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1. INTRODUCTION

In this paper we consider the existence and the multiplicity of positive
radial solutions of the equation

Au+f(u)=0 in , (1.1}

with some non-homogeneous Dirichlet boundary conditions, where Q is
annular or in multiply connected bounded smooth domains in R", n> 2.
We assume that f satisfies the following assumptions throughout the paper,
without further mention.

(A-1) fe CXR') and f(1)>0 for t>0,

(A-2) lim, o (f(1)/1) =0,

(A-3) lim,, (f(1)/1)= 0.

This paper was motivated by the recent work of Bandle and Peletier [2].

In [2], they consider the Dirichlet problem

Au+un o= =g u>01in Q,
u=0  onlY, (12)
u=b, b>0inr,,

where 2 is a doubly connected bounded smooth domain in R”, n>2,
with inner boundary I', and outer boundary I'y,. They proved that if Q
is annular or in general domains for which there exist constants
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POSITIVE SOLUTIONS ON ANNULUS 349

0<R,<R,<Ry<oosuch that @< {x; R, <|x| <Ry} and I, < {x:|x| <
R,}, then there exists a positive constant b* such that problem (1.2) has
a solution for all b < b* and none for b > b*.

In this paper, on the annulus 2= {xeR":0< R, <|x| <Ry}, we
consider (1.1) with one of the Dirichlet boundary conditions

u=0 on |x|=R, and u=b on |x|=R,, (1.3a)

u=b on |x|=R, and u=0 on |x|=Ry; (1.3b)

here 5> (0. We shall prove that there exists a positive constant o* such that
problem (1.1), (1.3a2) has at least two positive radial solutions for all b < b*
and none for b> b*; a similar result also holds for (1.1), (1.3b). Moreover,
in addition to (A-1}-(A-3), if f satisfies

(A-4) f"(r)>0for all >0,

(A-5) [n/(n=2)+2R]"Y(RG2 =R 1 S(1) = 1/'(1) > fl)>0
for all >0,

then we prove that there are exactly two positive radial solutions of (1.1),
(1.3a) on annulus. Furthermore, we prove that a similar result holds for the
equation

Au+u?=0, p>1, inQ, (1.4)

with boundary condition (1.3a). We shall also generalize the result of
Bandle and Peletier [2] to problem (1.1) with the multiple-connected
bounded smooth domains.

Equation (1.1) on the annular domain 2= {x:0< R, <|x| < R,} with
one of the following sets of boundary conditions,

u=0 on |x[=R, and u=0 on |x|=R,, (l.52)
du

u=0 on |x|=R, and 6_20 on |x|=R,, (1.5b)
r

ou

Er-=() on |x|=R, and u=0 on |x|=R,; (1.5¢)

here r=|x| has been considered by many authors (see, e.g, [1,3,4]).
In [1], Bandle et al. proved that problem (1.1), (1.5) has positive radial
solutions for any annulus in R”, n> 2, by assuming (A-1)-(A-3), and fis
nondecreasing in (0, cc). In [3], Garaizar proved the various existence
and non-existence results of problem (1.1), (1.5a) under the various
assumptions of f at infinity and at 0. In [4], Lin proved that under
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assumptions (A-1)-(A-3), problem (f.1), (1.5} has at least one positive
radial solution for any annulus in R", n> 2.

The paper is organized as follows: In Section 2, we study the existence of
positive radial solutions for (1.1), (1.3a) and (1.1), (1.3b) on annulus. In
Section 3, we prove that there are exactly two positive radial solutions of
(1.1), (1.3a) if (A-1)-(A-5) are satisfied. In Section 4, we study the existence
of solutions for (1.1), (1.3a) on the general domains.

2. EXISTENCE OF POSITIVE RADIAL SOLUTIONS ON ANNULUS

Since we are interested in the positive radial solutions of (1.1), (1.3a) on
the annulus @ = {xeR":0< R, < |x| < Ry}, u=u(r) satisfying

n—1

u"(r)+ W (r)+f(u(r))=0 in(R,, Ry), (2.1)

p
M(RI)ZO, U(R()):b. (2.2)
Thus, in terms of variables
s=r" and u(s)=u(r),
problem (2.1), (2.2) can be rewritten as
u'(s)+p(s) flu(s)) =0 in(so, 5,), (2.3)
u(so)=>b,  u(s;)=0, (2.4)
where p(s)=(n—2)"2s % k=2+42/(n—2), s,=R5"", and 5, =RI~".
We shall use the method of backward shooting, i.e,, consider the family
of solutions of the initial value problems
u’(s)y+ p(s) f(u(s))=0 for s<s,, (2.5)
u(sy)=0, u(s,)=—45, (2.6)

