beam element is small. 

The third assumption can always be satisfied if the element size is properly chosen. Due to the 
assumption of small strain, the engineering strain and stress are used for the measure of the strain 
and stress. For convenience, the engineering strain is obtained from the corresponding Green 
strain in this study. 

2.2. Co-ordinate systems 

systems (see Figure 1): 
In order to describe the system, following Reference 11, we define two sets of co-ordinate 

(1) A fixed global set of co-ordinates, X , X2. The nodal co-ordinates, incremental displace- 
ments and rotations, velocities, accelerations, and the equations of motion of the system are 
defined in this co-ordinate system. 

(2) Element co-ordinates, x l ,  x2. A set of element co-ordinates associated with each element, 
which is constructed at the current configuration of the beam element. The element 
equations are constructed first in the element co-ordinate system and then transformed to 
the global co-ordinate system using standard procedure. 

2.3. Nodal parameters and nodal forces 

The element employed here has three degrees of freedom per node (Figure 2): these are the 
translations uj and v j  ( j  = 1,2) in the x1 and x2 directions, respectively, and the counterclockwise 
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Current mfigurotion 
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Figure 1. Cwrdinate systems 
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Figure 2. Nodal parameters and nodal forces 

rotations O j  ( j  = 1,2) at nodes j. The nodal degrees of freedom for the global co-ordinate system 
are the incremental translations AUj and Ac( j = 1,2) in the XI and X2 directions, respectively, 
and the incremental counterclockwise rotations AOj ( j =  1, 2) at nodes j .  The nodal forces 
corresponding to the nodal parameters are the conventional forces and moments as shown in 
Figure 2. 

2.4. Kinematics of beam elements 

The geometry of the beam element is described in the element co-ordinate system. In this study, 
the symbol { } denotes column matrix. Let Q (Figure3) be an arbitrary point in the beam 
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Figure 3. Kinematics of the deformed beam 

element, and P be the corresponding point of Q on the centroid axis. The position vector of point 
P in the undeformed and deformed configurations can be expressed as {xy 0) and {x,(s), o(s)), 
respectively, where s is the arc length of the deformed centroid axis measured from node 1 to point 
P.  The relationship among x,(s), u(s), and s may be given as 

where 

and 

x,(s) = u1 + ; Sf, cosedt 

2s t = - l + -  S (4) 

in which u1 is the dispcement of node 1 in the x1 direction, 8 is t-e angle measured from the x1 
axis to the tangent of the centroid axis and S is the current arc length of the centroid axis of the 
beam element. Note that due to the definition of the element co-ordinate system, the value of u1 is 
equal to zero. However, the variation and the time derivative of ul are not zero. Making use of 
equation (l), we obtain 

where 

and 
G = X,(S) - X,(O) = L - u1 + u2 

in which L is the length of the undefomcd beam axis and u2 is the displacement of node 2 in the 
x1 direction. 

The position vector of point Q in the undeformed and deformed configuration may be written 
as 

ro = {x, Y} (8) 
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and 

and displacement vector of point Q may be given by 

r(s) = {x&) - ysin8, U(S) + ycose} (9) 

u = r - r o  (10) 
If x and y are regarded as the independent variables, the Green strains E~~ (i = 1,2, j = 1,2) are 

given by ’ 
~ i j  = *(GTGj - g:gj) (1 1) 

where 

and 

in which 

= (1 + E0)(1 . 
ar h as G ,  =- = -- 
ax asax 

ar G2 = - = { -sine, case} 
aY 

1 E O = - -  
as 
ax 

ae 
= as = CU” 

KY){COS 8, sin 8} 

Note that K in equation (14) is an exact expression for the physical curvature of the deformed 
beam centroid axis. An equivalent expression of K is given in Reference 16. Making use of the 
assumption of uniform unit extension, we m a y  rewrite the unit extension e0 in equation (13) as 

S 
E o = - - l  

L (17) 

Due to the use of the Euler-Bernoulli hypothesis, as expected, c l l  is the only non-zero 

(18) 

component of E ~ ~ .  Substituting equation (12) into equation(l1) we may obtain 

E l l  = +C(1 + Eo)2(1 - KYI2 - 11 

E = (1 -t h11)”’ - 1 = (1 + h)(1 - Ky) - 1 

The engineering strain corresponding to e l l  is given by” 

