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Abstract

This work examines the effect of interface thermal resistance on the estimation of surface temperatures in thin-film/

substrate systems. A radiation-boundary-condition model based on the acoustic mismatch model (AMM) is employed

to consider the interface thermal resistance between thin-film and substrate. The inverse heat conduction problem is

solved using the space-marching technique. The influences of interface thermal resistance, measurement locations, and

measurement errors on this method are studied in detail. Numerical results show that the inverse method accurately

estimates surface conditions and temperature distributions in a two-layer system even with an abrupt temperature drop

at the interface. Sensor locations and interface thermal resistance only slightly affect the accuracy of the inverse esti-

mation during the transient process when the exact input data (without measurement errors) are applied. However, the

inaccuracy might be amplified by the interface thermal resistance and sensor locations if measurement errors exist.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-film/substrate systems are widely used in su-

perconducting bolometers, microelectronics systems,

and electro-optic devices. In such systems it is often

necessary to know surface temperatures and tempera-

ture distributions within the media. These temperature

profiles can be calculated if material thermal properties,

initial and boundary conditions are given. However, in

some circumstances, boundary conditions are difficult to

determine. For example, if the surface of the thin-film is

suffering laser heating, it is unsuitable for attaching a

sensor on the surface. Hence, temperature detectors are

placed inside the substrate. Use of the inverse methods

allows determination of thermal properties and estima-

tion of temperature distributions and unknown bound-

ary conditions by means of internal or external

measurements [1].

Over the past three decades, a considerable amount of

work has been done on the study of inverse heat transfer
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problems by either analytical methods or numerical

methods. The analytical methods include exact methods,

polynomial methods, and integral methods [2]. These

methods are only useful for solving linear one-dimen-

sional problems with particular initial and boundary

conditions. Numerical methods, on the other hand, have

the advantage of being applicable to any problem type.

The intrinsic characteristic of inverse problems is that

they are ill-posed [2]. By contrast, a well-posed problem

meets the following three requirements: existence, uni-

queness and stability. It has been proved that solutions

to inverse heat conduction problems usually exist and

are unique. However, the obtained estimates are not

always numerically stable. In other words, small inac-

curacies in the measured interior temperatures may

cause large oscillations in the calculated surface condi-

tions. Thus, many special methods have been proposed

to solve inverse heat conduction problems (IHCPs). The

main purpose of these inverse methods is to improve the

stability of numerical calculation results.

Interface thermal resistance plays an important role

in determining heat flow in thin-film/substrate sys-

tems. For example, a restriction in heat flow from the

superconducting film can cause a transition from the
ed.
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Nomenclature

Cp specific heat [kJ/kgK]

Eint estimation error at the interface, jTest�
Texaj=Texa

k thermal conductivity [W/mK]

L system thickness [m]

L1 interface location [m]

Lr first sensor location [m]

q heat flux [W/m2]

Q dimensionless heat flux, Lq=kTL
t time [s]

T temperature [K]

T0 initial temperature [K]

TL temperature of the left surface [K]

x spatial coordinate [m]

Y1, Y2 temperature histories at the first and second

sensor locations

Greek symbols

a thermal diffusivity [m2/s]

Dh dimensionless temperature difference in the

interface

h dimensionless temperature, T=TL
j constant; see Eq. (5)

n dimensionless space coordinate, x=L
n1 dimensionless interface location, L1=L
nr dimensionless first sensor location, Lr=L
q density [kg/m3]

r bound of random error

s dimensionless time, a1t=L2

- random error

Subscripts

0 initial condition

est estimated

exa exact

i grid space index

j layer index; 1 represents layer 1, 2 represents

layer 2

Superscripts

m final time

n time index
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superconducting state to the normal state during oper-

ation of the device, resulting in device failure. Recently,

interface thermal resistance has received special interest

and attention in many fields such as microelectronics

systems [3], superlattices [4,5], and superconductor film/

substrate composites [6–9]. Many experiments have been

conducted to determine the interface thermal resistance

between thin films and substrates. Nahum et al. [10]

directly measured the interface thermal resistance over

the temperature range 97 K6 T 6 177 K for Y–Ba–Cu–

O films deposited on sapphire with and without various

intervening buffer layers. The thermal contact resistance

can also be indirectly estimated from the measured time

constant of the transient voltage response to a heat or

optical input [11,12]. Leung et al. [13] predicted the

thermal contact conductance in vacuum using statistical

mechanics. Kelkar et al. [14] discussed the effect of heat

flux on the interface thermal resistance.