where f§> 0 is the shooting parameter. For every > 0, problem (2.5), (2.6)
has a unique solution u(-)=u( -, 8) with the maximal domain of existence
(3(B), 5,). It is easy to check that (2.5), (2.6) is equivalent to the integral
equation

us)=Plsi =)= [ t=s)p() Sl dty  se@(BLs). (2T)
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and the solution u also satisfies
u(s)=u(S)+u'(s)(s—5)+ JX (r—s)p(2) flu(t)) dt, s, 5e(3(p), s51). (2.8)

From (2.7), if u is positive in some interval (z, s;) with « >0, then
u(s) < (s, —s) in (a, 5,). (2.9)
If u has a zero in (5(f), s,), denote
so(B)=inf{sq : u(s, f)>01n (sq, 5,)}.

and in this case, there exists a unique t(ff)e(so(f),s,), such that
W (t(B), 5,)=0. Since u"(s, ) <0 in (s54(f), 5,) and u'(s(B), f)>0, by the
implicit function theorem, s,(f) and t(f) are C' for those B such that

so(f)>0.
For each fixed s,> 0, denote

A(s;)={B>0:(2.5), (2.6) has a positive solution in (54, 5,)} (2.10)
B(s,) = sup{u(so, B) : Be Als))}. (2.11)
The following two lemmas, which were proved in Lemma 2.7 of [1] and
Lemmas 2.1 and 2.2 of [4], indicated that A(s,)# ¢.
LemMma 2.1, If (A-1) and (A-2) are satisfied, then so(f) is nonnegative
Sfor any >0 and

lim s,(f)=0. (2.12)

f—0"

LEemMMa 2.2. If (A-1) and (A-2) are satisfied, then ©(B) and s,(B) are
well-defined, when B is sufficiently large and

lim z(B)=s,, (2.13)
B
lim M(T(ﬁ), ﬂ):(x;\, (214)
p - o
ﬁlim so(B)=3,. (2.15)

LemMa 2.3. If (A-1)-(A-3) are satisfied, then B(s,) is finite for any
5> Sq, and problem (2.3), (2.4) has a positive solution for any b < B(s,) and
none for b> B(s)).
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Proof. First, we prove that B(s,) < oo for any s, > s,. Otherwise, there
would be a sequence f,>0 with u(s, f,)—> o0 as k— o0, Let u(-)=
u(-, B). Then

u(sy) —ui(so)
S — S8,

_ 1 (o)
§1— 350

B>

implies lim, _, ., f, = c0. By Lemma 2.2, we have a contradiction.

Second, we prove that (2.3), (2.4) has a positive solution for any
b < B(s,) and none for b> B(s,). It is clear that (2.3), (2.4) has a solution
for b= B(s,), and none for b> B(s,). Let v be a solution of (2.3), (2.4) with
b= B(s,). Then for each be (0, B(s,)) v is a supersolution of (2.3), (2.4).
Since w=0 is a subsolution of (2.3), (2.4), therefore (2.3), (2.4) has a
solution by the method of monotone iterration scheme (see, e.g., [7]). The
proof is complete.

Instead of using the method of backward shooting, we shall use the
method of forward shooting to study the multiplicity problem of solutions
of (2.3), (2.4), ie., consider the family of solutions of the initial value
problems

u’(s)+p(s) fu(s))y=0, §> 8, (2.16)
u(sy) = b, u'(sy) = (2.17)

here e R".

For every a e RY, (2.16), (2.17) has a unique solution u(-)=u(-, ) with
the maximal domain (s,, §(«)), and it is easy to check that (2.16), (2.17) is
equivalent to the integral equation

u(s) = b+ ofs — 59) + f (t—5)p(t) fu(1)) dt,  se (50, 5,(x)).  (2.18)

50

Denote
sy (e, b)=sup{s, 1 u(-,2)>01in (s0)}, (2.19)
si(b)=sup{s (o, b):aeR'}. (2.20)
LEMMA 2.4. If (A-1) and (A-3) are satisfied, then
lim s,(x b)=s,. (2.21)

x— t o
Proof. First, we prove (2.21) when 2 — —oc. From (2.18), we have
uls)<b+als—sg), S€ (sg, 5,(a, b)).