(19) 

Note that E in equation (19) is an exact expression of engineering strain for the Euler beam. 
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Here, the lateral displacement of the centroid axis, u(s) is assumed to be the cubic Hermitian 
polynomials of s and is given by 

u(S)  = {NI,  Nt,  N 3 ,  N4}T{V1, u ; ,  V2, u ; }  = N i U b r  (20) 
where uj and v;  (j = 1,2) are the nodal value of v and u‘ at nodes j, respectively. Ni (i = 1-4) are 
shape functions and are given by 

N, = i ( 1  - 5)2(2 + t), Nz = iS(l  - r2)(1 - <) 
(21) 

N 3  = f ( 1  + 5)2(2 - t), N4 = is( - 1 + <2)(1 + 5 )  
where S is the current arc length of the centroid axis, and < is the non-dimensional co-ordinate 
defined in equation (4). 

2.5. Element internal nodal force vectors 

The element internal nodal forces are obtained from the d‘Alembert principle and the virtual 
work principle. The virtual work principle requires that 

SuXf, + buETfb = ( ~ E ~ C T  + pbuTii) d V (22) 

where 

6ua = {bUl, 6UZ) 

f b = f d , + f b =  {fZl,mI,f22,m2} (26) 
in which fg and f j  ( j = a, b) are the nodal force vector due to deformations and the inertia nodal 
force vector, respectively. b~ is the variation of E given in equation (19). CT = EE is the normal stress, 
where E is the Young’s modulus. p is the density, 6u is the variation of u given in equation (10) 
with respect to the nodal parameters, and ii = d2u/dt2. In this paper, the symbol (.) denotes 
differentiation with respect to time t ,  V is the volume of the undeformed beam. 

The exact expression of fa and fb  may be obtained by substituting the exact expression of 68, E, 

bu, and u into equation (22). However, if the element size is properly chosen, the nodal parameters 
of the element may always be much smaller than unity. Thus, only the first-order terms of nodal 
parameters are retained in C and f& and only zeroth-order terms of nodal parameters are 
retained in and pb.  However, in order to include the effect of axial force, a second-order term of 
nodal parameters is retained in f”. The approximations, 1 + z 1, u’ = 8 and cos 8 = 1 are used 
in the derivation of fa and f b .  In order to avoid improper omission in the derivation of fa and f b ,  

these approximations are applied to the exact expression of b ~ ,  E, 6u and u. 
From equations (2)-(7) and (14)-(17), the variation of E in equation (19) may be expressed as 

(27) bE = (1 - Ky)bEo - (1 f E0)YbK 

where 
bK = CbU“ + c3v’u”6t.’ 

6s 266 usfi 
L fiL p L  

= - = - - - 
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6d = { - 1, 1}T{6~1, 6 ~ 2 )  = G f h ,  

Sg = - ct.'&'d< 
1 I- 1 

in which bu' and 6u" are the variations of u' and u", respectively, with respect to the nodal 
parameters. It should be noted that because the shape functions of u' and v'' are functions of S, the 
current arc length of the centroid axis, the variation of the shape functions are considered here. 

From equations (20), (21) and (28)-(31), the exact expression of 66 in equation (27) may be 
obtained. Using the approximations 1 + e0 x 1, u' x 8 and cos 8 x 1, and retaining all zeroth- 
order terms and one first-order term of nodal parameters in the exact expression of &, we may 
obtain 

(32) 
1 1 BE = - Gi6ua + 1 u'NbTd< &I[ - yNgTGu; 

L 2 - 1  

From equations (1)-(9), (20) and (21), the exact expression for 6u, the variation of u in 
equation (10) may be obtained. Using the approximations 1 + .so 2 1, u' z 8 and cose x 1, and 
retaining all zeroth-order terms of nodal parameters in the exact expression of bu, we may obtain 

where 
(33) 

(34) 

From equations (1)-(lo), (20) and (21), the exact expression of u may be obtained. Using the 
approximations 1 + E~ x 1, u' 2 8 and cos 8 2 1, and retaining only zeroth-order terms of nodal 
parameters in the exact expression of ii, we may obtain 

where 

and 

(36) 

(37) 

Note that ii and iii (i = a, b) are the absolute velocity and acceleration vectors of an element 
referred to the element co-ordinates which are obtained from the transformation of the corres- 
ponding global velocity and acceleration vectors extracted from the equations of motion of the 
system using standard procedure.' 