In addition to experimental quantification of inter-

face thermal resistance, theoretical analysis also has

been done by many researchers. The interfacial layer

model assumes an ultra-thin layer with very low con-

ductance exists between two dissimilar materials. Two

important parameters directly and significantly affecting

the magnitude of the resistance are the conductivity

and thickness ratios of interfacial layer to film, respec-

tively. Little [15] predicted interface thermal resistance

by treating phonons as plane waves and proposed the

acoustic mismatch model (AMM). An essential as-

sumption of the AMM is that no scattering occurs at the
interface. Swartz and Pohl [16] considered the diffuse

scattering occurring at the interface and proposed the

diffuse mismatch model (DMM). The AMM and DMM

are both in the same form as the radiation boundary

condition, in which the heat flow across the interface is

proportional to the fourth power of the temperature on

each side of the interface. The applicability of AMM or

DMM has been discussed in detail by Phelan [17]. In this

work, the results showed that the applicability of AMM

and DMM is determined by the ratio kd=d, where kd is
the dominant phonon wavelength, and d is the mean
interfacial roughness. When kd=d � 1, the AMM is

applicable, otherwise, the DMM applies. Recently, Zeng

and Chen [18] examined the applicability of the thermal

boundary resistance to the case with internal heat gen-

eration. Prasher and Phelan [19] developed a model,

called the scattering-mediated acoustic mismatch model

(SMAMM), to exploit the analogy between phonon and

radiative transport by developing a damped wave

equation to describe the phonon transport. More re-

cently, Chantrenne and Raynaud [20] developed the

simulations of heat transfer through an interface by

molecular dynamics.

Thus, determining surface temperatures in thin-film/

substrate systems with interface thermal resistance has

become a very important issue. To the best of the authors’

knowledge, no work has thoroughly investigated the in-

verse estimation of surface temperatures in thin-film/

substrate systems with interface thermal resistance. In this

study, a space-marching technique [21] is adopted to
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estimate the temperature distributions and unknown

boundary conditions from internal measurements. A

radiation-boundary-condition model based on the AMM

is employed to consider the interface thermal resistance

between the thin-film and substrate. The influences of

interface thermal resistance, measurement errors, and

measurement locations are studied. Furthermore, the re-

sults of the estimation for the cases with or without

interface thermal resistance are also compared.
2. Analysis

2.1. Direct problem formulation

Consider one-dimensional conductive heat transfer in

a two-layer medium as illustrated in Fig. 1. The tem-

perature of the medium is initially T0. At time t ¼ 0, the
temperature at x ¼ 0 has risen to TL while the tempera-
ture at x ¼ L is still T0. All thermal properties in this
study are assumed to be temperature-independent. For

convenience in the subsequent analysis, nondimensional

variables are defined as follows:

hj ¼
Tj
TL

; s ¼ a1t
L2

; n ¼ x
L
; n1 ¼

L1
L
;

nr ¼
Lr

L
; Qj ¼

Lqj
kjTL

; ð1Þ

where a is the thermal diffusivity and k is the thermal
conductivity. The subscript j represents Layer j, where
j ¼ 1 or 2. The governing equations for this problem are
Fig. 1. Schematic diagram of the physical system.
ohj

os
¼ aj

a1

o2hj

on2
: ð2Þ

The initial conditions are

hjð0; nÞ ¼ h0: ð3Þ

The boundary conditions are

h1ðs; 0Þ ¼ 1; ð4aÞ

h2ðs; 1Þ ¼ h0: ð4bÞ

At the interface, the radiation-boundary-condition

model is employed, thus the heat flux continuity is

o

on
h1ðs; n1Þ ¼

k2
k1

o

on
h2ðs; n1Þ

¼ � LT 3L
k1

j½h41ðs; n1Þ � h42ðs; n1Þ�; ð5Þ

where j is a function of the material properties of the
two media in contact. Higher j represents less interface
thermal resistance.
2.2. Inverse problem formulation