Let $(x)=s5,— b/, since s,<s,(a, b)<§(a). This implies (2.21) when
o— — 0.
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Next, by arguments similar to those in Lin [4], we shall prove the
following results,

c(liﬂrr:c (2, b) =s,, (2.22)

lim u(x(x, b), o) = o0, (2.23)
lim $, (2, ) =50, (2.24)

lim w(,(2,b). 2) = = co, (2.25)

where §,(a, b) satisfies u($,(a, b),0)=»b and u'(5,(o, b), 2) <0, t(a,b)
satisfies u'(t(a, b), ) =0, u'(-, 2)>0 in (59, (2, b)). If (2.22), (2.23) hold,
then t(a, ), §,(a, b) are well-defined for « sufficiently large. Hence, (2.21)
with o — oo follows from (2.24), (2.25).

If (2.22) were false, there would be a point 7,>s, and a sequence
o, — o with

u,(s)>0 and u(s)>0 in (g, o), (2.26)
where u, (-} =u,(-, ;). Let §= {54+ 75)/2. We claim that

lim sup u,(5)= co. (2.27)

k - oo

Suppose that this is not the case. Then there exists a constant M >0, such
that

u(5)s<M for all k. (2.28)
By (2.18) and (2.28), we have
u, (5)=2b+ o, (1q+50)/2—C

for some constant C>0. But this contradicts (2.28). Therefore, (2.27)
holds.
By choosing a subsequence of a,, if necessary, we may assume that

lim u,(5)=o0. (2.29)

k—
Denote
M, =inf{ f(u,(s))/u,(s) :s€ [5 101}

Zinf{ f(u)/u:uzu,(3)}.
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By (2.29) and (A-3), we have
lim M, = oc. (2.30)

koo
Let u, and v, be the solutions of
u'(s)+ p(s)h(s)u(s)=0  in (5, 7o),
v"(s)+ p(s)y M, v(s)=0 in (8, 7q),
respectively, where A, (s)=/f(u,(s))/u,(s). Then
p(s)h(s) = plto) M (2.31)

and (2.30) implies that v, has at least two zeros in (5, 1y), when & is
sufficiently large. By (2.31) and the Sturm Comparison Theorem, u, has at
least one zero in (3, t,). But this contradicts (2.26). Hence, (2.22) holds.

Next, we prove (2.23). Suppose that (2.23) does not hold. Then there
exist a constant M >0 and a sequence a, — oo such that

Ut ) S M for all &, (2.32)

where u,(s)=u.(s, 2,) and 7, = t(a, ). Denote

Fu = fin dr

and define
V(s)=V(s, &)= (u'(5))*/2 + p(s) Flu(s)). (2.33)

Since V'(s)=p'(s) F(u(s)),

V(te) = Viso) +] p' (1) Flu(1)) dt.
Therefore, we have
ple) Flu(t0) =232+ plso) FbY + [ /(00 Fla(0)) dr. - (2.34)

Now, (2.32) implies the left-hand side of (2.34) is bounded, but this is
impossible when & — oc. Hence, (2.3) holds.

Next, we prove (2.24). Suppose that (2.24) does not hold. Then there
exist a constant §, > s, and a sequence %, — oo such that

u(s)>b  and  wl(s)<0  in (1, 5,), (2.35)
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where u, and 1, are given after (2.32). Denote
§={so+3,)/2. (2.36)
By (2.22), we may assume §> 1, for any k. We claim that

klim sup u,(§)=oc. (2.37)

Otherwise, there exists a constant M > 0 such that
u (5)< M, for all k. (2.38)
Since u” <0 in [, §,], therefore (2.23) and (2.35) imply that

lim wu(§)= —o0.
k — o

Moreover, u” <0 also implies that

lim wu,(3,)= — o, (2.39)

k — x

Hence
w (8) u(§)) +up (S —§,) + j (1 =3)p(1) fu, (1)) dt
2b—u (58, —50)2-C
for some constant C. Therefore (2.39) implies

lim uk(.S-') = oC,

k— =«

a contradiction to (2.38). Hence, (2.37) holds. By (2.37) and the Sturm
Comparison Theorem again, u, has a zero in (7, §) when k is sufficiently
large. But, this contradicts (2.35). Hence, (2.24) holds.