Substituting equations (19), (32), (33) and (35) into equation (22), using the approximations 
1 + eo x 1, ur x 8 and cos 8 z 1, dropping higher-order terms of nodal parameters, and equating 
the terms on both sides of equation (22) corresponding to virtual displacement vectors bu, and 
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6ut, respectively, we may obtain 

ft = AEQG, 

where A is the cross-sectional area and I = j A  y 2  dA. The underlined terms in equations (41) and 
(42) are called the velocity coupling terms in this study. Note that if the velocity coupling terms in 
equations (41) and (42) are dropped, equations (39)-(42) are identical to the element nodal forces 
in Reference 1 1. 

2.6. Element matrices 

The element stiffness matrices and mass matrices may be obtained by differentiating the 
element nodal force vectors in equations (39)-(42) with respect to nodal parameters, and time 
derivatives of nodal parameters. However, element matrices are only used to obtain predictors 
and correctors for incremental solutions of non-linear equations in this study. Approximate 
element matrices can meet these requirements. Thus, the element matrices used in Reference 11 
are adopted here for simplicity. 

2.7. Equations of motion 

The non-linear equations of motion may be expressed by 

cp = F' + F~ - P = o (43) 
where cp is the unbalanced force among the inertia force F', internal nodal force due to 
deformation FD, and the external nodal force P. F' and FD are assembled from the element nodal 
force vectors in equations (39)-(42), which must be transformed from element co-ordinate system 
to global co-ordinate system before assemblage using standard procedure. 

In this paper, an weighted Euclidean norm of the unbalanced force is employed for the 
equilibrium iterations, and is given by 

where cp, is a reference unbalanced force, which is chosen to be the unbalanced force obtained at 
the first iteration in the present study; etol is a prescribed value of error tolerance. 
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3. APPLICATIONS 
An incremental iterative method based on the Newmark direct integration method ll. '' and the 
Newton-Raphson method is employed. The procedure used here to determine the deformational 
nodal rotations for individual elements is the same as that proposed in Reference 11 and is not 
repeated here. 

In order to investigate the effect of the velocity coupling terms on the dynamic response, four 
examples are studied for the cases with and without consideration of the velocity coupling terms. 
It is found that for the first three examples the results obtained for both cases are nearly identical, 
but for the last example the discrepancies between the results obtained for both cases are not 
negligible. 

Material Properties Time History 
of F(t), T(t) 

EI 200 1 

24$7A / t  
4.8 9.6 

F( t)=T( t)/l 0 

Figure 4. Ryhg c l d - l o o p  chain 

\ 
/ 

\ \  
t=4.8 t=9.6 t=14.4 

I / 

Figure 5. Entire sequence of motion for flying closed-loop chain 
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3.1, Flying closed-loop chain 

The first example considered is a closed-loop chain'' constituted of four flexible links 
interconnected by hinges as shown in Figure4. The geometry and material properties of the 
closed-loop chain are also shown in Figure 4. Initially, the closed-loop chain forms a square of 
length 10 on each side. The whole system has no prescribed displacement boundary condition. 
A force and torque are applied at end A of the link AB as shown in Figure 4. The closed-loop 
chain is discretized using 40 equal elements. The time step size is set to 001 and the error 
tolerance is set to lo-'. The entire sequence of motion is shown in Figure 5. Also shown in 
Figure 5 are the results reported in Reference 10. It is observed that the present results are in 
agreement with those in Reference 10. 

3.2. Flexible robot arm with end rotation 

This example considered is a flexible beam rotating horizontally about a vertical axis passing 
through one end.6 Figure 6(a) shows the geometry of the beam and material properties. This 
beam is subjected to a prescribed rotation angle $(t) at one end as follows: 

EI - 1.4~10' 
pA = 1.2 
PI = 6 ~ 1 0 ~  

L = 10 

Figure 6(a). Flexible robot arm 

-Current configuration 

---- Initial configuration 
--Rigid body m o t h  ot t 

Figure 6(b). Defition of U,, U2 and z 
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Figure 7(a). Time history for displaccment component U, 

I I I I I 

0 5 10 15 20 25 30 
-0.6 

Time 

Figure 7(b). Time history for displacement component U2 
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Figure 7(c). Time bistow for displ-t component a 
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The beam is discretized using four elements. The time step size is set to 0005 and the error 
tolerance is set to lo-". The time histories of the tip displacements U1, U2, and the tip rotation 
a, which are defined in Figure 7(b), are shown in Figures 7(a)-(c). Also shown in Figures 7(a)-(c) 
are the results reported in Reference 6. It is observed that the present results are in agreement with 
those in Reference 6. 