The inverse heat conduction problem is to estimate

the temperature histories over the whole domain from

internal temperature measurements. In this study, in-

stead of using measured temperatures, the input data for

the inverse heat conduction problem are predicted from

the solution of a direct problem for a given set of

boundary conditions.

The set of equations for the IHCP are Eqs. (2) and (5)

along with

h1ðs; 0Þ ¼ ? ð6Þ

h2ðs; nrÞ ¼ Y1ðsÞ ð7aÞ

h2ðs; 1Þ ¼ Y2ðsÞ ð7bÞ

The medium is divided into a direct and an inverse

region. The problem in the direct region, nr < n < 1, is
a boundary-value problem with boundary conditions

given by the temperature measurements Y1 and Y2. Y1 and
Y2 representing the temperature history of the first sensor
located at n ¼ nr and the second sensor located at n ¼ 1,
respectively. In this study, Y1, and Y2 were simulated by
the solution of the direct heat-transfer problem. After the

temperature distributions in the direct region were ob-

tained, the temperature distributions in the inverse re-

gion were determined by the space-marching method.
3. Numerical method

The inverse estimation is not always numerically

stable, which means small inaccuracies in the measured



Fig. 2. Space–time grid for numerical calculations [23]: ( )

temperatures estimated by Raynaud and Bransier method [21],

(�) temperatures estimated by D’Souza method [22], (�)
known temperatures.
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interior temperatures may cause large oscillations in

the calculated surface conditions. Thus, many special

methods have been proposed to improve the stability of

numerical calculation results. The space-marching

method is easy to use, accurate and stable [2]. Therefore,

it was adopted to deal with the engineering problem in

this manuscript. The calculations start on the boundary

between direct and inverse regions and then are con-

tinued for the subsequent grids within the inverse region.

The space-marching technique proposed by Raynaud

and Bransier [21] uses the finite-difference method to

approximate the governing equations. Central-difference

approximations in space and time lead to

hnþ1
i;j � hn�1

i;j

2Ds
¼ aj

a1

Qn
i�1=2;j � Qn

iþ1=2;j

Dn
; ð8Þ

where the subscripts j ¼ 1 or 2 represent Layer 1 or
Layer 2, respectively. In addition, the dimensionless heat

flux values Qn
i�1=2;j and Qn

iþ1=2;j are approximated as fol-

lows:

Qn
i�1=2;j ¼ �

hn
i;j � hn

i�1;j

Dn
; ð9aÞ

Qn
iþ1=2;j ¼

1

2
Qnþ1

iþ1=2;j

�
þ Qn�1

iþ1=2;j

�

¼ � 1
2

hnþ1
iþ1;j � hnþ1

i;j

Dn

"
þ

hn�1
iþ1;j � hn�1

i;j

Dn

#
: ð9bÞ

It can be seen that the dimensionless heat flux Qn
iþ1=2;j is

the average of central-difference at times nþ 1 and
n� 1. This will decrease the sensitivity to measurement
errors and stabilize the inverse method. Substituting

Eqs. (9a) and (9b) into Eq. (8) results in

hn
i�1;j ¼ hn

i;j þ
a1
aj

ðDnÞ2

2Ds
hnþ1
i;j

�
� hn�1

i;j

�

� 1
2

hnþ1
iþ1;j

�
� hnþ1

i;j þ hn�1
iþ1;j � hn�1

i;j

�
: ð10Þ

The temperatures at times nþ 1 and n� 1 are called
future and past temperatures. If the temperature at time

n ¼ N is desired to be calculated, the measurements

should be known up to I þ N time steps. Here I is the
number of the space grids in the inverse region. Eq. (10)

cannot be used to calculate the temperature field at the

final time step since it includes future temperatures.