Finally, we prove (2.25). Let m, be the slope of the straight line passing
through the points (t(x, b), u(t(2, b))) and ($(x, b), b). Then (2.23) and
(2.24) implies that

lim m,= —o0. (2.40)

A —+ L

Since u” <0, we have u'(5,(x, b), &) < m,. Hence, (2.40) implies (2.25). The
proof is complete.
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An immediate consequence of Lemma 2.4 is the following result.

COROLLARY 2.5. If (A-1) and (A-3) are satisfied, then (2.3), (2.4) has at
least two positive solutions for any s, € (54, 5,(b)), at least one for s, =s,(b)
if s,(b)< o0, and none for s, >s,(bh).

In the remaining part of this section, we shall prove that B(s,) and s,(b)
which are defined by (2.11), (2.20), respectively, are inverse to each other.
Then, we can easily obtain that there exist b* > 0 such that problem (2.3),
(2.4) has at least two positive solutions for any b < b*,

LemMa 2.6. If (A-1)-(A-3) are satisfied and s,(by) < o0, then s,(b) <
Sfor any b> b, and s,(b) is strictly decreasing in (by, o0).

Proof. First, we claim that s,(b) < o for b> b,. Otherwise, there exist
b> by such that s,(h)= oo. By Corollary 2.5, (2.3), (2.4) with u(s,) with
u(sy)=b, has a solution for any s, e (s,(b,), o0). Hence B(s,)=b. Then
by Theorem 2.3, (2.3), (2.4) with u(s,)=b, has a solution, but this is
impossible. Therefore s,(b) < oo for &> b,.

Similarly, it is easy to prove that if b, <b,, then s,(b,) = 5,(b,).

Finaly, we prove that if b, <b,, then s,(b,)>s,(b,). Otherwise, there
is a constant s, such that s,(b)=s, for any be[b,, b,]. Let u(s) be the
solution of (2.3), (2.4) with u(sy)=25b,, u(s;)=0. Then there exists a
constant f§ such that f= —u'(s,). By the continuous dependence of o.d.e.,
for any &> 0, there exists 6 >0 such that s, <3, <s,+ 0, and v(s) is the
solution of (2.5), (2.6) with s, =35, and |u(s) — v(s)| <¢, for any se€ [s,, 5, ].
By the assumption, b, <uv(sy); hence B(5,)>=uv(sy)>b,. By Theorem 2.3
there exists a solution of (2.3), (2.4) with b=4b,, s,=35,, but this is
impossible. The proof is complete.

LeMMa 2.7, B(s,) is strictly decreasing and continuous in (s, o0).

Proof. By an argument similar to that in Lemma 2.6, we can prove that
B(s,) is strictly decreasing in (s,, ov). The details are omitted. To prove
B(s,) is continuous, we prove it by contradiction. If there exists s, € (54, o0)
such that lim, ,,, B(s)= B# B(s,), let B— B(s;)=¢>0. Therefore, there
exists 6>0, such that for § e(s;—d,s,), B(5,)=B. Now, for any
§e(s,—9,s,), let u(-, s,, B) be the solution of (2.5), (2.6) and let B(5,) be
a slope such that u(s,, §,, f(5,)) = B(5,). By an argument similar to that
used in proving Lemma 2.3, it can be proved that f(5,) is bounded above
for §,e(s, —9J,s,). Therefore, there exist a sequence {3,}c<(s;—3,s,)
and feR' such that §,—s, and B(5,)— f, when k— co. Hence, by
the continuous dependence of ode., u(sq,s,,f)=B—¢?2>B(s,), a
contradiction. The proof is complete.
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THEOREM 2.8. The functions B:(sq, 00)— (by, 0) and s,:(by, 0)—
(sg, 00), which are defined by (2.11), (2.20), respectively, are inverse to each
other, where by=1lim_ , ,, B(s,).

Proof. We claim that B(s,(b))=0b, for any b > b,. Otherwise, B(s,(b))
>b. Let b,=B(s(b)). Then s,(b,)=5s,(b), but this is impossible by
Lemma 2.6. Similarly, we can prove s,(B(s))=s, for any s> s,. The proof
is complete.

THEOREM 2.9. Let (A-1)-(A-3) be satisfied. Given sy <5, there exists a
positive constant b* such that (2.3), (2.4) has at least two positive solutions
Jor any be (0, b*) and none for b > b*.

Proof. Let b* = B(s,). Then Theorem 2.8, Lemma 2.6, and Corollary 2.5
imply the result. The proof is complete.