3.3. Planar manipulator 

The planar manipulator' shown in Figure 8 consists of two links. Two cases are considered: (a) 
both links are considered flexible and (b) link 1 is considered rigid. The geometry, inertia 
properties and material properties of the planar manipulator are given in Figure 8. For case (b), 
the Young's modulus of link 1 is set to lo4 times as large as that of link 2 to simulate rigid link. 
Link 1 rotates with constant angular velocity o = 10 rad/s, while the motion of link 2 is such that 
its tangent at point A always remains in the horizontal position. This is assumed to be achieved 
by the joint moment. Weight of the bodies acts in the downward direction. 

= t12 = 0. The initial elastic deformations are assumed to be zero, and the initial 
velocities and accelerations of the manipulator are calculated by using kinematics of rigid 
mechanism. Each member is discretized by four elements. The time step size is chosen to be 
0.0013 s and the error tolerance is set to 10-l2. 

Initially, 

Lc = LZ = 0.8 m 
A1 = Az = 0.0004 rnz 
I, = 4 1 ~  = 5.333~10~ rn' 
m, = 4 = 2.512 kg 

Figure 8. Planar manipulator 

- Presmt 
--- Ider and Amirouche [8] 

-8' 

Figure Wa). Tip ddkction of link2 (both links &xi&) 



A CONSISTENT FINITE ELEMENT FORMULATION 87 

The transverse tip deflections of link 2 measured from the tangent at point A are shown in 
Figures9(a) and 9(b) for both cases. Also shown in these figures are the results reported in 
Reference 8. It is seen that the agreement between these two solutions is very good. 

3.4. Flexible robot arm with end torque 

The flexible beam as shown in Figure 10 is subjected to an end torque. Initially, 4 = 0. The 
beam is discretized by ten elements. The time step size is chosen to be 00002 s and the error 
tolerance is set to lo-''. 

The sequence of motion is depicted in Figure 11, and the time history of the rotation angle of 
the tangent at the robot base is shown in Figure 12. It is observed that the discrepancies between 
the results for the cases with and without the consideration of the velocity coupling terms are 
remarked. 

4. CONCLUSIONS 

This paper has described a consistent finite element formulation for the dynamic analysis of 
planar Euler beam in which the inertia nodal forces and internal nodal forces due to deformation 
are systematically derived by consistent linearization of the fully geometrically non-linear beam 

- Present 
--- Ider and Amirouche [a] 

-81 

Figure 9(b). Tip deflection of link 2 (link 1 rigid) 

E = 2x1 0" N / d  
p = 7860 k g / ~  
L = l m  
A=4x104 m2 

t(sec) I = 1.333~10~ m4 

Figure 10. Flexible robot a m  with end torque 
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0.032 0.024 
I: 

- With velocity coupling 
---- Without velocity coupling 

Figure 11 .  Sequence of motion for flexible robot arm 

c 
0 

0 1 2 3 4 5 6 7 8 9  
Time (tO-*sec) 

3 

Figure 12. Time history for rotation angle of the tangent at robot base 

theory using the d'Alembert principle and the virtual work principle. In conjunction with the 
co-rotational formulation, the higher-order terms of nodal parameters in element nodal forces are 
consistently neglected. Due to the consideration of the exact kinematics of the Euler bearn, some 
velocity coupling terms are obtained in the inertia nodal forces. From the numerical examples 
studied, it is found that the effects of these velocity coupling terms on the dynamic response are 
remarked for some cases. 

Although not included in the present derivation, the inclusion of damping forces presents no 
difficulties. It is believed that the consistent co-rotational formulation for beam element presented 
here may represent a valuable engineering tool for the dynamic analysis of planar beam 
structures. 
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