Thus, an explicit scheme that does not include future

temperatures, proposed by D’Souza [22], is used to

calculate the temperature distribution at the final time

step. Backward-difference in time and central-difference

in space lead to

hm
i;j � hm�1

i;j

Ds
¼ aj

a1

hm
iþ1;j � 2h

m
i;j þ hm

i�1;j

ðDnÞ2
: ð11Þ
Rearranging the above equation yields

hm
i�1;j ¼ 2h

m
i;j � hm

iþ1;j þ
a1
aj

ðDnÞ2

Ds
ðhm

i;j � hm�1
i;j Þ: ð12Þ

Thus, at each time step toward the unknown boundary,

Eq. (10) is used for times n ¼ 1 to m� 1, while Eq. (12)
is used for n ¼ m. The space–time grid for numerical
calculations is shown in Fig. 2.
4. Results and discussion

Grid-refinement and time-step-sensitivity studies

have been done to ensure the accuracy of the numerical

method. In general, the accuracy of a numerical method

increases as the time step decreases. However, in the

inverse method sensitivity to measurement errors in-

creases due to the smallness of the time steps. Thus, a

trade-off between accuracy and stability exists. In the

following cases, the time step Ds ¼ 0:01, the grid size
Dn ¼ 0:01, the thermal diffusivity ratio a2=a1 ¼ 0:1, and
the thermal conductivity ratio k2=k1 ¼ 0:1 are employed.
Fig. 3 shows the exact and estimated temperature

profiles for j ¼ 5
 10�4 over the time sequence. It can
be seen that the absolute value of the slope in Layer 2 is

greater than that in Layer 1 near the interface. Because

k2 is smaller than k1 and o
on h1ðs; n1Þ ¼ k2

k1
o
on h2ðs; n1Þ, it

is easy to determine that o
on h2ðs; n1Þ is greater than

o
on h1ðs; n1Þ. Moreover, owing to the existence of interface
thermal resistance there is an abrupt temperature jump

at the interface ðn ¼ 0:5Þ. In this case, the first sensor is



Fig. 3. Exact and estimated temperature distributions with

j ¼ 5
 10�4 over the time sequence.

Fig. 4. Exact and estimated temperature distributions at

s ¼ 0:3 for various interface conditions with (a) k2=k1 ¼ 0:1 and
(b) k2=k1 ¼ 10.
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located at nr ¼ 0:75 and the second sensor is located at
n ¼ 1. Thus, 0:75 < n < 1 is the direct region and 0 <
n < 0:75 is the inverse region. It can be seen that inverse
estimation predicts well in the region 0:5 < n < 0:75.
The maximum relative error is about 0.7%. However, a

difference between exact and estimated values appears as

the calculation marches through the interface. This

phenomenon is obvious for the first few time steps. For

example, the estimated values did not match the exact

values very well at s ¼ 0:2 (the relative error is about
1%), but they did at s ¼ 0:5 and s ¼ 0:8 (the relative
errors are less than 0.1%). The temperature of the left

surface (unknown in the inverse problem) suddenly rose

from T0 to TL in the direct problem. Such an abrupt
temperature jump could not be predicted accurately

using a numerical method. Thus, estimation accuracy is

not good for the first few time steps.