By Theorem 2.9, we can obtain the following generalization of Theorem 5.1
of Bandle and Peletier [2].

CoroLLARY 2.10. If (A-1)}-(A-4) are satisfied and given R, < R, then
there exists a positive constant b* such thar (1.1), (1.3a) has at least two
positive solutions for any be (0, b*) and none for b > b*.

Proof. By Theorem 2.9, there exists a positive constant b* > 0 such that
(1.1), {1.3a) has positive radial solutions for b < 4* and none 5 > b*.

To prove there is no positive solution for any b e (b*, oc), we shall use
an argument similar to one in Theorem 5.1 of [2], i.e.,, we shall prove that
if there exists a non-radially symmetric solution for (1.1), (1.3a), then there
also exists a radially symmetric solution for (1.1), (1.3a). Let u(x) be a
solution of (1.1), (1.3a) and let &(r) be its spherical mean

1
il = J d 3
alr) meas S(r) L(,) u(x) ds
where S(r)={xeR":|x| =r}. By (A-4), Jensen’s inequality is applicable.
Therefore, we have

0=di+——7— f flu(x)) ds

meas S(r) S(r)

> dia+ f(a) in Q.

Since @#(R,)=0 and #(R,)=>b, #(r) is a supersolution of (1.1), (1.3a).
On the other hand, v =0 is the subsolution of (1.1), (1.3a). By monotone
iteration scheme, there exists a positive radial solution for (1.1), (1.3a), but
this is impossible. The proof is complete.
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With a slight modification of the previous argument, we can obtain a
similar result for (1.1), (1.3b) as follows. The details are omitted.

THEOREM 2.11. If (A-1)-(A-3) are satisfied, given s, > s,, there exists a
positive constant b* such that (2.3) with boundary conditions

uls) =0, uls))=h,

has at least two positive solutions for any be(0,b*) and none for
be (b*, ov). Moreover, if [ satisfies (A-1)-(A-4), then for any R, > R, there
exists b* >0 such that (1.1), (1.3b) has at least two positive solutions for any
be (0, b*) and none for be (b*, ).

Remark 2.12. 1If (A-1) and (A-2) are replaced by the condition
(A-1) feC?*R') and f(¢t)>0 for t =0,

then similar results hold for (1.1), (1.3a) and (1.1), (1.3b). The details will
be given elsewhere.

3. ExacTLY TwoO SOLUTIONS ON ANNULUS

In this section, we shall give some sufficient conditions which imply that
(1.1), (1.3a) has exactly two positive radial solutions for any b e (0, b*).

THEOREM 3.1. If (A-1)-(A-5) are satisfied, then (1.1), (1.3a) has
exactly two positive radial solutions for any be (0, b*), where b* is given in
Theorem 2.9.

Proof. As in Theorem 2.15 of [6], we let w(t)=ru(r) and t=r""2
Then (2.1), (2.2) take the forms

w’(t)+ p(t) f(w/t)=0, a<t<f, (3.1)
w(a)=0, w(p)=pb, (3.2)

where x=R" "% B=R. % p(t)=(n—2) "2t 5 k=1-2/(n-2).
Consider the following initial value problems

w'(t)+ p(t) f(w/t)=0, t>a, (3.3)
w(a)=0, wi(a)=d>0. (3.4)
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Let @(t, d)=(dw/od)(t, d) and ¥ (1, d) = (6¢@/éd)(t, d). Then

0" +p(0) S (win) ¥ =0, (3.5)
o(x)=0, p'(2)=1, (3.6)
y i ¥ o @*
Wl £ e S = — () £ (3.7)
Ya)=0,  ¢'(x)=0. (3.8)

For each d> 0, define z(d) to be the first r > « such that w(r, d) =0 if such
¢t exists. By Lemma 2.1, z(d) exists for any d>0. Since w is concave in
(2, z(d)}), therefore there exists y(d)e(a, z(d)) such that w'(t,d)>0 for
tefa, y(d)) and w'(z, d) <0 for te (y(d), z(d)). Let y(d) be the first zero of
o(t,d) in (2, z(d)). By Theorem 2.15 of Ni and Nussbaum [6], y(d) is
unique in (2, z(d)) and y(d) < y(d).

We claim that y'(d) <0 for any d> 0. Multiply (3.5) by ¢, (3.7) by o,
subtract and integrate from o to y. We obtain

3

| wor—vrorar=[" i s towi G a.

By (3.6), (3.8), and (A-5), ¥(»)e'(y)>0. Hence, ¥(y)<0 and y'(d)=
~y(y,d)/ o' (y,d)<0 for any 4> 0.

For any be (0, b*), there exists a unique d*(b) such that @(fb, d*(b))
=0. Hence ¢(Bb,d)>0 for d<d* and ¢(Bb, d) <0 for d> d*. The proof
is complete.

THEOREM 3.2.  Problem (1.1), (1.4) has exactly two positive radial
solutions for any be (0, b*), where b* is given in Theorem 2.9.

Proof. Since the proof is similar to the previous one, we only sketch it.
As in Theorem 3.1 of [6], let t=logr, w(t)=r'"~"2y(r). Then (2.1), (2.2)
with f(u)=u” can be rewritten as

w’(t) + pw' (1) +yw(t) + w?(1)=0, a<t<f,
w(x)=0, w()y="~',
where a =log R,, f=log Ry, u=n—2—-4/(p—2),v=2n—-2-2/(p—2))/
(p—1), B’ =bRY 172,
Consider the following initial value problems
w’ () + pw' (1) + vw(t) + w?(t) =0, t>a,
w(a)=0, w'(a)=d.
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Let o(t, d)=(ow/dd)(t, d), Y(t,d)= (ép/dd)(t, d), and let z(d), y(d), and
y(d) be defined as in the proof of Theorem 3.1. By Theorem 3.1 of Ni
and Nussbaum [6], y(d) is unique in (2, z(d)) and y(d) < y(d). By an
argument similar to that of the previous theorem, we have y'(d)=
—@'(y(d), d)y(y(d),d) <0 for any d>0. The proof is complete.

Remark 3.3. For the existence of at least two positive radial solutions,
problems (1.1), (1.3a) and (1.1), (1.3b) have the same result. But for the
problem of “exactly two positive radial solutions,” they are quite different.
In fact, if f(u)=u”, 1 <p<(n+2)/(n—2), we can prove that there exists
b >0 such that (1.1), (1.3b) has at least three positive radial solutions.

4. GENERAL DOMAINS

In this section, we shall generalize the resuit of Bandle and Peletier [2]
on problem (1.2). Let 2 be a multiply connected domain in R” such that
0R=:0Q,u0Q,, where dQ, is connected and satisfies the following
assumptions

(D-1) There exists a constant p, such that {xeR": (x| <p,} S Q,.

(D-2) There exist constants O0<p,<p, and x,eR" such that
{xeR":p, <|x—xol <pr} 2.

THEOREM 4.1.  Let assumptions (A-1)-(A-4) be satisfied and let Q be a
domain for which assumptions (D-1) and (D-2) hold. Then there exists a
positive constant b* such that problem (1.1) with the boundary conditions

u=»b ondQ, and u=0 ondoQ,, 4.1)

has at least one positive solution for all b <b* and none for b > b*,

Proof. Since Q is bounded, there exist R such that Q< {xeR": |x| <
R}. By Lin [4], the problem

Au+ f(u)=0, Po<IX| <R,

a;u:O on |x|=p, and u=0 on |x|=R,
r

has a positive radial solution. Let it be &, and g, =sup{x : x € 6Q,}. Choose
b<i(py). Then u(x)<u(py) <i(x) for xe 62, and @ is a supersolution of
problem (1.1), (4.1). By the monotone iteration scheme (see, e.g., [7]),
(1.1), (4.1) has a solution for b <#(p,). Hence b* = it(p,).
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Next, we claim that b* < oo. Consider the function he C*(2) which
satisfies

Ah=0 in Q,
h=1 ondf2, and h=0 ondQ,.

Let u be the solution of (1.1), (4.1). Then
u(x) = bh(x) on Q.

For simplicity, let x,=0 in assumption (D-2). By the strong maximum
principle #(x)>0 for all xe; hence d=min{h(x):|x|=p,}>0 and
u(x)=boé on |x|=p,. Let b'= . Consider the following problem

Ao+f(0)=0,  p,<ix|<py, (42)
v=5b" on |x|=p, and v=0 on |x|=p,. (4.3)

If b* = o0, then for any &' = bd, there is a positive solution of (1.1), (4.1),
which is also a supersolution of (4.2), (4.3). Hence, by te monotone
iteration scheme, (4.2), (4.3) has a solution. This is a contradiction to
Corollary 2.10; hence we must conclude that b is bounded above. The proof
is complete.
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