Three values of j were chosen to illustrate the effect
of interface thermal resistance on the inverse solution:

j ¼ 5
 10�5, j ¼ 1
 10�4, and j ! 1 (without inter-

face thermal resistance). Fig. 4(a) depicts the exact and

estimated temperature distributions within the medium

at s ¼ 0:3, with the first sensor located at nr ¼ 0:75. It
can be seen that the differences between exact and esti-

mated values decrease as j increases. In other words, the
accuracy of the inverse estimation increases as the

interface thermal resistance decreases. Furthermore, it is

interesting to note that the differences between the exact

and estimated values trend toward diminution as the

calculation marches through the interface to the left

surface (n ¼ 0). For example, the difference between the
exact and estimated temperatures at n ¼ 0:4, 0.3, and 0.2
are 0.005216, 0.004617, and 0.003221, respectively, for

j ¼ 5
 10�5. The discrepancy between the estimated
and exact temperatures seems to recover as the esti-
mated solution moves to the surface. In order to inves-

tigate this phenomenon, another case was selected to be

tested. The results of the case with k2=k1 ¼ 10 were
plotted in Fig. 4(b). From Fig. 4(b), the results show

that the discrepancy between the estimated and exact

temperatures was slightly diverged as the estimated

solution moves to the surface. However, all of these

cases show that the error of inverse estimation of surface

temperature is less than 1.3%.

Fig. 5 presents the exact and estimated surface tem-

perature histories for j ¼ 5
 10�5, j ¼ 1
 10�3, and
j ! 1, with nr ¼ 0:75. The inverse estimation solution
is not good for the first few time steps, as mentioned

above, however, after about 10 time steps ðs ¼ 0:1Þ, the
estimated values approach to the exact values as time

elapses. In other words, the relative error decreases when



Fig. 5. Exact and estimated surface temperature histories for

various interface conditions.
Fig. 6. Exact and estimated temperature-difference (Dh) histo-
ries at the interface for j ¼ 1
 10�4, j ¼ 5
 10�4 and j ¼ 1

10�3 with nr ¼ 0:75.

Fig. 7. Exact and estimated temperature distributions for var-

ious sensor locations with j ¼ 1
 10�4.
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the time increases. The maximum relative error is about

1% at s ¼ 0:1. Furthermore, the accuracy of the inverse
method slightly increases as the interface thermal resis-

tance decreases. However, in this case, the error is so

small that it is generally not significant.

Fig. 6 shows the exact and estimated histories of the

temperature difference (Dh) at the interface for j ¼ 1

10�4, j ¼ 5
 10�4, and j ¼ 1
 10�3, with nr ¼ 0:75. As
time elapses, the temperature difference at the interface

initially increases until reaching maximum then de-

creases to a fixed value. Thus, the steady state is reached.

The small value of j represents high interface thermal
resistance that prevents heat from propagating from one

material to the other, so the temperature difference at

the interface decreases as j increases. Furthermore, the
moment that the maximum temperature difference ap-

pears tends to shift toward short time as j decreases.
Inverse estimation predicts this phenomenon accurately

after a few time steps.

Fig. 7 illustrates the exact and estimated temperature

distributions for various sensor locations, with j ¼ 1

10�4. At s ¼ 0:2, the accuracy of the inverse estimation
with nr ¼ 0:60 is better than that of the other two cases.
The small value of nr means that the sensor was located

near the unknown boundary. Thus, the best inverse

solution is obtained with the sensor closest to the un-

known boundary. However, this phenomenon is not

significant as time elapses. At s ¼ 0:6, nr ¼ 0:60, nr ¼
0:75, and nr ¼ 0:90 predict almost the same temperature
distribution and they match the exact value reasonably

well. The relative errors are less than 0.1% for these

three cases at s ¼ 0:6.
The maximum inverse estimation error occurs at the

interface for our demonstrated case. Thus, the inverse

estimation error at the interface must be thoroughly
examined. Eint is the absolute value of the relative error
at the interface. It is chosen as an index of the inverse

estimation error. Fig. 8 shows the inverse estimation

error at the interface for j ¼ 5
 10�5, j ¼ 1
 10�4,
j ¼ 5
 10�4, and j ! 1 with nr ¼ 0:75. For the first
few time steps such as s < 0:1, Eint varies sharply with
time. As mentioned before, an abrupt temperature jump

could not be predicted accurately using a numerical

method so that the estimation accuracy is not good for

the first few time steps. Furthermore, the existence of

interface thermal resistance will make the estimation less

accurate. Therefore, Eint is affected by both j and s.
There is no general trend for Eint when s is less than 0.1.



Fig. 8. Inverse estimation error at the interface for j ¼ 5

10�5, j ¼ 1
 10�4, j ¼ 5
 10�4 and j ! 1 with nr ¼ 0:75.
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However, the results show that Eint decreases as j in-
creases after s ¼ 0:1, i.e. less interface thermal resistance
results in more accurate prediction. Besides, the figure

demonstrates again that the inverse estimation error

decreases as time elapses.

In order to examine the influence of sensor locations

on the inverse estimation error at the interface, three

different sensor location, nr ¼ 0:60, nr ¼ 0:75, and
nr ¼ 0:90 were designated as sample cases. Fig. 9 depicts
inverse estimation error at the interface for various

sensor locations with j ! 1. It is obvious that Eint
decreases as nr increases. Thus, the inverse estimation

predicts more accurately while the sensor is close to the

unknown boundary.

The discussion above shows that the inverse method

provides a good estimation with exact input data.
Fig. 9. Inverse estimation error at the interface for various

sensor locations with j ! 1.
However, in practical engineering applications, mea-

surement errors are unavoidable. Thus, the effect of

measurement errors on the inverse method must be

taken into account. The temperature data for the mea-

surement locations were calculated from direct problems

to simulate measurements. The simulated temperature

measurements used in the inverse problems are consid-

ered to include measurement errors. In this study, ran-

dom errors were added to the exact temperatures. The

measured temperature Tmeasured can be expressed as

Tmeasured ¼ Texact þ -Texact; - < jrj; ð13Þ

where Texact is the exact temperature, - is the random

error, and r is the bound of -.
Fig. 10 depicts the exact and estimated surface tem-

perature histories for various sensor locations, with

j ¼ 1
 10�3, when measurement errors are taken into
account. It can be seen that large measurement errors

make the estimation less accurate. Furthermore, the

inaccuracy is amplified by large nr values. For the cases

with exact input data (without measurement errors),
Fig. 10. Exact and estimated surface temperature histories for

measurement errors 0.1%, 0.3%, and 0.5%, with j ¼ 1
 10�3
with the first sensor located at (a) nr ¼ 0:60, (b) nr ¼ 0:75 and
(c) nr ¼ 0:90.



Fig. 11. Exact and estimated surface temperature histories for

measurement errors 0.1% and 0.5% with interface thermal

resistance: (a) j ¼ 1
 10�4 and (b) j ! 1.
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sensor locations merely slightly affect the accuracy of the

inverse estimation. However, the effect will be amplified

if measurement errors are taken into account. Thus, for

practical engineering problems in which measurement

errors are unavoidable, sensors must be located as close

to unknown boundaries as possible. Fig. 11 shows an

estimated surface temperature history with (a) j ¼ 1

10�4 and (b) j ! 1. Comparing Fig. 11(a) and (b), it is
clear that the differences between exact and estimated

values are amplified if when thermal resistance exists at

the interface.
5. Conclusions

This paper presents a numerical analysis of estimat-

ing transient behavior of surface temperatures for thin-

film/substrate systems using an inverse method. The

acoustic mismatch model was employed to model the

interface thermal resistance between thin-film and sub-

strate. The space-marching technique is adopted for the

analysis of the inverse heat conduction problem.

Numerical results show that the inverse method accu-

rately estimated the surface conditions and temperature
distributions in a two-layer system even with an abrupt

temperature drop in the interface. Sensor locations and

interface thermal resistance just slightly affected the

accuracy of the inverse estimation during the transient

process when exact input data (without measurement

errors) were applied. However, inaccuracy might be

amplified by interface thermal resistance and sensor

locations if measurement errors exist.
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